metadata
base_model: Snowflake/snowflake-arctic-embed-xs
language:
- en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:416298
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The radial profiles using frank for the seven targets can be seen in
Figure 6.
sentences:
- >-
At longer radio wavelengths, we selected the newest observations of the
appropriate resolution from the VLA archive.
- >-
The radial profiles using frank for the seven targets can be seen in
Figure 6.
- "For further information on observation and data calibration, refer to Hunt et\_al. (2021)."
- source_sentence: >-
They are extragalactic scaled up versions of galactic Ultra Compact (UC)
H ii regions, which are typically excited by a single massive star and are
≲less-than-or-similar-to\lesssim 0.1 pc in size (Wood & Churchwell, 1989).
sentences:
- >-
They are extragalactic scaled up versions of galactic Ultra Compact (UC)
H ii regions, which are typically excited by a single massive star and
are ≲less-than-or-similar-to\lesssim 0.1 pc in size (Wood & Churchwell,
1989).
- >-
The LMT is a project operated by the Instituto Nacional de Astrófisica,
Óptica, y Electrónica (Mexico) and the University of Massachusetts at
Amherst (USA).
- >-
We measure the detection confidence in the resolved image as the ratio
between the local mean posterior and the local posterior standard
deviation of the estimated circular polarization, evaluated based on
1000 images drawn from the posterior distribution.
- source_sentence: >-
The flux density calibrator was 3C286, and the complex gain calibrator was
J0836-2016.
sentences:
- >-
The flux density calibrator was 3C286, and the complex gain calibrator
was J0836-2016.
- >-
While rcsubscript𝑟cr_{\rm c} has a clear dependence on
Dmaxsubscript𝐷maxD_{\rm max}, xMMSNsubscript𝑥MMSNx_{\rm MMSN} and
tagesubscript𝑡aget_{\rm age}, ΣcsubscriptΣc\Sigma_{\rm c} only has weak
dependence on Dmaxsubscript𝐷maxD_{\rm max}, and so is mostly sensitive
to the scaling of the total initial planetesimal mass,
xMMSNsubscript𝑥MMSNx_{\rm MMSN} and tagesubscript𝑡aget_{\rm age}.
- "20 is valid only at r=rc𝑟subscript𝑟cr=r_{\\rm c}, it has been shown that the surface density of dust at r>rc𝑟subscript𝑟cr>r_{\\rm c} is expected to be flat for a primordial surface density exponent (−α𝛼-\\alpha) of -3/2, or more generally proportional to r−0.6α+0.9superscript𝑟0.6𝛼0.9r^{-0.6\\alpha+0.9} (Schüppler et\_al., 2016; Marino et\_al., 2017b; Geiler & Krivov, 2017)."
- source_sentence: >-
We would like to thank A. Deller and W. Brisken for EHT-specific support
with the use of DiFX.
sentences:
- >-
Ice has one of the weakest strengths, and thus if we had assumed
stronger solids the derived values of Dmaxsubscript𝐷D_{\max} and
xMMSNsubscript𝑥MMSNx_{\rm MMSN} would be lower.
- >-
We would like to thank A. Deller and W. Brisken for EHT-specific support
with the use of DiFX.
- >-
The wsmoothsubscript𝑤smoothw_{\rm smooth} chosen parameter ranged from
10−2superscript10210^{-2} to 10−4superscript10410^{-4} depending on the
disc.
- source_sentence: >-
New higher resolution images and our parametric modelling confirmed this
finding.
sentences:
- >-
New higher resolution images and our parametric modelling confirmed this
finding.
- >-
With the 3-bit correlator configuration, we obtained a total bandwidth
of ∼similar-to\sim8 GHz across Ka-band.
- >-
Pan & Schlichting, 2012) and thus could slightly affect the surface
density slope.
internstall-ice-crystal-xs
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-xs. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-xs
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset: scraped astronomy papers at the NLP for Space Science workshop.
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("SimoneAstarita/interstellar-ice-crystal-xs")
# Run inference
sentences = [
'New higher resolution images and our parametric modelling confirmed this finding.',
'New higher resolution images and our parametric modelling confirmed this finding.',
'Pan & Schlichting, 2012) and thus could slightly affect the surface density slope.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
The dataset is made of scrapes papers in astronomy, including abstract, introduction and conclusions. They are divided into sentences using nklt. We then duplicate them and train using the same senrence for positive and anchor. We are using SimSCE.
Unnamed Dataset
- Size: 416,298 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 42.81 tokens
- max: 512 tokens
- min: 4 tokens
- mean: 42.81 tokens
- max: 512 tokens
- Samples:
anchor positive Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope
Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope
The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).
The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).
The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).
The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0077 | 100 | 0.0025 |
0.0154 | 200 | 0.0032 |
0.0231 | 300 | 0.0026 |
0.0307 | 400 | 0.0026 |
0.0384 | 500 | 0.0041 |
0.0461 | 600 | 0.0014 |
0.0538 | 700 | 0.0019 |
0.0615 | 800 | 0.0015 |
0.0692 | 900 | 0.001 |
0.0769 | 1000 | 0.0005 |
0.0846 | 1100 | 0.0004 |
0.0922 | 1200 | 0.0013 |
0.0999 | 1300 | 0.0013 |
0.1076 | 1400 | 0.0027 |
0.1153 | 1500 | 0.0018 |
0.1230 | 1600 | 0.001 |
0.1307 | 1700 | 0.0014 |
0.1384 | 1800 | 0.0012 |
0.1460 | 1900 | 0.0041 |
0.1537 | 2000 | 0.0009 |
0.1614 | 2100 | 0.0005 |
0.1691 | 2200 | 0.0011 |
0.1768 | 2300 | 0.001 |
0.1845 | 2400 | 0.0004 |
0.1922 | 2500 | 0.0011 |
0.1998 | 2600 | 0.0044 |
0.2075 | 2700 | 0.0004 |
0.2152 | 2800 | 0.0022 |
0.2229 | 2900 | 0.0007 |
0.2306 | 3000 | 0.0006 |
0.2383 | 3100 | 0.0002 |
0.2460 | 3200 | 0.0006 |
0.2537 | 3300 | 0.0004 |
0.2613 | 3400 | 0.0013 |
0.2690 | 3500 | 0.0006 |
0.2767 | 3600 | 0.0005 |
0.2844 | 3700 | 0.0018 |
0.2921 | 3800 | 0.0023 |
0.2998 | 3900 | 0.0011 |
0.3075 | 4000 | 0.0007 |
0.3151 | 4100 | 0.0008 |
0.3228 | 4200 | 0.0013 |
0.3305 | 4300 | 0.0012 |
0.3382 | 4400 | 0.001 |
0.3459 | 4500 | 0.0016 |
0.3536 | 4600 | 0.0025 |
0.3613 | 4700 | 0.0015 |
0.3689 | 4800 | 0.0018 |
0.3766 | 4900 | 0.0019 |
0.3843 | 5000 | 0.0021 |
0.3920 | 5100 | 0.0018 |
0.3997 | 5200 | 0.0004 |
0.4074 | 5300 | 0.0006 |
0.4151 | 5400 | 0.0007 |
0.4228 | 5500 | 0.0009 |
0.4304 | 5600 | 0.0004 |
0.4381 | 5700 | 0.0003 |
0.4458 | 5800 | 0.0007 |
0.4535 | 5900 | 0.0013 |
0.4612 | 6000 | 0.0007 |
0.4689 | 6100 | 0.0005 |
0.4766 | 6200 | 0.001 |
0.4842 | 6300 | 0.0027 |
0.4919 | 6400 | 0.0018 |
0.4996 | 6500 | 0.0006 |
0.5073 | 6600 | 0.0008 |
0.5150 | 6700 | 0.0006 |
0.5227 | 6800 | 0.0007 |
0.5304 | 6900 | 0.001 |
0.5380 | 7000 | 0.0007 |
0.5457 | 7100 | 0.0005 |
0.5534 | 7200 | 0.0012 |
0.5611 | 7300 | 0.0012 |
0.5688 | 7400 | 0.0011 |
0.5765 | 7500 | 0.0005 |
0.5842 | 7600 | 0.0013 |
0.5919 | 7700 | 0.0012 |
0.5995 | 7800 | 0.0007 |
0.6072 | 7900 | 0.0012 |
0.6149 | 8000 | 0.0012 |
0.6226 | 8100 | 0.0003 |
0.6303 | 8200 | 0.0003 |
0.6380 | 8300 | 0.0003 |
0.6457 | 8400 | 0.002 |
0.6533 | 8500 | 0.0003 |
0.6610 | 8600 | 0.0016 |
0.6687 | 8700 | 0.0003 |
0.6764 | 8800 | 0.0002 |
0.6841 | 8900 | 0.0006 |
0.6918 | 9000 | 0.0005 |
0.6995 | 9100 | 0.0017 |
0.7071 | 9200 | 0.0037 |
0.7148 | 9300 | 0.0005 |
0.7225 | 9400 | 0.0006 |
0.7302 | 9500 | 0.0004 |
0.7379 | 9600 | 0.0002 |
0.7456 | 9700 | 0.0008 |
0.7533 | 9800 | 0.0005 |
0.7610 | 9900 | 0.0006 |
0.7686 | 10000 | 0.0004 |
0.7763 | 10100 | 0.0004 |
0.7840 | 10200 | 0.0006 |
0.7917 | 10300 | 0.0019 |
0.7994 | 10400 | 0.0007 |
0.8071 | 10500 | 0.0003 |
0.8148 | 10600 | 0.0003 |
0.8224 | 10700 | 0.0005 |
0.8301 | 10800 | 0.0009 |
0.8378 | 10900 | 0.0006 |
0.8455 | 11000 | 0.002 |
0.8532 | 11100 | 0.0018 |
0.8609 | 11200 | 0.0009 |
0.8686 | 11300 | 0.0004 |
0.8762 | 11400 | 0.0005 |
0.8839 | 11500 | 0.0008 |
0.8916 | 11600 | 0.0003 |
0.8993 | 11700 | 0.0002 |
0.9070 | 11800 | 0.0004 |
0.9147 | 11900 | 0.0007 |
0.9224 | 12000 | 0.0009 |
0.9301 | 12100 | 0.0007 |
0.9377 | 12200 | 0.0007 |
0.9454 | 12300 | 0.0009 |
0.9531 | 12400 | 0.0007 |
0.9608 | 12500 | 0.0009 |
0.9685 | 12600 | 0.0004 |
0.9762 | 12700 | 0.0002 |
0.9839 | 12800 | 0.0003 |
0.9915 | 12900 | 0.0002 |
0.9992 | 13000 | 0.0002 |
1.0069 | 13100 | 0.0006 |
1.0146 | 13200 | 0.0007 |
1.0223 | 13300 | 0.0007 |
1.0300 | 13400 | 0.0005 |
1.0377 | 13500 | 0.0008 |
1.0453 | 13600 | 0.0016 |
1.0530 | 13700 | 0.0007 |
1.0607 | 13800 | 0.0013 |
1.0684 | 13900 | 0.0005 |
1.0761 | 14000 | 0.0002 |
1.0838 | 14100 | 0.0001 |
1.0915 | 14200 | 0.0003 |
1.0992 | 14300 | 0.0003 |
1.1068 | 14400 | 0.0006 |
1.1145 | 14500 | 0.0002 |
1.1222 | 14600 | 0.0003 |
1.1299 | 14700 | 0.0002 |
1.1376 | 14800 | 0.0006 |
1.1453 | 14900 | 0.0011 |
1.1530 | 15000 | 0.0004 |
1.1606 | 15100 | 0.0001 |
1.1683 | 15200 | 0.0003 |
1.1760 | 15300 | 0.0001 |
1.1837 | 15400 | 0.0002 |
1.1914 | 15500 | 0.0001 |
1.1991 | 15600 | 0.003 |
1.2068 | 15700 | 0.0001 |
1.2145 | 15800 | 0.0002 |
1.2221 | 15900 | 0.0005 |
1.2298 | 16000 | 0.0004 |
1.2375 | 16100 | 0.0001 |
1.2452 | 16200 | 0.0003 |
1.2529 | 16300 | 0.0003 |
1.2606 | 16400 | 0.0008 |
1.2683 | 16500 | 0.0004 |
1.2759 | 16600 | 0.0001 |
1.2836 | 16700 | 0.0002 |
1.2913 | 16800 | 0.0011 |
1.2990 | 16900 | 0.0001 |
1.3067 | 17000 | 0.0001 |
1.3144 | 17100 | 0.0002 |
1.3221 | 17200 | 0.0005 |
1.3297 | 17300 | 0.0012 |
1.3374 | 17400 | 0.0003 |
1.3451 | 17500 | 0.0002 |
1.3528 | 17600 | 0.0009 |
1.3605 | 17700 | 0.0003 |
1.3682 | 17800 | 0.0005 |
1.3759 | 17900 | 0.0008 |
1.3836 | 18000 | 0.0005 |
1.3912 | 18100 | 0.0007 |
1.3989 | 18200 | 0.0002 |
1.4066 | 18300 | 0.0003 |
1.4143 | 18400 | 0.0002 |
1.4220 | 18500 | 0.0001 |
1.4297 | 18600 | 0.0001 |
1.4374 | 18700 | 0.0001 |
1.4450 | 18800 | 0.0005 |
1.4527 | 18900 | 0.0002 |
1.4604 | 19000 | 0.0001 |
1.4681 | 19100 | 0.0002 |
1.4758 | 19200 | 0.0006 |
1.4835 | 19300 | 0.0015 |
1.4912 | 19400 | 0.0012 |
1.4988 | 19500 | 0.0003 |
1.5065 | 19600 | 0.0005 |
1.5142 | 19700 | 0.0001 |
1.5219 | 19800 | 0.0002 |
1.5296 | 19900 | 0.0009 |
1.5373 | 20000 | 0.0002 |
1.5450 | 20100 | 0.0001 |
1.5527 | 20200 | 0.0003 |
1.5603 | 20300 | 0.0006 |
1.5680 | 20400 | 0.0002 |
1.5757 | 20500 | 0.0004 |
1.5834 | 20600 | 0.0006 |
1.5911 | 20700 | 0.0004 |
1.5988 | 20800 | 0.0002 |
1.6065 | 20900 | 0.0006 |
1.6141 | 21000 | 0.0006 |
1.6218 | 21100 | 0.0001 |
1.6295 | 21200 | 0.0001 |
1.6372 | 21300 | 0.0001 |
1.6449 | 21400 | 0.0008 |
1.6526 | 21500 | 0.0001 |
1.6603 | 21600 | 0.0005 |
1.6679 | 21700 | 0.0001 |
1.6756 | 21800 | 0.0001 |
1.6833 | 21900 | 0.0001 |
1.6910 | 22000 | 0.0001 |
1.6987 | 22100 | 0.0008 |
1.7064 | 22200 | 0.0014 |
1.7141 | 22300 | 0.0002 |
1.7218 | 22400 | 0.0007 |
1.7294 | 22500 | 0.0001 |
1.7371 | 22600 | 0.0001 |
1.7448 | 22700 | 0.0001 |
1.7525 | 22800 | 0.0002 |
1.7602 | 22900 | 0.0002 |
1.7679 | 23000 | 0.0001 |
1.7756 | 23100 | 0.0001 |
1.7832 | 23200 | 0.0005 |
1.7909 | 23300 | 0.0004 |
1.7986 | 23400 | 0.0002 |
1.8063 | 23500 | 0.0001 |
1.8140 | 23600 | 0.0001 |
1.8217 | 23700 | 0.0001 |
1.8294 | 23800 | 0.0004 |
1.8370 | 23900 | 0.0002 |
1.8447 | 24000 | 0.0002 |
1.8524 | 24100 | 0.0013 |
1.8601 | 24200 | 0.0004 |
1.8678 | 24300 | 0.0002 |
1.8755 | 24400 | 0.0002 |
1.8832 | 24500 | 0.0001 |
1.8909 | 24600 | 0.0001 |
1.8985 | 24700 | 0.0001 |
1.9062 | 24800 | 0.0002 |
1.9139 | 24900 | 0.0005 |
1.9216 | 25000 | 0.0001 |
1.9293 | 25100 | 0.0001 |
1.9370 | 25200 | 0.0002 |
1.9447 | 25300 | 0.0002 |
1.9523 | 25400 | 0.0006 |
1.9600 | 25500 | 0.0004 |
1.9677 | 25600 | 0.0002 |
1.9754 | 25700 | 0.0001 |
1.9831 | 25800 | 0.0001 |
1.9908 | 25900 | 0.0001 |
1.9985 | 26000 | 0.0001 |
2.0061 | 26100 | 0.0002 |
2.0138 | 26200 | 0.0007 |
2.0215 | 26300 | 0.0003 |
2.0292 | 26400 | 0.0001 |
2.0369 | 26500 | 0.0011 |
2.0446 | 26600 | 0.0002 |
2.0523 | 26700 | 0.0001 |
2.0600 | 26800 | 0.0002 |
2.0676 | 26900 | 0.0004 |
2.0753 | 27000 | 0.0001 |
2.0830 | 27100 | 0.0001 |
2.0907 | 27200 | 0.0001 |
2.0984 | 27300 | 0.0002 |
2.1061 | 27400 | 0.0001 |
2.1138 | 27500 | 0.0001 |
2.1214 | 27600 | 0.0001 |
2.1291 | 27700 | 0.0001 |
2.1368 | 27800 | 0.0003 |
2.1445 | 27900 | 0.0012 |
2.1522 | 28000 | 0.0001 |
2.1599 | 28100 | 0.0001 |
2.1676 | 28200 | 0.0001 |
2.1752 | 28300 | 0.0001 |
2.1829 | 28400 | 0.0001 |
2.1906 | 28500 | 0.0001 |
2.1983 | 28600 | 0.0014 |
2.2060 | 28700 | 0.0001 |
2.2137 | 28800 | 0.0001 |
2.2214 | 28900 | 0.0002 |
2.2291 | 29000 | 0.0 |
2.2367 | 29100 | 0.0001 |
2.2444 | 29200 | 0.0001 |
2.2521 | 29300 | 0.0001 |
2.2598 | 29400 | 0.0001 |
2.2675 | 29500 | 0.0001 |
2.2752 | 29600 | 0.0001 |
2.2829 | 29700 | 0.0001 |
2.2905 | 29800 | 0.0001 |
2.2982 | 29900 | 0.0001 |
2.3059 | 30000 | 0.0001 |
2.3136 | 30100 | 0.0001 |
2.3213 | 30200 | 0.0002 |
2.3290 | 30300 | 0.0011 |
2.3367 | 30400 | 0.0001 |
2.3444 | 30500 | 0.0001 |
2.3520 | 30600 | 0.0005 |
2.3597 | 30700 | 0.0001 |
2.3674 | 30800 | 0.0001 |
2.3751 | 30900 | 0.0006 |
2.3828 | 31000 | 0.0001 |
2.3905 | 31100 | 0.0001 |
2.3982 | 31200 | 0.0002 |
2.4058 | 31300 | 0.0001 |
2.4135 | 31400 | 0.0001 |
2.4212 | 31500 | 0.0001 |
2.4289 | 31600 | 0.0001 |
2.4366 | 31700 | 0.0001 |
2.4443 | 31800 | 0.0004 |
2.4520 | 31900 | 0.0001 |
2.4596 | 32000 | 0.0001 |
2.4673 | 32100 | 0.0002 |
2.4750 | 32200 | 0.0002 |
2.4827 | 32300 | 0.0004 |
2.4904 | 32400 | 0.0008 |
2.4981 | 32500 | 0.0001 |
2.5058 | 32600 | 0.0001 |
2.5135 | 32700 | 0.0001 |
2.5211 | 32800 | 0.0001 |
2.5288 | 32900 | 0.0006 |
2.5365 | 33000 | 0.0001 |
2.5442 | 33100 | 0.0001 |
2.5519 | 33200 | 0.0002 |
2.5596 | 33300 | 0.0001 |
2.5673 | 33400 | 0.0002 |
2.5749 | 33500 | 0.0001 |
2.5826 | 33600 | 0.0001 |
2.5903 | 33700 | 0.0001 |
2.5980 | 33800 | 0.0001 |
2.6057 | 33900 | 0.0001 |
2.6134 | 34000 | 0.0007 |
2.6211 | 34100 | 0.0 |
2.6287 | 34200 | 0.0001 |
2.6364 | 34300 | 0.0001 |
2.6441 | 34400 | 0.0006 |
2.6518 | 34500 | 0.0001 |
2.6595 | 34600 | 0.0001 |
2.6672 | 34700 | 0.0001 |
2.6749 | 34800 | 0.0 |
2.6826 | 34900 | 0.0001 |
2.6902 | 35000 | 0.0001 |
2.6979 | 35100 | 0.0005 |
2.7056 | 35200 | 0.0006 |
2.7133 | 35300 | 0.0001 |
2.7210 | 35400 | 0.0005 |
2.7287 | 35500 | 0.0001 |
2.7364 | 35600 | 0.0001 |
2.7440 | 35700 | 0.0001 |
2.7517 | 35800 | 0.0001 |
2.7594 | 35900 | 0.0001 |
2.7671 | 36000 | 0.0001 |
2.7748 | 36100 | 0.0001 |
2.7825 | 36200 | 0.0005 |
2.7902 | 36300 | 0.0001 |
2.7978 | 36400 | 0.0001 |
2.8055 | 36500 | 0.0001 |
2.8132 | 36600 | 0.0001 |
2.8209 | 36700 | 0.0001 |
2.8286 | 36800 | 0.0001 |
2.8363 | 36900 | 0.0001 |
2.8440 | 37000 | 0.0001 |
2.8517 | 37100 | 0.0013 |
2.8593 | 37200 | 0.0001 |
2.8670 | 37300 | 0.0001 |
2.8747 | 37400 | 0.0001 |
2.8824 | 37500 | 0.0001 |
2.8901 | 37600 | 0.0001 |
2.8978 | 37700 | 0.0001 |
2.9055 | 37800 | 0.0001 |
2.9131 | 37900 | 0.0002 |
2.9208 | 38000 | 0.0001 |
2.9285 | 38100 | 0.0001 |
2.9362 | 38200 | 0.0001 |
2.9439 | 38300 | 0.0001 |
2.9516 | 38400 | 0.0004 |
2.9593 | 38500 | 0.0001 |
2.9669 | 38600 | 0.0001 |
2.9746 | 38700 | 0.0001 |
2.9823 | 38800 | 0.0001 |
2.9900 | 38900 | 0.0001 |
2.9977 | 39000 | 0.0001 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
#Add SimSCE reference