|
import cv2 |
|
import json |
|
import numpy as np |
|
from multiprocessing import Pool, Process, Queue |
|
import time |
|
import os |
|
|
|
|
|
def get_position(size, padding=0.25): |
|
x = [0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124, |
|
0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036, |
|
0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918, |
|
0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149, |
|
0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721, |
|
0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874, |
|
0.553364, 0.490127, 0.42689] |
|
|
|
y = [0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891, |
|
0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326, |
|
0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733, |
|
0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099, |
|
0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805, |
|
0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746, |
|
0.784792, 0.824182, 0.831803, 0.824182] |
|
|
|
x, y = np.array(x), np.array(y) |
|
|
|
x = (x + padding) / (2 * padding + 1) |
|
y = (y + padding) / (2 * padding + 1) |
|
x = x * size |
|
y = y * size |
|
return np.array(list(zip(x, y))) |
|
|
|
|
|
def cal_area(anno): |
|
return ( |
|
(anno[:, 0].max() - anno[:, 0].min()) * |
|
(anno[:, 1].max() - anno[:, 1].min()) |
|
) |
|
|
|
|
|
def transformation_from_points(points1, points2): |
|
points1 = points1.astype(np.float64) |
|
points2 = points2.astype(np.float64) |
|
|
|
c1 = np.mean(points1, axis=0) |
|
c2 = np.mean(points2, axis=0) |
|
points1 -= c1 |
|
points2 -= c2 |
|
s1 = np.std(points1) |
|
s2 = np.std(points2) |
|
points1 /= s1 |
|
points2 /= s2 |
|
|
|
U, S, Vt = np.linalg.svd(points1.T * points2) |
|
R = (U * Vt).T |
|
|
|
return np.vstack([np.hstack(( |
|
(s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)), |
|
np.matrix([0., 0., 1.]) |
|
]) |
|
|
|
|
|
def anno_img(img_dir, anno_dir, save_dir): |
|
files = list(os.listdir(img_dir)) |
|
files = [file for file in files if (file.find('.jpg') != -1)] |
|
shapes = [] |
|
for file in files: |
|
img = os.path.join(img_dir, file) |
|
anno = os.path.join(anno_dir, file).replace('.jpg', '.txt') |
|
|
|
I = cv2.imread(img) |
|
count = 0 |
|
|
|
with open(anno, 'r') as f: |
|
annos = [line.strip().split('\t') for line in f.readlines()] |
|
if len(annos) == 0: return |
|
for (i, anno) in enumerate(annos): |
|
x, y = [], [] |
|
for p in anno: |
|
_, __ = p[1:-1].split(',') |
|
_, __ = float(_), float(__) |
|
x.append(_) |
|
y.append(__) |
|
|
|
annos[i] = np.stack([x, y], 1) |
|
|
|
anno = sorted(annos, key=cal_area, reverse=True)[0] |
|
shape = [] |
|
|
|
shapes.append(anno[17:]) |
|
|
|
front256 = get_position(256) |
|
M_prev = None |
|
|
|
for (shape, file) in zip(shapes, files): |
|
img = os.path.join(img_dir, file) |
|
I = cv2.imread(img) |
|
M = transformation_from_points(np.matrix(shape), np.matrix(front256)) |
|
img = cv2.warpAffine(I, M[:2], (256, 256)) |
|
(x, y) = front256[-20:].mean(0).astype(np.int32) |
|
w = 160 // 2 |
|
img = img[y - w // 2:y + w // 2, x - w:x + w, ...] |
|
cv2.imwrite(os.path.join(save_dir, file), img) |
|
|
|
|
|
def run(files): |
|
tic = time.time() |
|
count = 0 |
|
print('n_files:{}'.format(len(files))) |
|
for (img_dir, anno_dir, save_dir) in files: |
|
anno_img(img_dir, anno_dir, save_dir) |
|
count += 1 |
|
if count % 1000 == 0: |
|
print('eta={}'.format( |
|
(time.time() - tic) / |
|
(count) * (len(files) - count) / |
|
3600.0 |
|
)) |
|
|
|
|
|
if __name__ == '__main__': |
|
with open('grid.txt', 'r') as f: |
|
data = [line.strip() for line in f.readlines()] |
|
data = list(set([os.path.split(file)[0] for file in data])) |
|
|
|
annos = [name.replace('GRID/6k_video_imgs', 'GRID/landmarks') for name in data] |
|
targets = [name.replace('GRID/6k_video_imgs', 'GRID/lip') for name in data] |
|
|
|
for dst in targets: |
|
if (not os.path.exists(dst)): |
|
os.makedirs(dst) |
|
|
|
data = list(zip(data, annos, targets)) |
|
processes = [] |
|
n_p = 8 |
|
bs = len(data) // n_p |
|
for i in range(n_p): |
|
if i == n_p - 1: |
|
bs = len(data) |
|
|
|
p = Process(target=run, args=(data[:bs],)) |
|
data = data[bs:] |
|
p.start() |
|
processes.append(p) |
|
|
|
assert (len(data) == 0) |
|
for p in processes: |
|
p.join() |
|
|