milselarch commited on
Commit
df07554
0 Parent(s):

push to main

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
.gitattributes ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.pt filter=lfs diff=lfs merge=lfs -text
3
+ *.arrow filter=lfs diff=lfs merge=lfs -text
4
+ *.bin filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
7
+ *.ftz filter=lfs diff=lfs merge=lfs -text
8
+ *.gz filter=lfs diff=lfs merge=lfs -text
9
+ *.h5 filter=lfs diff=lfs merge=lfs -text
10
+ *.joblib filter=lfs diff=lfs merge=lfs -text
11
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ pretrain filter=lfs diff=lfs merge=lfs -text
38
+ pretrain/LipNet_overlap_loss_0.07664558291435242_wer_0.04644484056248762_cer_0.019676921477851092.pt filter=lfs diff=lfs merge=lfs -text
39
+ pretrain/LipNet_unseen_loss_0.44562849402427673_wer_0.1332580699113564_cer_0.06796452465503355.pt filter=lfs diff=lfs merge=lfs -text
40
+ demo.gif filter=lfs diff=lfs merge=lfs -text
41
+ lip.zip filter=lfs diff=lfs merge=lfs -text
42
+ lip/GRID.zip filter=lfs diff=lfs merge=lfs -text
43
+ lip/GRID_aligns.zip filter=lfs diff=lfs merge=lfs -text
44
+ lip/GRID_imgs.zip filter=lfs diff=lfs merge=lfs -text
45
+ lip/GRID_wavs.zip filter=lfs diff=lfs merge=lfs -text
46
+ pretrain/shape_predictor_68_face_landmarks.dat filter=lfs diff=lfs merge=lfs -text
47
+ lip/GRID_crop_lips.zip filter=lfs diff=lfs merge=lfs -text
48
+ lip/GRID_lips.zip filter=lfs diff=lfs merge=lfs -text
49
+ lip/GRID_phonemes.zip filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ runs
2
+ weights
3
+ __pycache__
4
+ GRID_align_txt
5
+ .idea/
6
+ .vscode/
7
+ venv/
8
+ lip/**
9
+ !lip/**.zip
10
+ **/**.jpg
11
+ temp/
12
+ GRID/**
13
+ GRID-dataset/**
14
+ GRID_aligns/**
15
+ GRID_aligns_new/**
16
+ GRID_imgs/**
17
+ GRID_new/**
18
+ GRID_wavs/**
19
+ GRID_wavs_new/**
20
+ .pause
BaseTrainer.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import shutil
4
+ import resource
5
+ import options as opt
6
+
7
+ from helpers import *
8
+ from datetime import datetime as Datetime
9
+ from tensorboardX import SummaryWriter
10
+
11
+ rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
12
+ resource.setrlimit(
13
+ resource.RLIMIT_NOFILE, (65536, rlimit[1])
14
+ )
15
+
16
+
17
+ class BaseTrainer(object):
18
+ def __init__(self, name='M', base_dir=''):
19
+ self.name = name
20
+ self.base_dir = base_dir
21
+
22
+ self.date_stamp = self.make_date_stamp()
23
+ self.save_name = f'{self.name}-{self.date_stamp}'
24
+ self.weights_dir = None
25
+ self.log_dir = None
26
+ self.writer = None
27
+
28
+ @staticmethod
29
+ def get_dataset_kwargs(
30
+ shared_dict=None, base_dir='',
31
+ char_map=opt.char_map, **kwargs
32
+ ):
33
+ return kwargify(
34
+ video_path=opt.video_path,
35
+ shared_dict=shared_dict,
36
+ alignments_dir=opt.alignments_dir,
37
+ vid_pad=opt.vid_padding,
38
+ image_dir=opt.images_dir,
39
+ txt_pad=opt.txt_padding,
40
+ phonemes_dir=opt.phonemes_dir,
41
+ frame_doubling=opt.frame_doubling,
42
+ char_map=char_map,
43
+ base_dir=base_dir,
44
+ **kwargs
45
+ )
46
+
47
+ def init_tensorboard(self):
48
+ self.log_dir = f'runs/{self.save_name}'
49
+ self.weights_dir = f'weights/{self.save_name}'
50
+
51
+ if not os.path.exists(self.log_dir):
52
+ os.mkdir(self.log_dir)
53
+ if not os.path.exists(self.weights_dir):
54
+ os.mkdir(self.weights_dir)
55
+
56
+ self.writer = SummaryWriter(self.log_dir)
57
+ # save current state of options file
58
+ shutil.copyfile(
59
+ 'options.py', os.path.join(self.log_dir, 'options.py')
60
+ )
61
+
62
+ @staticmethod
63
+ def make_date_stamp():
64
+ return Datetime.now().strftime("%y%m%d-%H%M")
65
+
66
+ def log_scalar(self, name, value, iterations, label):
67
+ self.writer.add_scalars(name, {label: value}, iterations)
Extractor.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ import torch
4
+ import os
5
+ import numpy as np
6
+ import cv2
7
+ import face_alignment
8
+ import subprocess
9
+
10
+ from helpers import *
11
+
12
+
13
+ def get_position(size, padding=0.25):
14
+ x = [0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
15
+ 0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
16
+ 0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
17
+ 0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
18
+ 0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
19
+ 0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
20
+ 0.553364, 0.490127, 0.42689]
21
+
22
+ y = [0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
23
+ 0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
24
+ 0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
25
+ 0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
26
+ 0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
27
+ 0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
28
+ 0.784792, 0.824182, 0.831803, 0.824182]
29
+
30
+ x, y = np.array(x), np.array(y)
31
+
32
+ x = (x + padding) / (2 * padding + 1)
33
+ y = (y + padding) / (2 * padding + 1)
34
+ x = x * size
35
+ y = y * size
36
+ return np.array(list(zip(x, y)))
37
+
38
+
39
+ def cal_area(anno):
40
+ return (anno[:, 0].max() - anno[:, 0].min()) * (anno[:, 1].max() - anno[:, 1].min())
41
+
42
+
43
+ def output_video(p, txt, dst):
44
+ files = os.listdir(p)
45
+ files = sorted(files, key=lambda x: int(os.path.splitext(x)[0]))
46
+
47
+ font = cv2.FONT_HERSHEY_SIMPLEX
48
+
49
+ for file, line in zip(files, txt):
50
+ img = cv2.imread(os.path.join(p, file))
51
+ h, w, _ = img.shape
52
+ img = cv2.putText(img, line, (w // 8, 11 * h // 12), font, 1.2, (0, 0, 0), 3, cv2.LINE_AA)
53
+ img = cv2.putText(img, line, (w // 8, 11 * h // 12), font, 1.2, (255, 255, 255), 0, cv2.LINE_AA)
54
+ h = h // 2
55
+ w = w // 2
56
+ img = cv2.resize(img, (w, h))
57
+ cv2.imwrite(os.path.join(p, file), img)
58
+
59
+ cmd = "ffmpeg -y -i {}/%d.jpg -r 25 \'{}\'".format(p, dst)
60
+ os.system(cmd)
61
+
62
+
63
+ def transformation_from_points(points1, points2):
64
+ points1 = points1.astype(np.float64)
65
+ points2 = points2.astype(np.float64)
66
+
67
+ c1 = np.mean(points1, axis=0)
68
+ c2 = np.mean(points2, axis=0)
69
+ points1 -= c1
70
+ points2 -= c2
71
+ s1 = np.std(points1)
72
+ s2 = np.std(points2)
73
+ points1 /= s1
74
+ points2 /= s2
75
+
76
+ U, S, Vt = np.linalg.svd(points1.T * points2)
77
+ R = (U * Vt).T
78
+ return np.vstack([
79
+ np.hstack(((s2 / s1) * R,
80
+ c2.T - (s2 / s1) * R * c1.T)),
81
+ np.matrix([0., 0., 1.])
82
+ ])
83
+
84
+
85
+ def load_video(path: str) -> List[np.ndarray]:
86
+ """
87
+ adapted original loading code using this tutorial about openCV
88
+ https://learnopencv.com/read-write-and-display-a-video-using-opencv-cpp-python/
89
+ """
90
+ cap = cv2.VideoCapture(path)
91
+ frames = []
92
+
93
+ while cap.isOpened():
94
+ ret, frame = cap.read()
95
+
96
+ if ret is True:
97
+ frames.append(frame)
98
+ else:
99
+ break
100
+
101
+ cap.release()
102
+ return frames
103
+
104
+
105
+ def extract_frames(
106
+ video_filepath, recycle_landmarks=False,
107
+ use_gpu=False
108
+ ):
109
+ device = 'cuda' if use_gpu else 'cpu'
110
+
111
+ fa = face_alignment.FaceAlignment(
112
+ face_alignment.LandmarksType.TWO_D,
113
+ flip_input=False, device=device
114
+ )
115
+
116
+ array = load_video(video_filepath)
117
+ array = list(filter(lambda im: not im is None, array))
118
+ # array = [cv2.resize(im, (100, 50), interpolation=cv2.INTER_LANCZOS4)
119
+ # for im in array]
120
+
121
+ points = [fa.get_landmarks(I) for I in array]
122
+ front256 = get_position(256)
123
+ prev_landmarks = None
124
+ frames = []
125
+
126
+ for point, scene in zip(points, array):
127
+ if point is not None:
128
+ prev_landmarks = point
129
+ elif recycle_landmarks and (prev_landmarks is not None):
130
+ point = prev_landmarks
131
+ else:
132
+ frames.append(None)
133
+ continue
134
+
135
+ shape = np.array(point[0])
136
+ shape = shape[17:]
137
+ M = transformation_from_points(
138
+ np.matrix(shape), np.matrix(front256)
139
+ )
140
+
141
+ img = cv2.warpAffine(scene, M[:2], (256, 256))
142
+ (x, y) = front256[-20:].mean(0).astype(np.int32)
143
+ w = 160 // 2
144
+ img = img[y - w // 2:y + w // 2, x - w:x + w, ...]
145
+ img = cv2.resize(img, (128, 64))
146
+ frames.append(img)
147
+
148
+ return frames
149
+
150
+
151
+ def export_frames(
152
+ video_filepath, export_images_dir,
153
+ recycle_landmarks=False, use_gpu=False,
154
+ **kwargs
155
+ ):
156
+ frames = extract_frames(
157
+ video_filepath, recycle_landmarks=recycle_landmarks,
158
+ use_gpu=use_gpu
159
+ )
160
+
161
+ extraction_incomplete = False
162
+ for k, image in enumerate(frames):
163
+ if image is None:
164
+ extraction_incomplete = True
165
+ continue
166
+
167
+ export_filepath = os.path.join(export_images_dir, f'{k}.jpg')
168
+ cv2.imwrite(export_filepath, image)
169
+
170
+ return extraction_incomplete
Loader.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import yaml
3
+ import options as opt
4
+
5
+ from typing import List, Tuple
6
+ from dataset import GridDataset, CharMap, Datasets
7
+ from tqdm.auto import tqdm
8
+ from helpers import *
9
+
10
+
11
+ class GridLoader(object):
12
+ def __init__(self, base_dir=''):
13
+ self.video_dir = os.path.join(base_dir, opt.video_dir)
14
+ self.alignment_dir = os.path.join(base_dir, opt.alignments_dir)
15
+ self.phonemes_dir = os.path.join(base_dir, opt.phonemes_dir)
16
+ self.images_dir = os.path.join(base_dir, opt.images_dir)
17
+ self.usable_video_filepaths = None
18
+
19
+ def load_video_paths(
20
+ self, verbose=False, blacklist=frozenset({}),
21
+ ext='mpg', fetch_all_paths=False, excluded_speakers=None,
22
+ verify_phonemes_length=False
23
+ ) -> List[str]:
24
+ """
25
+ :param fetch_all_paths:
26
+ :param verbose:
27
+ whether to show logs
28
+ (currently displays numbers of videos with alignment loaded)
29
+ :param blacklist:
30
+ set of filepaths to exclude from training
31
+ :param ext: video file extension
32
+ :param excluded_speakers:
33
+ :param verify_phonemes_length:
34
+ :return:
35
+ """
36
+ if excluded_speakers is None:
37
+ excluded_speakers = set()
38
+
39
+ assert ext in ('mpg', 'mp4')
40
+ usable_video_filepaths = []
41
+ videos_without_alignment = []
42
+ all_video_filepaths = []
43
+ ctc_exclusions = 0
44
+
45
+ for speaker_no in range(1, 35):
46
+ speaker_dirname = f's{speaker_no}'
47
+ speaker_dir = os.path.join(self.video_dir, speaker_dirname)
48
+ if speaker_no in excluded_speakers:
49
+ if verbose:
50
+ print(f'SKIPPING SPEAKER NO {speaker_no}')
51
+
52
+ continue
53
+
54
+ if not os.path.exists(speaker_dir):
55
+ # speaker does not exist (its just s21 right now)
56
+ continue
57
+
58
+ video_filenames = os.listdir(speaker_dir)
59
+
60
+ for video_filename in video_filenames:
61
+ if not video_filename.endswith(f'.{ext}'):
62
+ continue
63
+
64
+ # get name of file without the extension
65
+ base_name = os.path.splitext(video_filename)[0]
66
+ images_dir = os.path.join(
67
+ self.images_dir, speaker_dirname, base_name
68
+ )
69
+ video_path = os.path.join(
70
+ self.video_dir, speaker_dirname, f'{base_name}.{ext}'
71
+ )
72
+
73
+ if video_path in blacklist:
74
+ continue
75
+
76
+ if verify_phonemes_length:
77
+ extractable, ctc_invalid = self.is_phoneme_extractable(
78
+ speaker_no, base_name, images_dir=images_dir,
79
+ verbose=verbose
80
+ )
81
+
82
+ if ctc_invalid:
83
+ ctc_exclusions += 1
84
+ if not extractable:
85
+ continue
86
+
87
+ if verbose:
88
+ num_usable_videos = len(usable_video_filepaths)
89
+ num_unusable_videos = len(videos_without_alignment)
90
+ # print(videos_without_alignment)
91
+
92
+ print(f'videos with alignment: {num_usable_videos}')
93
+ print(f'videos without alignment: {num_unusable_videos}')
94
+ print(f'CTC EXCLUSIONS: {ctc_exclusions}')
95
+
96
+ self.usable_video_filepaths = usable_video_filepaths
97
+
98
+ if fetch_all_paths:
99
+ return all_video_filepaths
100
+ else:
101
+ return usable_video_filepaths
102
+
103
+ def is_phoneme_extractable(
104
+ self, speaker_no, base_name, images_dir,
105
+ verbose=False
106
+ ) -> Tuple[bool, bool]:
107
+ """
108
+ :param speaker_no:
109
+ :param base_name:
110
+ :param images_dir:
111
+ :param verbose:
112
+ :return:
113
+ two boolean values:
114
+ the first whether the video is suitable
115
+ to be included in the dataset for phoneme prediction
116
+ the second bool determines whether the extracted images
117
+ and phonemes length corresponding to the video satisfies
118
+ CTC loss constraints (video / input length must be more
119
+ than twice the length of phoneme sequence / output)
120
+ """
121
+ speaker_dirname = f's{speaker_no}'
122
+ phonemes_path = os.path.join(
123
+ self.phonemes_dir, speaker_dirname,
124
+ f'{base_name}.align'
125
+ )
126
+
127
+ if not os.path.exists(images_dir):
128
+ # no images extracted for this video
129
+ # probably means annotation unavailable also
130
+ return False, False
131
+
132
+ try:
133
+ phonemes = GridDataset.load_sentence(
134
+ phonemes_path, CharMap.phonemes
135
+ )
136
+ except FileNotFoundError:
137
+ # phoneme sequence unavailable for video
138
+ return False, False
139
+
140
+ image_names = [
141
+ filename for filename in os.listdir(images_dir)
142
+ if filename.endswith('.jpg')
143
+ ]
144
+
145
+ vid_len = len(image_names)
146
+ num_phonemes = len(phonemes)
147
+
148
+ if vid_len <= num_phonemes * 2:
149
+ """
150
+ if video length is less than number of phonemes
151
+ then the CTCLoss will return nan, therefore we
152
+ exclude videos that would cause this
153
+ """
154
+ if verbose:
155
+ print(f'CTC EXCLUDE: {speaker_no, base_name}')
156
+ print(images_dir, vid_len, num_phonemes)
157
+
158
+ return False, True
159
+
160
+ return True, False
161
+
162
+ def get_grid_sentence_pairs(
163
+ self, excluded_speakers, ext='mpg', verbose=False
164
+ ) -> List[Tuple[int, str]]:
165
+ speaker_sentence_pairs = []
166
+
167
+ for speaker_no in range(1, 35):
168
+ speaker_dirname = f's{speaker_no}'
169
+ speaker_dir = os.path.join(self.video_dir, speaker_dirname)
170
+
171
+ if speaker_no in excluded_speakers:
172
+ if verbose:
173
+ print(f'SKIPPING SPEAKER NO {speaker_no}')
174
+
175
+ continue
176
+
177
+ if not os.path.exists(speaker_dir):
178
+ # speaker does not exist (its just s21 right now)
179
+ continue
180
+
181
+ video_filenames = os.listdir(speaker_dir)
182
+ for video_filename in video_filenames:
183
+ if not video_filename.endswith(f'.{ext}'):
184
+ continue
185
+
186
+ # get name of file without the extension
187
+ base_name = os.path.splitext(video_filename)[0]
188
+ speaker_sentence_pairs.append((speaker_no, base_name))
189
+
190
+ return speaker_sentence_pairs
191
+
192
+ def get_lsr2_sentence_pairs(self, ext='mp4') -> List[Tuple[str, str]]:
193
+ sentence_pairs = []
194
+
195
+ group_dirnames = os.listdir(self.video_dir)
196
+ for group_dirname in group_dirnames:
197
+ group_dir = os.path.join(self.video_dir, group_dirname)
198
+
199
+ if not os.path.exists(group_dir):
200
+ continue
201
+
202
+ video_filenames = os.listdir(group_dirname)
203
+ for video_filename in video_filenames:
204
+ if not video_filename.endswith(f'.{ext}'):
205
+ continue
206
+
207
+ # get name of file without the extension
208
+ base_name = os.path.splitext(video_filename)[0]
209
+ sentence_pairs.append((group_dir, base_name))
210
+
211
+ return sentence_pairs
212
+
213
+ def load_lsr2_phonemes_text_map(
214
+ self, phonemes_char_map: CharMap = CharMap.cmu_phonemes,
215
+ text_char_map: CharMap = CharMap.lsr2_text,
216
+ ext='mp4', verbose=False,
217
+ ):
218
+ phoneme_map, text_map = {}, {}
219
+ assert ext in ('mpg', 'mp4')
220
+ unique_words = set()
221
+
222
+ sentence_pairs = self.get_lsr2_sentence_pairs(ext=ext)
223
+ pbar = tqdm(sentence_pairs)
224
+
225
+ for sentence_pair in pbar:
226
+ group_dir, base_name = sentence_pair
227
+
228
+ phonemes_path = os.path.join(
229
+ self.phonemes_dir, group_dir,
230
+ f'{base_name}.txt'
231
+ )
232
+ alignments_path = os.path.join(
233
+ self.alignment_dir, group_dir,
234
+ f'{base_name}.txt'
235
+ )
236
+
237
+ try:
238
+ phonemes_sentence = GridDataset.load_str_sentence(
239
+ phonemes_path, char_map=phonemes_char_map
240
+ )
241
+ letters_sentence = GridDataset.load_str_sentence(
242
+ alignments_path, char_map=text_char_map
243
+ )
244
+ except FileNotFoundError:
245
+ continue
246
+
247
+ words = letters_sentence.split(' ')
248
+ for word in words:
249
+ unique_words.add(word)
250
+
251
+ phoneme_map[sentence_pair] = phonemes_sentence
252
+ text_map[sentence_pair] = letters_sentence
253
+ # print("TEXT", text)
254
+ # print("PHONEMES", phonemes)
255
+
256
+ if verbose:
257
+ print('UNIQUE_WORDS', len(unique_words))
258
+
259
+ phonemes_text_map = {
260
+ phonemes_char_map: phoneme_map,
261
+ text_char_map: text_map
262
+ }
263
+ return phonemes_text_map
264
+
265
+ def load_grid_phonemes_text_map(
266
+ self, phonemes_char_map: CharMap = CharMap.phonemes,
267
+ text_char_map: CharMap = CharMap.letters,
268
+ excluded_speakers=None, verbose=False, ext='mpg'
269
+ ):
270
+ if excluded_speakers is None:
271
+ excluded_speakers = set()
272
+
273
+ phoneme_map, text_map = {}, {}
274
+ assert ext in ('mpg', 'mp4')
275
+ unique_words = set()
276
+
277
+ speaker_sentence_pairs = self.get_grid_sentence_pairs(
278
+ ext=ext, excluded_speakers=excluded_speakers,
279
+ verbose=verbose
280
+ )
281
+
282
+ pbar = tqdm(speaker_sentence_pairs)
283
+ for speaker_sentence_pair in pbar:
284
+ speaker_no, base_name = speaker_sentence_pair
285
+ speaker_dirname = f's{speaker_no}'
286
+
287
+ phonemes_path = os.path.join(
288
+ self.phonemes_dir, speaker_dirname,
289
+ f'{base_name}.align'
290
+ )
291
+ alignments_path = os.path.join(
292
+ self.alignment_dir, speaker_dirname,
293
+ f'{base_name}.align'
294
+ )
295
+
296
+ try:
297
+ phonemes_sentence = GridDataset.load_str_sentence(
298
+ phonemes_path, char_map=phonemes_char_map
299
+ )
300
+ letters_sentence = GridDataset.load_str_sentence(
301
+ alignments_path, char_map=text_char_map
302
+ )
303
+ except FileNotFoundError:
304
+ continue
305
+
306
+ words = letters_sentence.split(' ')
307
+ for word in words:
308
+ unique_words.add(word)
309
+
310
+ phoneme_map[speaker_sentence_pair] = phonemes_sentence
311
+ text_map[speaker_sentence_pair] = letters_sentence
312
+ # print("TEXT", text)
313
+ # print("PHONEMES", phonemes)
314
+
315
+ if verbose:
316
+ print('UNIQUE_WORDS', len(unique_words))
317
+
318
+ phonemes_text_map = {
319
+ phonemes_char_map: phoneme_map,
320
+ text_char_map: text_map
321
+ }
322
+ return phonemes_text_map
323
+
324
+
325
+ if __name__ == '__main__':
326
+ loader = GridLoader()
327
+ loader.load_video_paths(True)
PauseChecker.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ class PauseChecker(object):
5
+ @staticmethod
6
+ def check():
7
+ paused = False
8
+ filenames = os.listdir()
9
+
10
+ while '.pause' in filenames:
11
+ paused = True
12
+ input('PAUSING >>> ')
13
+ filenames = os.listdir()
14
+
15
+ if paused:
16
+ print('<<< resuming >>>')
README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # LipNet Phonemes Predictors
2
+
3
+ Project was developed on using python3.8, in a Linux Ubuntu 24.04
4
+ run `python -m pip install -r requirements.txt` to make sure your dependencies are the same as mine
5
+ the list of video files to be used for training and validation when training normal LipNet (not phonemes prediction)
6
+ are in unseen_train.txt and unseen_test.txt respectively.
7
+ the datasets are zipped in lip/*.zip, unzip them into the same location and run `python main.py` to start training
8
+ hyperparamters are found in options.py
9
+
10
+ Project Setup
11
+ 1. pull this repo using `git pull https://huggingface.co/SilentSpeak/torchnet phonemes`
12
+ 2. initialize a python virtualenv for this project using `python3.8 -m venv venv`
13
+ 3. initialize the virtualenv using `source venv/bin/activate`
14
+ 4. run `python -m pip install -r requirements.txt` to get dependencies
15
+ 5. install git LFS using `git lfs install`
16
+ 6. pull the GRID dataset and saved tensorboard runs using `git lfs pull`
17
+
18
+ Following the project setup, you can run training as follows:
19
+ To run training for the LipNet phonemes predictor, run `python main.py`
20
+ To run training for the LipNet phonemes to text transformer predictor, run `python TransformerTrainer.py`
21
+ To run training for the LipNet-to-BiGRU-to-text transformer predictor, run `python TranslatorTrainer.py`
22
+ To run evaluation for the lipnet phonemes predictor + phonemes-to-text transformer end-to-end pipeline,
23
+ run `cd tests && python lipnet-pipeline.py`. The model weights used in `lipnet-pipeline.py` are included in the repo as
24
+ LFS files in the `saved-weights` folder.
25
+
26
+ The LRS2 dataset was too large to include in the repo, and access to the LRS2 dataset is conditional on accepting
27
+ the non-commercial usage license. However, the config file for training on the LRS2 dataset can be found in `options_lrs2.py`
28
+ , and the preprocessing code for the LRS2 dataset can be found in `scripts/extract_crop_lips_v2.py` and `scripts/generate_lsr2_train.py`.
29
+ The LRS2 dataset itself can be be found at [https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html](https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html)
Trainer.py ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import functools
3
+ import torch.optim as optim
4
+ import options as opt
5
+ import time
6
+
7
+ from helpers import *
8
+ from dataset import GridDataset, CharMap
9
+ from datetime import datetime as Datetime
10
+ from models.LipNet import LipNet
11
+ from tqdm.auto import tqdm
12
+ from PauseChecker import PauseChecker
13
+ from torch.utils.data import DataLoader
14
+ from torch.multiprocessing import Manager
15
+ from BaseTrainer import BaseTrainer
16
+
17
+
18
+ class Trainer(BaseTrainer):
19
+ def __init__(
20
+ self, name=opt.run_name, write_logs=True,
21
+ num_workers=None, base_dir='', char_map=opt.char_map,
22
+ pre_gru_repeats=None
23
+ ):
24
+ super().__init__(name=name, base_dir=base_dir)
25
+
26
+ images_dir = opt.images_dir
27
+ if opt.use_lip_crops:
28
+ images_dir = opt.crop_images_dir
29
+ if num_workers is None:
30
+ num_workers = opt.num_workers
31
+ if pre_gru_repeats is None:
32
+ pre_gru_repeats = opt.pre_gru_repeats
33
+
34
+ assert pre_gru_repeats >= 1
35
+ assert isinstance(pre_gru_repeats, int)
36
+
37
+ self.images_dir = images_dir
38
+ self.num_workers = num_workers
39
+ self.pre_gru_repeats = pre_gru_repeats
40
+ self.char_map = char_map
41
+
42
+ manager = Manager()
43
+ if opt.cache_videos:
44
+ shared_dict = manager.dict()
45
+ else:
46
+ shared_dict = None
47
+
48
+ self.shared_dict = shared_dict
49
+ self.dataset_kwargs = self.get_dataset_kwargs(
50
+ shared_dict=shared_dict, base_dir=self.base_dir,
51
+ char_map=self.char_map
52
+ )
53
+
54
+ self.best_test_loss = float('inf')
55
+ self.train_dataset = None
56
+ self.test_dataset = None
57
+ self.model = None
58
+ self.net = None
59
+
60
+ if write_logs:
61
+ self.init_tensorboard()
62
+
63
+ def load_datasets(self):
64
+ if self.train_dataset is None:
65
+ self.train_dataset = GridDataset(
66
+ **self.dataset_kwargs, phase='train',
67
+ file_list=opt.train_list
68
+ )
69
+ if self.test_dataset is None:
70
+ self.test_dataset = GridDataset(
71
+ **self.dataset_kwargs, phase='test',
72
+ file_list=opt.val_list
73
+ )
74
+
75
+ def create_model(self):
76
+ output_classes = len(self.train_dataset.get_char_mapping())
77
+
78
+ if self.model is None:
79
+ self.model = LipNet(
80
+ output_classes=output_classes,
81
+ pre_gru_repeats=self.pre_gru_repeats
82
+ )
83
+ self.model = self.model.cuda()
84
+ if self.net is None:
85
+ self.net = nn.DataParallel(self.model).cuda()
86
+
87
+ def load_weights(self, weights_path):
88
+ self.load_datasets()
89
+ self.create_model()
90
+
91
+ weights_path = os.path.join(self.base_dir, weights_path)
92
+ pretrained_dict = torch.load(weights_path)
93
+ model_dict = self.model.state_dict()
94
+ pretrained_dict = {
95
+ k: v for k, v in pretrained_dict.items() if
96
+ k in model_dict.keys() and v.size() == model_dict[k].size()
97
+ }
98
+
99
+ missed_params = [
100
+ k for k, v in model_dict.items()
101
+ if k not in pretrained_dict.keys()
102
+ ]
103
+
104
+ print('loaded params/tot params: {}/{}'.format(
105
+ len(pretrained_dict), len(model_dict)
106
+ ))
107
+ print('miss matched params:{}'.format(missed_params))
108
+ model_dict.update(pretrained_dict)
109
+ self.model.load_state_dict(model_dict)
110
+
111
+ @staticmethod
112
+ def make_date_stamp():
113
+ return Datetime.now().strftime("%y%m%d-%H%M")
114
+
115
+ @staticmethod
116
+ def dataset2dataloader(
117
+ dataset, num_workers, shuffle=True
118
+ ):
119
+ return DataLoader(
120
+ dataset,
121
+ batch_size=opt.batch_size,
122
+ shuffle=shuffle,
123
+ num_workers=num_workers,
124
+ drop_last=False
125
+ )
126
+
127
+ def test(self):
128
+ dataset = self.test_dataset
129
+
130
+ with torch.no_grad():
131
+ print('num_test_data:{}'.format(len(dataset.data)))
132
+ self.model.eval()
133
+ loader = self.dataset2dataloader(
134
+ dataset, shuffle=False, num_workers=self.num_workers
135
+ )
136
+
137
+ loss_list = []
138
+ wer = []
139
+ cer = []
140
+ crit = nn.CTCLoss(zero_infinity=True)
141
+ tic = time.time()
142
+ print('RUNNING VALIDATION')
143
+
144
+ pbar = tqdm(loader)
145
+ for (i_iter, input_sample) in enumerate(pbar):
146
+ PauseChecker.check()
147
+
148
+ vid = input_sample.get('vid').cuda()
149
+ vid_len = input_sample.get('vid_len').cuda()
150
+ txt, txt_len = self.extract_char_output(input_sample)
151
+ y = self.net(vid)
152
+
153
+ # assert not contains_nan_or_inf(y)
154
+ assert (
155
+ self.pre_gru_repeats * vid_len.view(-1) >
156
+ 2 * txt_len.view(-1)
157
+ ).all()
158
+
159
+ loss = crit(
160
+ y.transpose(0, 1).log_softmax(-1), txt,
161
+ self.pre_gru_repeats * vid_len.view(-1),
162
+ txt_len.view(-1)
163
+ ).detach().cpu().numpy()
164
+
165
+ loss_list.append(loss)
166
+ pred_txt = dataset.ctc_decode(y)
167
+ truth_txt = [
168
+ dataset.arr2txt(txt[_], start=1)
169
+ for _ in range(txt.size(0))
170
+ ]
171
+
172
+ wer.extend(dataset.wer(pred_txt, truth_txt))
173
+ cer.extend(dataset.cer(pred_txt, truth_txt))
174
+
175
+ if i_iter % opt.display == 0:
176
+ v = 1.0 * (time.time() - tic) / (i_iter + 1)
177
+ eta = v * (len(loader) - i_iter) / 3600.0
178
+
179
+ self.log_pred_texts(pred_txt, truth_txt, sub_samples=10)
180
+ print('test_iter={},eta={},wer={},cer={}'.format(
181
+ i_iter, eta, np.array(wer).mean(),
182
+ np.array(cer).mean()
183
+ ))
184
+ print(''.join(161 * '-'))
185
+
186
+ return (
187
+ np.array(loss_list).mean(), np.array(wer).mean(),
188
+ np.array(cer).mean()
189
+ )
190
+
191
+ def extract_char_output(self, input_sample):
192
+ """
193
+ extract output character sequence from input_sample
194
+ output character sequence is text if char_map is CharMap.letters
195
+ output character sequence is phonemes if char_map is CharMap.phonemes
196
+ """
197
+ if self.char_map == CharMap.letters:
198
+ txt = input_sample.get('txt').cuda()
199
+ txt_len = input_sample.get('txt_len').cuda()
200
+ elif self.char_map == CharMap.phonemes:
201
+ txt = input_sample.get('phonemes').cuda()
202
+ txt_len = input_sample.get('phonemes_len').cuda()
203
+ elif self.char_map == CharMap.cmu_phonemes:
204
+ txt = input_sample.get('cmu_phonemes').cuda()
205
+ txt_len = input_sample.get('cmu_phonemes_len').cuda()
206
+ else:
207
+ raise ValueError(f'UNSUPPORTED CHAR_MAP: {self.char_map}')
208
+
209
+ return txt, txt_len
210
+
211
+ def train(self):
212
+ self.load_datasets()
213
+ self.create_model()
214
+
215
+ dataset = self.train_dataset
216
+ loader = self.dataset2dataloader(
217
+ dataset, num_workers=self.num_workers
218
+ )
219
+ """
220
+ optimizer = optim.Adam(
221
+ self.model.parameters(), lr=opt.base_lr,
222
+ weight_decay=0., amsgrad=True
223
+ )
224
+ """
225
+ optimizer = optim.RMSprop(
226
+ self.model.parameters(), lr=opt.base_lr
227
+ )
228
+
229
+ print('num_train_data:{}'.format(len(dataset.data)))
230
+ # don't allow loss function to create infinite loss for
231
+ # sequences that are too short
232
+ crit = nn.CTCLoss(zero_infinity=True)
233
+ tic = time.time()
234
+
235
+ train_wer = []
236
+ self.best_test_loss = float('inf')
237
+ log_scalar = functools.partial(self.log_scalar, label='train')
238
+
239
+ for epoch in range(opt.max_epoch):
240
+ print(f'RUNNING EPOCH {epoch}')
241
+
242
+ pbar = tqdm(loader)
243
+ for (i_iter, input_sample) in enumerate(pbar):
244
+ PauseChecker.check()
245
+
246
+ self.model.train()
247
+ vid = input_sample.get('vid').cuda()
248
+ vid_len = input_sample.get('vid_len').cuda()
249
+ txt, txt_len = self.extract_char_output(input_sample)
250
+
251
+ optimizer.zero_grad()
252
+ y = self.net(vid)
253
+ assert not contains_nan_or_inf(y)
254
+ assert (
255
+ self.pre_gru_repeats * vid_len.view(-1) >
256
+ 2 * txt_len.view(-1)
257
+ ).all()
258
+
259
+ loss = crit(
260
+ y.transpose(0, 1).log_softmax(-1), txt,
261
+ self.pre_gru_repeats * vid_len.view(-1),
262
+ txt_len.view(-1)
263
+ )
264
+
265
+ if contains_nan_or_inf(loss):
266
+ print(f'LOSS IS INVALID. SKIPPING {i_iter}')
267
+ # print('Y', y)
268
+ # print('txt', txt)
269
+ continue
270
+
271
+ loss.backward()
272
+ params = self.model.parameters()
273
+ # Check for NaNs in gradients
274
+ if any(torch.isnan(p.grad).any() for p in params):
275
+ optimizer.zero_grad() # Clear gradients to prevent update
276
+ print('SKIPPING NAN GRADS')
277
+ continue
278
+
279
+ if opt.is_optimize:
280
+ optimizer.step()
281
+
282
+ assert not contains_nan_or_inf(self.model.conv1.weight)
283
+ tot_iter = i_iter + epoch * len(loader)
284
+ pred_txt = dataset.ctc_decode(y)
285
+ truth_txt = [
286
+ dataset.arr2txt(txt[_], start=1)
287
+ for _ in range(txt.size(0))
288
+ ]
289
+ train_wer.extend(dataset.wer(pred_txt, truth_txt))
290
+
291
+ if tot_iter % opt.display == 0:
292
+ v = 1.0 * (time.time() - tic) / (tot_iter + 1)
293
+ eta = (len(loader) - i_iter) * v / 3600.0
294
+ wer = np.array(train_wer).mean()
295
+
296
+ log_scalar('loss', loss, tot_iter)
297
+ log_scalar('wer', wer, tot_iter)
298
+
299
+ self.log_pred_texts(pred_txt, truth_txt, sub_samples=3)
300
+ print('epoch={},tot_iter={},eta={},loss={},train_wer={}'
301
+ .format(
302
+ epoch, tot_iter, eta, loss,
303
+ np.array(train_wer).mean()
304
+ )
305
+ )
306
+ print(''.join(161 * '-'))
307
+
308
+ if (tot_iter > 0) and (tot_iter % opt.test_step == 0):
309
+ # if tot_iter % opt.test_step == 0:
310
+ self.run_test(tot_iter, optimizer)
311
+
312
+ @staticmethod
313
+ def log_pred_texts(pred_txt, truth_txt, pad=80, sub_samples=None):
314
+ line_length = 2 * pad + 1
315
+ print(''.join(line_length * '-'))
316
+ print('{:<{pad}}|{:>{pad}}'.format(
317
+ 'predict', 'truth', pad=pad
318
+ ))
319
+
320
+ print(''.join(line_length * '-'))
321
+ zipped_samples = list(zip(pred_txt, truth_txt))
322
+ if sub_samples is not None:
323
+ zipped_samples = zipped_samples[:sub_samples]
324
+
325
+ for (predict, truth) in zipped_samples:
326
+ print('{:<{pad}}|{:>{pad}}'.format(
327
+ predict, truth, pad=pad
328
+ ))
329
+
330
+ print(''.join(line_length * '-'))
331
+
332
+ def run_test(self, tot_iter, optimizer):
333
+ log_scalar = functools.partial(self.log_scalar, label='test')
334
+
335
+ (loss, wer, cer) = self.test()
336
+ print('i_iter={},lr={},loss={},wer={},cer={}'.format(
337
+ tot_iter, show_lr(optimizer), loss, wer, cer
338
+ ))
339
+ log_scalar('loss', loss, tot_iter)
340
+ log_scalar('wer', wer, tot_iter)
341
+ log_scalar('cer', cer, tot_iter)
342
+
343
+ if loss < self.best_test_loss:
344
+ print(f'NEW BEST LOSS: {loss}')
345
+ self.best_test_loss = loss
346
+
347
+ savename = 'I{}-L{:.4f}-W{:.4f}-C{:.4f}'.format(
348
+ tot_iter, loss, wer, cer
349
+ )
350
+
351
+ savename = savename.replace('.', '') + '.pt'
352
+ savepath = os.path.join(self.weights_dir, savename)
353
+
354
+ (save_dir, name) = os.path.split(savepath)
355
+ if not os.path.exists(save_dir):
356
+ os.makedirs(save_dir)
357
+
358
+ torch.save(self.model.state_dict(), savepath)
359
+ print(f'best model saved at {savepath}')
360
+
361
+ if not opt.is_optimize:
362
+ exit()
363
+
364
+ def predict_sample(self, input_sample):
365
+ self.model.eval()
366
+ vid = input_sample.get('vid').cuda()
367
+ return self.predict_video(vid)
368
+
369
+ def predict_video(self, video):
370
+ video = video.cuda()
371
+ vid = video.unsqueeze(0)
372
+ y = self.net(vid)
373
+ pred_txt = self.train_dataset.ctc_decode(y)
374
+ return pred_txt
TransformerTrainer.py ADDED
@@ -0,0 +1,475 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import time
4
+
5
+ sys.path.append('../models')
6
+
7
+ import torch
8
+ import functools
9
+ import options as opt
10
+
11
+ from torch import optim
12
+ from tqdm.auto import tqdm
13
+
14
+ from PauseChecker import PauseChecker
15
+ from Trainer import Trainer
16
+ from models.LipNetPlus import LipNetPlus
17
+ from TranslatorTrainer import TranslatorTrainer
18
+ from dataset import GridDataset, CharMap, Datasets
19
+ from helpers import contains_nan_or_inf
20
+ from models.PhonemeTransformer import *
21
+ from helpers import *
22
+
23
+
24
+ class TransformerTrainer(Trainer, TranslatorTrainer):
25
+ def __init__(
26
+ self, batch_size=opt.batch_size, word_tokenize=False,
27
+ dataset_type: Datasets = opt.dataset, embeds_size=256,
28
+ vocab_files=None, write_logs=True,
29
+ input_char_map=CharMap.phonemes,
30
+ output_char_map=CharMap.letters,
31
+ name='embeds-transformer-v2',
32
+ **kwargs
33
+ ):
34
+ super().__init__(**kwargs, name=name)
35
+
36
+ self.batch_size = batch_size
37
+ self.word_tokenize = word_tokenize
38
+ self.input_char_map = input_char_map
39
+ self.output_char_map = output_char_map
40
+ self.dataset_type = dataset_type
41
+ self.embeds_size = embeds_size
42
+
43
+ self.text_tokenizer = functools.partial(
44
+ GridDataset.tokenize_text, word_tokenize=word_tokenize
45
+ )
46
+ self.device = torch.device(
47
+ 'cuda' if torch.cuda.is_available() else 'cpu'
48
+ )
49
+
50
+ if vocab_files is None:
51
+ vocabs = self.load_vocabs(self.base_dir)
52
+ self.phonemes_vocab, self.text_vocab = vocabs
53
+ else:
54
+ phonemes_vocab_path, text_vocab_path = vocab_files
55
+ self.phonemes_vocab = torch.load(phonemes_vocab_path)
56
+ self.text_vocab = torch.load(text_vocab_path)
57
+
58
+ self.model = None
59
+ self.optimizer = None
60
+ self.best_test_loss = float('inf')
61
+ self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX)
62
+
63
+ """
64
+ self.phonemes_encoder = self.sequential_transforms(
65
+ GridDataset.tokenize_phonemes, self.phonemes_vocab,
66
+ self.tensor_transform
67
+ )
68
+ """
69
+ self.text_encoder = self.sequential_transforms(
70
+ self.text_tokenizer, self.text_vocab,
71
+ self.tensor_transform
72
+ )
73
+
74
+ if write_logs:
75
+ self.init_tensorboard()
76
+
77
+ def create_model(self):
78
+ if self.model is None:
79
+ output_classes = len(self.train_dataset.get_char_mapping())
80
+
81
+ self.model = LipNetPlus(
82
+ output_classes=output_classes,
83
+ pre_gru_repeats=self.pre_gru_repeats,
84
+ embeds_size=self.embeds_size,
85
+ output_vocab_size=len(self.text_vocab)
86
+ )
87
+ self.model = self.model.cuda()
88
+ if self.net is None:
89
+ self.net = nn.DataParallel(self.model).cuda()
90
+
91
+ def load_datasets(self):
92
+ if self.train_dataset is None:
93
+ self.train_dataset = GridDataset(
94
+ **self.dataset_kwargs, phase='train',
95
+ file_list=opt.train_list,
96
+ sample_all_props=True
97
+ )
98
+ if self.test_dataset is None:
99
+ self.test_dataset = GridDataset(
100
+ **self.dataset_kwargs, phase='test',
101
+ file_list=opt.val_list,
102
+ sample_all_props=True
103
+ )
104
+
105
+ def train(self):
106
+ self.load_datasets()
107
+ self.create_model()
108
+
109
+ dataset = self.train_dataset
110
+ loader = self.dataset2dataloader(
111
+ dataset, num_workers=self.num_workers
112
+ )
113
+ """
114
+ optimizer = optim.Adam(
115
+ self.model.parameters(), lr=opt.base_lr,
116
+ weight_decay=0., amsgrad=True
117
+ )
118
+ """
119
+ optimizer = optim.RMSprop(
120
+ self.model.parameters(), lr=opt.base_lr
121
+ )
122
+
123
+ print('num_train_data:{}'.format(len(dataset.data)))
124
+ # don't allow loss function to create infinite loss for
125
+ # sequences that are too short
126
+ tic = time.time()
127
+
128
+ self.best_test_loss = float('inf')
129
+ log_scalar = functools.partial(self.log_scalar, label='train')
130
+
131
+ for epoch in range(opt.max_epoch):
132
+ print(f'RUNNING EPOCH {epoch}')
133
+ train_wer = []
134
+
135
+ pbar = tqdm(loader)
136
+ for (i_iter, input_sample) in enumerate(pbar):
137
+ PauseChecker.check()
138
+
139
+ self.model.train()
140
+ vid = input_sample.get('vid').cuda()
141
+ # vid_len = input_sample.get('vid_len').cuda()
142
+ # txt, txt_len = self.extract_char_output(input_sample)
143
+ batch_arr_sentences = input_sample['txt_anno']
144
+ batch_arr_sentences = np.array(batch_arr_sentences)
145
+
146
+ _, batch_size = batch_arr_sentences.shape
147
+ batch_sentences = [
148
+ ''.join(batch_arr_sentences[:, k]).strip()
149
+ for k in range(batch_size)
150
+ ]
151
+
152
+ tgt = self.collate_tgt_fn(batch_sentences)
153
+ tgt = tgt.to(self.device)
154
+ tgt_input = tgt[:-1, :]
155
+
156
+ with torch.no_grad():
157
+ gru_output = self.model.forward_gru(vid)
158
+ y = self.model.predict_from_gru_out(gru_output)
159
+
160
+ src_embeds = self.model.make_src_embeds(gru_output)
161
+ transformer_out = self.make_transformer_embeds(
162
+ dataset, src_embeds, y, batch_size=batch_size
163
+ )
164
+
165
+ transformer_src_embeds, src_idx_arr = transformer_out
166
+ transformer_src_embeds = transformer_src_embeds.to(self.device)
167
+ src_idx_arr = src_idx_arr.to(self.device)
168
+ max_seq_len, batch_size = src_idx_arr.shape
169
+
170
+ (
171
+ src_mask, tgt_mask,
172
+ src_padding_mask, tgt_padding_mask
173
+ ) = create_mask(
174
+ src_idx_arr, tgt_input, self.device
175
+ )
176
+
177
+ logits = self.model.seq_forward(
178
+ transformer_src_embeds, tgt_input, src_mask, tgt_mask,
179
+ src_padding_mask, tgt_padding_mask, src_padding_mask
180
+ )
181
+
182
+ optimizer.zero_grad()
183
+
184
+ tgt_out = tgt[1:, :]
185
+ loss = self.loss_fn(
186
+ logits.reshape(-1, logits.shape[-1]),
187
+ tgt_out.reshape(-1)
188
+ )
189
+
190
+ tot_iter = i_iter + epoch * len(loader)
191
+
192
+ loss.backward()
193
+ optimizer.step()
194
+
195
+ # Convert logits tensor to string
196
+ with torch.no_grad():
197
+ # Convert logits tensor to string
198
+ probs = torch.softmax(logits, dim=-1)
199
+ token_indices = torch.argmax(probs, dim=-1)
200
+
201
+ # Convert token indices to strings for
202
+ # each sequence in the batch
203
+ gap = ' ' if self.word_tokenize else ''
204
+ # print('TT', token_indices.shape)
205
+ pred_sentences = self.batch_indices_to_text(
206
+ token_indices, batch_size=batch_size, gap=gap
207
+ )
208
+ wer = np.mean(GridDataset.get_wer(
209
+ pred_sentences, batch_sentences,
210
+ char_map=self.output_char_map
211
+ ))
212
+ train_wer.append(wer)
213
+
214
+ if tot_iter % opt.display == 0:
215
+ v = 1.0 * (time.time() - tic) / (tot_iter + 1)
216
+ eta = (len(loader) - i_iter) * v / 3600.0
217
+ wer = np.array(train_wer).mean()
218
+
219
+ log_scalar('loss', loss, tot_iter)
220
+ log_scalar('wer', wer, tot_iter)
221
+ self.log_pred_texts(
222
+ pred_sentences, batch_sentences, sub_samples=3
223
+ )
224
+
225
+ print('epoch={},tot_iter={},eta={},loss={},train_wer={}'
226
+ .format(
227
+ epoch, tot_iter, eta, loss,
228
+ np.array(train_wer).mean()
229
+ ))
230
+ print(''.join(161 * '-'))
231
+
232
+ if (tot_iter > -1) and (tot_iter % opt.test_step == 0):
233
+ # if tot_iter % opt.test_step == 0:
234
+ self.run_test(tot_iter, optimizer)
235
+
236
+ def make_transformer_embeds(
237
+ self, dataset, src_embeds, y, batch_size
238
+ ):
239
+ batch_indices = dataset.ctc_decode_indices(y)
240
+ filter_batch_embeds = []
241
+
242
+ pad_embed = self.model.src_tok_emb(
243
+ torch.IntTensor([PAD_IDX]).to(self.device)
244
+ )
245
+ begin_embed = self.model.src_tok_emb(
246
+ torch.IntTensor([BOS_IDX]).to(self.device)
247
+ )
248
+ end_embed = self.model.src_tok_emb(
249
+ torch.IntTensor([EOS_IDX]).to(self.device)
250
+ )
251
+ max_sentence_len = max([len(x) for x in batch_indices])
252
+
253
+ # initialize embeds with pad token embeddings
254
+ # [max_seq_len + 1, batch_size, embeds_size]
255
+ transformer_src_embeds = pad_embed.expand(
256
+ max_sentence_len + 2, batch_size, pad_embed.shape[1]
257
+ )
258
+
259
+ src_idx_mask = torch.full(
260
+ transformer_src_embeds.shape[:2], PAD_IDX,
261
+ dtype=torch.int
262
+ )
263
+
264
+ # k is sentence index in batch
265
+ for k, sentence_indices in enumerate(batch_indices):
266
+ filter_sentence_embeds = []
267
+ for sentence_index in sentence_indices:
268
+ filter_sentence_embeds.append(
269
+ src_embeds[sentence_index][k]
270
+ )
271
+
272
+ sentence_length = len(filter_sentence_embeds)
273
+ filter_batch_embeds.append(filter_sentence_embeds)
274
+ # set beginning to sequence embed
275
+ transformer_src_embeds[0][k] = begin_embed
276
+ src_idx_mask[0][k] = UNK_IDX
277
+
278
+ # index i is char index in sentence
279
+ for i, char_embed in enumerate(filter_sentence_embeds):
280
+ transformer_src_embeds[i + 1][k] = char_embed
281
+ src_idx_mask[i + 1][k] = UNK_IDX
282
+
283
+ transformer_src_embeds[sentence_length + 1][k] = end_embed
284
+ src_idx_mask[sentence_length + 1][k] = UNK_IDX
285
+
286
+ return transformer_src_embeds, src_idx_mask
287
+
288
+ @staticmethod
289
+ def log_pred_texts(
290
+ pred_txt, truth_txt, pad=80, sub_samples=None
291
+ ):
292
+ line_length = 2 * pad + 1
293
+ print(''.join(line_length * '-'))
294
+ print('{:<{pad}}|{:>{pad}}'.format(
295
+ 'predict', 'truth', pad=pad
296
+ ))
297
+
298
+ print(''.join(line_length * '-'))
299
+ zipped_samples = list(zip(pred_txt, truth_txt))
300
+ if sub_samples is not None:
301
+ zipped_samples = zipped_samples[:sub_samples]
302
+
303
+ for (predict, truth) in zipped_samples:
304
+ print('{:<{pad}}|{:>{pad}}'.format(
305
+ predict, truth, pad=pad
306
+ ))
307
+
308
+ print(''.join(line_length * '-'))
309
+
310
+ def test(self):
311
+ dataset = self.test_dataset
312
+
313
+ with torch.no_grad():
314
+ print('num_test_data:{}'.format(len(dataset.data)))
315
+ self.model.eval()
316
+ loader = self.dataset2dataloader(
317
+ dataset, shuffle=False, num_workers=self.num_workers
318
+ )
319
+
320
+ loss_list = []
321
+ wer = []
322
+ cer = []
323
+ tic = time.time()
324
+ print('RUNNING VALIDATION')
325
+
326
+ pbar = tqdm(loader)
327
+ for (i_iter, input_sample) in enumerate(pbar):
328
+ PauseChecker.check()
329
+
330
+ vid = input_sample.get('vid').cuda()
331
+ batch_arr_sentences = input_sample['txt_anno']
332
+ batch_arr_sentences = np.array(batch_arr_sentences)
333
+
334
+ _, batch_size = batch_arr_sentences.shape
335
+ batch_sentences = [
336
+ ''.join(batch_arr_sentences[:, k]).strip()
337
+ for k in range(batch_size)
338
+ ]
339
+
340
+ tgt = self.collate_tgt_fn(batch_sentences)
341
+ tgt = tgt.to(self.device)
342
+ tgt_input = tgt[:-1, :]
343
+
344
+ with torch.no_grad():
345
+ gru_output = self.model.forward_gru(vid)
346
+ y = self.model.predict_from_gru_out(gru_output)
347
+
348
+ src_embeds = self.model.make_src_embeds(gru_output)
349
+ transformer_out = self.make_transformer_embeds(
350
+ dataset, src_embeds, y, batch_size=batch_size
351
+ )
352
+
353
+ transformer_src_embeds, src_idx_arr = transformer_out
354
+ transformer_src_embeds = transformer_src_embeds.to(self.device)
355
+ src_idx_arr = src_idx_arr.to(self.device)
356
+ max_seq_len, batch_size = src_idx_arr.shape
357
+
358
+ (
359
+ src_mask, tgt_mask,
360
+ src_padding_mask, tgt_padding_mask
361
+ ) = create_mask(
362
+ src_idx_arr, tgt_input, self.device
363
+ )
364
+
365
+ logits = self.model.seq_forward(
366
+ transformer_src_embeds, tgt_input, src_mask, tgt_mask,
367
+ src_padding_mask, tgt_padding_mask, src_padding_mask
368
+ )
369
+
370
+ # Convert logits tensor to string
371
+ with torch.no_grad():
372
+ # Convert logits tensor to string
373
+ probs = torch.softmax(logits, dim=-1)
374
+ token_indices = torch.argmax(probs, dim=-1)
375
+
376
+ # Convert token indices to strings for
377
+ # each sequence in the batch
378
+ gap = ' ' if self.word_tokenize else ''
379
+ # print('TT', token_indices.shape)
380
+ pred_sentences = self.batch_indices_to_text(
381
+ token_indices, batch_size=batch_size, gap=gap
382
+ )
383
+
384
+ tgt_out = tgt[1:, :]
385
+ loss = self.loss_fn(
386
+ logits.reshape(-1, logits.shape[-1]),
387
+ tgt_out.reshape(-1)
388
+ )
389
+
390
+ loss_item = loss.detach().cpu().numpy()
391
+ loss_list.append(loss_item)
392
+
393
+ wer.extend(GridDataset.get_wer(
394
+ pred_sentences, batch_sentences,
395
+ char_map=self.output_char_map
396
+ ))
397
+ cer.extend(GridDataset.get_cer(
398
+ pred_sentences, batch_sentences,
399
+ char_map=self.output_char_map
400
+ ))
401
+
402
+ if i_iter % opt.display == 0:
403
+ v = 1.0 * (time.time() - tic) / (i_iter + 1)
404
+ eta = v * (len(loader) - i_iter) / 3600.0
405
+
406
+ self.log_pred_texts(
407
+ pred_sentences, batch_sentences, sub_samples=10
408
+ )
409
+
410
+ print('test_iter={},eta={},wer={},cer={}'.format(
411
+ i_iter, eta, np.array(wer).mean(),
412
+ np.array(cer).mean()
413
+ ))
414
+ print(''.join(161 * '-'))
415
+
416
+ return (
417
+ np.array(loss_list).mean(), np.array(wer).mean(),
418
+ np.array(cer).mean()
419
+ )
420
+
421
+ def run_test(self, tot_iter, optimizer):
422
+ log_scalar = functools.partial(self.log_scalar, label='test')
423
+
424
+ (loss, wer, cer) = self.test()
425
+ print('i_iter={},lr={},loss={},wer={},cer={}'.format(
426
+ tot_iter, show_lr(optimizer), loss, wer, cer
427
+ ))
428
+ log_scalar('loss', loss, tot_iter)
429
+ log_scalar('wer', wer, tot_iter)
430
+ log_scalar('cer', cer, tot_iter)
431
+
432
+ if loss < self.best_test_loss:
433
+ print(f'NEW BEST LOSS: {loss}')
434
+ self.best_test_loss = loss
435
+
436
+ savename = 'I{}-L{:.4f}-W{:.4f}-C{:.4f}'.format(
437
+ tot_iter, loss, wer, cer
438
+ )
439
+
440
+ savename = savename.replace('.', '') + '.pt'
441
+ savepath = os.path.join(self.weights_dir, savename)
442
+
443
+ (save_dir, name) = os.path.split(savepath)
444
+ if not os.path.exists(save_dir):
445
+ os.makedirs(save_dir)
446
+
447
+ torch.save(self.model.state_dict(), savepath)
448
+ print(f'best model saved at {savepath}')
449
+
450
+ if not opt.is_optimize:
451
+ exit()
452
+
453
+
454
+ if __name__ == '__main__':
455
+ vocab_filepaths = (
456
+ 'data/grid_phoneme_vocab.pth',
457
+ 'data/grid_text_char_vocab.pth'
458
+ )
459
+ """
460
+ vocab_filepaths = (
461
+ 'data/lsr2_phoneme_vocab.pth',
462
+ 'data/lsr2_text_char_vocab.pth'
463
+ )
464
+ """
465
+
466
+ trainer = TransformerTrainer(
467
+ word_tokenize=False, vocab_files=vocab_filepaths,
468
+ input_char_map=opt.char_map,
469
+ output_char_map=opt.text_char_map
470
+ )
471
+
472
+ if hasattr(opt, 'weights'):
473
+ trainer.load_weights(opt.weights)
474
+
475
+ trainer.train()
TranslatorTrainer.py ADDED
@@ -0,0 +1,636 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import functools
4
+ import shutil
5
+
6
+ from typing import List
7
+
8
+ import torch
9
+ from tqdm.auto import tqdm
10
+
11
+ from torch.utils.data import DataLoader
12
+ from torchtext.datasets import Multi30k
13
+
14
+ import options
15
+ from Loader import GridLoader
16
+ from PauseChecker import PauseChecker
17
+ from dataset import GridDataset, CharMap, Datasets
18
+ from datetime import datetime as Datetime
19
+
20
+ from models.PhonemeTransformer import *
21
+ from torchtext.vocab import build_vocab_from_iterator
22
+ from torch.nn.utils.rnn import pad_sequence
23
+ from BaseTrainer import BaseTrainer
24
+
25
+
26
+ class TranslationDataset(GridDataset):
27
+ def __init__(
28
+ self, input_char_map: CharMap,
29
+ output_char_map: CharMap, **kwargs
30
+ ):
31
+ super().__init__(**kwargs)
32
+ self.input_char_map = input_char_map
33
+ self.output_char_map = output_char_map
34
+
35
+ def __getitem__(self, idx):
36
+ (vid, spk, name) = self.data[idx]
37
+ basename, _ = os.path.splitext(name)
38
+
39
+ input_filepath = self.fetch_anno_path(
40
+ spk, basename, char_map=self.input_char_map
41
+ )
42
+ output_filepath = self.fetch_anno_path(
43
+ spk, basename, char_map=self.output_char_map
44
+ )
45
+
46
+ input_str = self.load_str_sentence(
47
+ input_filepath, char_map=self.input_char_map
48
+ )
49
+ output_str = self.load_str_sentence(
50
+ output_filepath, char_map=self.output_char_map
51
+ )
52
+ return input_str, output_str
53
+
54
+
55
+ class TranslatorTrainer(BaseTrainer):
56
+ def __init__(
57
+ self, dataset_type: Datasets = options.dataset,
58
+ batch_size=128, validate_every=20, display_every=10,
59
+ name='translate', write_logs=True, base_dir='',
60
+ word_tokenize=False, vocab_files=None,
61
+ input_char_map=CharMap.phonemes,
62
+ output_char_map=CharMap.letters
63
+ ):
64
+ super().__init__(name=name, base_dir=base_dir)
65
+
66
+ self.batch_size = batch_size
67
+ self.validate_every = validate_every
68
+ self.display_every = display_every
69
+ self.word_tokenize = word_tokenize
70
+ self.input_char_map = input_char_map
71
+ self.output_char_map = output_char_map
72
+ self.dataset_type = dataset_type
73
+
74
+ self.text_tokenizer = functools.partial(
75
+ GridDataset.tokenize_text, word_tokenize=word_tokenize
76
+ )
77
+ self.device = torch.device(
78
+ 'cuda' if torch.cuda.is_available() else 'cpu'
79
+ )
80
+
81
+ if vocab_files is None:
82
+ vocabs = self.load_vocabs(self.base_dir)
83
+ self.phonemes_vocab, self.text_vocab = vocabs
84
+ else:
85
+ phonemes_vocab_path, text_vocab_path = vocab_files
86
+ self.phonemes_vocab = torch.load(phonemes_vocab_path)
87
+ self.text_vocab = torch.load(text_vocab_path)
88
+
89
+ self.model = None
90
+ self.optimizer = None
91
+ self.best_test_loss = float('inf')
92
+ self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=PAD_IDX)
93
+
94
+ self.phonemes_encoder = self.sequential_transforms(
95
+ GridDataset.tokenize_phonemes, self.phonemes_vocab,
96
+ self.tensor_transform
97
+ )
98
+ self.text_encoder = self.sequential_transforms(
99
+ self.text_tokenizer, self.text_vocab,
100
+ self.tensor_transform
101
+ )
102
+
103
+ if write_logs:
104
+ self.init_tensorboard()
105
+
106
+ def load_vocabs(self, base_dir):
107
+ loader = GridLoader(base_dir=base_dir)
108
+
109
+ if self.dataset_type == Datasets.GRID:
110
+ phonemes_text_map = loader.load_grid_phonemes_text_map(
111
+ phonemes_char_map=self.input_char_map,
112
+ text_char_map=self.output_char_map
113
+ )
114
+ elif self.dataset_type == Datasets.LRS2:
115
+ phonemes_text_map = loader.load_lsr2_phonemes_text_map(
116
+ phonemes_char_map=self.input_char_map,
117
+ text_char_map=self.output_char_map
118
+ )
119
+ else:
120
+ raise NotImplementedError
121
+
122
+ phonemes_map = phonemes_text_map[self.input_char_map]
123
+ text_map = phonemes_text_map[self.output_char_map]
124
+
125
+ phonemes_vocab = self.build_vocab(
126
+ phonemes_map, tokenizer=GridDataset.tokenize_phonemes
127
+ )
128
+ text_vocab = self.build_vocab(
129
+ text_map, tokenizer=self.text_tokenizer
130
+ )
131
+
132
+ return phonemes_vocab, text_vocab
133
+
134
+ def save_vocabs(
135
+ self, phoneme_vocab_path, text_vocab_path
136
+ ):
137
+ torch.save(self.phonemes_vocab, phoneme_vocab_path)
138
+ torch.save(self.text_vocab, text_vocab_path)
139
+
140
+ def load_weights(self, weights):
141
+ self.create_model()
142
+
143
+ pretrained_dict = torch.load(weights)
144
+ model_dict = self.model.state_dict()
145
+ pretrained_dict = {
146
+ k: v for k, v in pretrained_dict.items() if
147
+ k in model_dict.keys() and v.size() == model_dict[k].size()
148
+ }
149
+
150
+ missed_params = [
151
+ k for k, v in model_dict.items()
152
+ if k not in pretrained_dict.keys()
153
+ ]
154
+
155
+ print('loaded params/tot params: {}/{}'.format(
156
+ len(pretrained_dict), len(model_dict)
157
+ ))
158
+ print('miss matched params:{}'.format(missed_params))
159
+ model_dict.update(pretrained_dict)
160
+ self.model.load_state_dict(model_dict)
161
+
162
+ def create_model(self):
163
+ self.model = Seq2SeqTransformer(
164
+ src_vocab_size=len(self.phonemes_vocab),
165
+ tgt_vocab_size=len(self.text_vocab)
166
+ )
167
+
168
+ self.model = self.model.to(self.device)
169
+ self.optimizer = torch.optim.Adam(
170
+ self.model.parameters(),
171
+ lr=0.0001, betas=(0.9, 0.98), eps=1e-9
172
+ )
173
+
174
+ def collate_tgt_fn(self, batch):
175
+ tgt_batch = []
176
+ for tgt_sample in batch:
177
+ tgt_batch.append(self.text_encoder(tgt_sample.rstrip("\n")))
178
+
179
+ tgt_batch = pad_sequence(tgt_batch, padding_value=PAD_IDX)
180
+ return tgt_batch
181
+
182
+ # function to collate data samples into batch tensors
183
+ def collate_fn(self, batch):
184
+ src_batch, tgt_batch = [], []
185
+ for src_sample, tgt_sample in batch:
186
+ src_batch.append(self.phonemes_encoder(src_sample.rstrip("\n")))
187
+ tgt_batch.append(self.text_encoder(tgt_sample.rstrip("\n")))
188
+
189
+ src_batch = pad_sequence(src_batch, padding_value=PAD_IDX)
190
+ tgt_batch = pad_sequence(tgt_batch, padding_value=PAD_IDX)
191
+ return src_batch, tgt_batch
192
+
193
+ def train(self, max_iters=10*1000):
194
+ assert self.writer is not None
195
+ assert self.display_every < self.validate_every
196
+
197
+ self.create_model()
198
+ self.best_test_loss = float('inf')
199
+ log_scalar = functools.partial(self.log_scalar, label='train')
200
+ self.model.train()
201
+ losses = 0
202
+
203
+ dataset_kwargs = self.get_dataset_kwargs(
204
+ input_char_map=self.input_char_map,
205
+ char_map=self.output_char_map,
206
+ output_char_map=self.output_char_map,
207
+ file_list=options.train_list
208
+ )
209
+
210
+ train_iter = TranslationDataset(**dataset_kwargs, phase='train')
211
+ test_iter = TranslationDataset(**dataset_kwargs, phase='test')
212
+
213
+ train_dataloader = DataLoader(
214
+ train_iter, batch_size=self.batch_size,
215
+ # collate_fn=self.collate_fn, shuffle=True
216
+ )
217
+ test_dataloader = DataLoader(
218
+ test_iter, batch_size=self.batch_size,
219
+ # collate_fn=self.collate_fn, shuffle=True
220
+ )
221
+
222
+ tot_iters = 0
223
+ pbar = tqdm(total=max_iters)
224
+
225
+ while tot_iters < max_iters:
226
+ for train_pair in train_dataloader:
227
+ PauseChecker.check()
228
+
229
+ raw_src, raw_tgt = train_pair
230
+ src, tgt = self.collate_fn(zip(raw_src, raw_tgt))
231
+ batch_size, max_seq_len = src.shape
232
+
233
+ src = src.to(self.device)
234
+ tgt = tgt.to(self.device)
235
+ tgt_input = tgt[:-1, :]
236
+ (
237
+ src_mask, tgt_mask,
238
+ src_padding_mask, tgt_padding_mask
239
+ ) = create_mask(src, tgt_input, self.device)
240
+
241
+ logits = self.model(
242
+ src, tgt_input, src_mask, tgt_mask,
243
+ src_padding_mask, tgt_padding_mask, src_padding_mask
244
+ )
245
+
246
+ self.optimizer.zero_grad()
247
+
248
+ tgt_out = tgt[1:, :]
249
+ loss = self.loss_fn(
250
+ logits.reshape(-1, logits.shape[-1]),
251
+ tgt_out.reshape(-1)
252
+ )
253
+
254
+ loss.backward()
255
+ self.optimizer.step()
256
+ loss_item = loss.item()
257
+
258
+ # Convert logits tensor to string
259
+ with torch.no_grad():
260
+ # Convert logits tensor to string
261
+ probs = torch.softmax(logits, dim=-1)
262
+ token_indices = torch.argmax(probs, dim=-1)
263
+
264
+ # Convert token indices to strings for
265
+ # each sequence in the batch
266
+ gap = ' ' if self.word_tokenize else ''
267
+ pred_sentences = self.batch_indices_to_text(
268
+ token_indices, batch_size=max_seq_len, gap=gap
269
+ )
270
+ wer = np.mean(GridDataset.get_wer(
271
+ pred_sentences, raw_tgt, char_map=self.output_char_map
272
+ ))
273
+
274
+ desc = f'loss: {loss_item:.4f}, wer: {wer:.4f}'
275
+ pbar.desc = desc
276
+
277
+ losses += loss_item
278
+ tot_iters += 1
279
+ pbar.update(1)
280
+
281
+ run_validation = (
282
+ (tot_iters > 0) and
283
+ (tot_iters % self.validate_every == 0)
284
+ )
285
+ run_display = (
286
+ (tot_iters > 0) and
287
+ (tot_iters % self.display_every == 0)
288
+ )
289
+
290
+ if run_validation:
291
+ self.run_test(test_dataloader, tot_iters=tot_iters)
292
+ elif run_display:
293
+ print('TRAIN PREDICTIONS')
294
+ self.show_sentences(pred_sentences, raw_tgt, batch_size)
295
+
296
+ if self.writer is not None:
297
+ log_scalar('loss', loss, tot_iters)
298
+ log_scalar('wer', wer, tot_iters)
299
+
300
+ return losses / len(list(train_dataloader))
301
+
302
+ @staticmethod
303
+ def show_sentences(
304
+ pred_sentences, target_sentences, batch_size, pad=40
305
+ ):
306
+ print('{:<{pad}}|{:>{pad}}'.format(
307
+ 'predict', 'target', pad=pad
308
+ ))
309
+
310
+ line_length = 2 * pad + 1
311
+ print(''.join(line_length * '-'))
312
+
313
+ for k in range(batch_size):
314
+ pred_sentence = pred_sentences[k]
315
+ target_sentence = target_sentences[k]
316
+ print('{:<{pad}}|{:>{pad}}'.format(
317
+ pred_sentence, target_sentence, pad=pad
318
+ ))
319
+
320
+ print(''.join(line_length * '-'))
321
+
322
+ def run_test(self, test_dataloader, tot_iters):
323
+ log_scalar = functools.partial(self.log_scalar, label='test')
324
+
325
+ with torch.no_grad():
326
+ self.model.eval()
327
+
328
+ for batch in test_dataloader:
329
+ break
330
+
331
+ raw_src, raw_tgt = batch
332
+ src, tgt = self.collate_fn(zip(raw_src, raw_tgt))
333
+ batch_size, max_seq_len = src.shape
334
+ src = src.to(self.device)
335
+ tgt = tgt.to(self.device)
336
+
337
+ tgt_input = tgt[:-1, :]
338
+ (
339
+ src_mask, tgt_mask,
340
+ src_padding_mask, tgt_padding_mask
341
+ ) = create_mask(src, tgt_input, self.device)
342
+
343
+ logits = self.model(
344
+ src, tgt_input, src_mask, tgt_mask,
345
+ src_padding_mask, tgt_padding_mask, src_padding_mask
346
+ )
347
+
348
+ self.optimizer.zero_grad()
349
+
350
+ tgt_out = tgt[1:, :]
351
+ loss = self.loss_fn(
352
+ logits.reshape(-1, logits.shape[-1]),
353
+ tgt_out.reshape(-1)
354
+ )
355
+
356
+ loss_item = loss.item()
357
+
358
+ # Convert logits tensor to string
359
+ probs = torch.softmax(logits, dim=-1)
360
+ token_indices = torch.argmax(torch.softmax(logits, dim=-1), dim=-1)
361
+ # Convert token indices to strings for each sequence in the batch
362
+ gap = ' ' if self.word_tokenize else ''
363
+ pred_sentences = self.batch_indices_to_text(
364
+ token_indices, batch_size=max_seq_len, gap=gap
365
+ )
366
+ wer = np.mean(GridDataset.get_wer(
367
+ pred_sentences, raw_tgt, char_map=self.output_char_map
368
+ ))
369
+
370
+ log_scalar('loss', loss, tot_iters)
371
+ log_scalar('wer', wer, tot_iters)
372
+ print(f'TEST PREDS [loss={loss_item:.4f}, wer={wer:.4f}]')
373
+ self.show_sentences(pred_sentences, raw_tgt, batch_size)
374
+
375
+ if loss < self.best_test_loss:
376
+ print(f'NEW BEST LOSS: {loss}')
377
+ self.best_test_loss = loss
378
+ savename = 'I{}-L{:.4f}-W{:.4f}'.format(
379
+ tot_iters, loss, wer
380
+ )
381
+
382
+ savename = savename.replace('.', '') + '.pt'
383
+ savepath = os.path.join(self.weights_dir, savename)
384
+
385
+ (save_dir, name) = os.path.split(savepath)
386
+ if not os.path.exists(save_dir):
387
+ os.makedirs(save_dir)
388
+
389
+ torch.save(self.model.state_dict(), savepath)
390
+ print(f'best model saved at {savepath}')
391
+
392
+ def batch_indices_to_text(
393
+ self, indices_tensor, batch_size, gap=''
394
+ ):
395
+ sentences = []
396
+
397
+ for k in range(batch_size):
398
+ tokens = []
399
+
400
+ for indices_row in indices_tensor:
401
+ idx = indices_row[k]
402
+
403
+ if idx == EOS_IDX:
404
+ break
405
+ if idx in [PAD_IDX, BOS_IDX, EOS_IDX]:
406
+ continue
407
+
408
+ token = self.text_vocab.lookup_token(idx)
409
+ tokens.append(token)
410
+
411
+ sentence = gap.join(tokens)
412
+ sentences.append(sentence)
413
+
414
+ return sentences
415
+
416
+ @staticmethod
417
+ def batch_tokenize_text(batch_sentences, word_tokenize=False):
418
+ return [
419
+ GridDataset.tokenize_text(
420
+ sentence, word_tokenize=word_tokenize
421
+ ) for sentence in batch_sentences
422
+ ]
423
+
424
+ def evaluate(self, model):
425
+ model.eval()
426
+ losses = 0
427
+
428
+ language_pair = (str(CharMap.phonemes), str(CharMap.letters))
429
+ val_iter = Multi30k(
430
+ split='valid', language_pair=language_pair
431
+ )
432
+ val_dataloader = DataLoader(
433
+ val_iter, batch_size=self.batch_size,
434
+ collate_fn=self.collate_fn
435
+ )
436
+
437
+ for src, tgt in val_dataloader:
438
+ src = src.to(self.device)
439
+ tgt = tgt.to(self.device)
440
+ tgt_input = tgt[:-1, :]
441
+ (
442
+ src_mask, tgt_mask,
443
+ src_padding_mask, tgt_padding_mask
444
+ ) = create_mask(src, tgt_input, self.device)
445
+
446
+ logits = model(
447
+ src, tgt_input, src_mask, tgt_mask,
448
+ src_padding_mask, tgt_padding_mask, src_padding_mask
449
+ )
450
+
451
+ tgt_out = tgt[1:, :]
452
+ loss = self.loss_fn(
453
+ logits.reshape(-1, logits.shape[-1]),
454
+ tgt_out.reshape(-1)
455
+ )
456
+ losses += loss.item()
457
+
458
+ return losses / len(list(val_dataloader))
459
+
460
+ # actual function to translate input sentence into target language
461
+ def translate(
462
+ self, phoneme_sentence: str, beam_size=0
463
+ ):
464
+ self.model.eval()
465
+ dummy_sentence = self.text_vocab.lookup_token(
466
+ len(self.text_vocab) - 1
467
+ )
468
+ src, _ = self.collate_fn(zip(
469
+ [phoneme_sentence], [dummy_sentence]
470
+ ))
471
+
472
+ batch_size, max_seq_len = src.shape
473
+ src = src.to(self.device)
474
+
475
+ num_tokens = src.shape[0]
476
+ src_mask = (torch.zeros(num_tokens, num_tokens)).type(torch.bool)
477
+ max_len = num_tokens + 5
478
+
479
+ if beam_size > 0:
480
+ tgt_tokens = self.beam_search_decode(
481
+ src, src_mask, max_len=max_len,
482
+ start_symbol=BOS_IDX, beam_size=beam_size
483
+ )
484
+ else:
485
+ tgt_tokens = self.greedy_decode(
486
+ src, src_mask, max_len=max_len,
487
+ start_symbol=BOS_IDX
488
+ )
489
+
490
+ gap = ' ' if self.word_tokenize else ''
491
+ pred_sentence = self.batch_indices_to_text(
492
+ tgt_tokens, batch_size=max_seq_len, gap=gap
493
+ )[0]
494
+ return pred_sentence
495
+
496
+ # function to generate output sequence using greedy algorithm
497
+ def greedy_decode(self, src, src_mask, max_len, start_symbol):
498
+ src = src.to(self.device)
499
+ src_mask = src_mask.to(self.device)
500
+ memory = self.model.encode(src, src_mask)
501
+ ys = (
502
+ torch.ones(1, 1).fill_(start_symbol).
503
+ type(torch.long).to(self.device)
504
+ )
505
+
506
+ for i in range(max_len - 1):
507
+ memory = memory.to(self.device)
508
+ tgt_mask = (
509
+ generate_square_subsequent_mask(
510
+ ys.size(0), device=self.device
511
+ ).type(torch.bool)
512
+ ).to(self.device)
513
+
514
+ out = self.model.decode(ys, memory, tgt_mask)
515
+ out = out.transpose(0, 1)
516
+ prob = self.model.generator(out[:, -1])
517
+ _, next_word = torch.max(prob, dim=1)
518
+ next_word = next_word.item()
519
+
520
+ ys = torch.cat([
521
+ ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)
522
+ ], dim=0)
523
+
524
+ if next_word == EOS_IDX:
525
+ break
526
+
527
+ return ys
528
+
529
+ def beam_search_decode(
530
+ self, src, src_mask, max_len, start_symbol, beam_size=5
531
+ ):
532
+ src = src.to(self.device)
533
+ src_mask = src_mask.to(self.device)
534
+ memory = self.model.encode(src, src_mask)
535
+ ys = (
536
+ torch.ones(1, 1).fill_(start_symbol).
537
+ type(torch.long).to(self.device)
538
+ )
539
+
540
+ # Each hypothesis is a tuple (sequence, score)
541
+ hypotheses = [(ys, 0.0)]
542
+
543
+ for _ in range(max_len - 1):
544
+ new_hypotheses = []
545
+
546
+ for seq, score in hypotheses:
547
+ if seq[-1] == EOS_IDX:
548
+ new_hypotheses.append((seq, score))
549
+ continue
550
+
551
+ tgt_mask = generate_square_subsequent_mask(
552
+ seq.size(0), device=self.device
553
+ ).type(torch.bool)
554
+
555
+ out = self.model.decode(seq, memory, tgt_mask)
556
+ out = out.transpose(0, 1)
557
+ prob = self.model.generator(out[:, -1])
558
+ # pick {beam_size} largest probabilities from prob
559
+ topk_prob, topk_indices = torch.topk(prob, beam_size)
560
+
561
+ for i in range(beam_size):
562
+ next_word = topk_indices[0][i]
563
+ # Assuming negative log probabilities
564
+ next_score = score - topk_prob[0][i].item()
565
+ new_seq = torch.cat([
566
+ seq, torch.ones(1, 1).type_as(src.data).fill_(next_word)
567
+ ], dim=0)
568
+
569
+ # new_seq = torch.cat([seq, next_word.unsqueeze(0)], dim=0)
570
+ new_hypotheses.append((new_seq, next_score))
571
+
572
+ if len(new_hypotheses) == 0:
573
+ break
574
+
575
+ # Keep top beam_size hypotheses
576
+ hypotheses = sorted(
577
+ new_hypotheses, key=lambda x: x[1]
578
+ )[:beam_size]
579
+
580
+ return hypotheses[0][0] # Return the best hypothesis
581
+
582
+ @staticmethod
583
+ def yield_tokens(sequence_map, tokenizer):
584
+ for key in sequence_map:
585
+ yield tokenizer(sequence_map[key])
586
+
587
+ def build_vocab(self, sequence_map, tokenizer):
588
+ return build_vocab_from_iterator(
589
+ self.yield_tokens(sequence_map, tokenizer),
590
+ min_freq=1, specials=SPECIAL_SYMBOLS,
591
+ special_first=True
592
+ )
593
+
594
+ # helper function to club together sequential operations
595
+ @staticmethod
596
+ def sequential_transforms(*transforms):
597
+ def func(txt_input):
598
+ for transform in transforms:
599
+ txt_input = transform(txt_input)
600
+
601
+ return txt_input
602
+
603
+ return func
604
+
605
+ # function to add BOS/EOS and create tensor for input sequence indices
606
+ @staticmethod
607
+ def tensor_transform(token_ids: List[int]):
608
+ return torch.cat((
609
+ torch.tensor([BOS_IDX]), torch.tensor(token_ids),
610
+ torch.tensor([EOS_IDX])
611
+ ))
612
+
613
+
614
+ if __name__ == '__main__':
615
+ vocab_filepaths = (
616
+ 'data/grid_phoneme_vocab.pth',
617
+ 'data/grid_text_char_vocab.pth'
618
+ )
619
+ """
620
+ vocab_filepaths = (
621
+ 'data/lsr2_phoneme_vocab.pth',
622
+ 'data/lsr2_text_char_vocab.pth'
623
+ )
624
+ """
625
+
626
+ trainer = TranslatorTrainer(
627
+ word_tokenize=False, vocab_files=vocab_filepaths,
628
+ input_char_map=options.char_map,
629
+ output_char_map=options.text_char_map
630
+ )
631
+
632
+ trainer.train()
633
+ # trainer.save_vocabs(*vocab_filepaths)
634
+ # loader = GridLoader()
635
+ # phonemes_text_map = loader.load_phonemes_text_map()
636
+ # print(">>>")
cvtransforms.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding: utf-8
2
+ import random
3
+ import cv2
4
+ import numpy as np
5
+
6
+
7
+ def HorizontalFlip(batch_img, p=0.5):
8
+ # (T, H, W, C)
9
+ if random.random() > p:
10
+ batch_img = batch_img[:, :, ::-1, ...]
11
+ return batch_img
12
+
13
+
14
+ def ColorNormalize(batch_img):
15
+ batch_img = batch_img / 255.0
16
+ return batch_img
data/LRS2-CTC1-valid-pairs.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/LRS2-CTC2-valid-pairs.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/LRS2_CTC1_test.txt ADDED
@@ -0,0 +1,1208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 6330311066473698535/00011
2
+ 6330311066473698535/00018
3
+ 6330311066473698535/00022
4
+ 6330311066473698535/00025
5
+ 6331559613336179781/00019
6
+ 6331559613336179781/00020
7
+ 6331559613336179781/00021
8
+ 6331559613336179781/00027
9
+ 6331559613336179781/00029
10
+ 6331559613336179781/00036
11
+ 6331559613336179781/00038
12
+ 6331559613336179781/00039
13
+ 6331733559511729306/00011
14
+ 6331733559511729306/00025
15
+ 6331733559511729306/00026
16
+ 6331733559511729306/00031
17
+ 6332062124509813446/00015
18
+ 6332062124509813446/00016
19
+ 6332062124509813446/00018
20
+ 6332062124509813446/00059
21
+ 6332062124509813446/00063
22
+ 6332491191742745853/00011
23
+ 6332491191742745853/00014
24
+ 6332804294858562278/00009
25
+ 6332804294858562278/00020
26
+ 6332804294858562278/00026
27
+ 6332804294858562278/00034
28
+ 6333175380032936690/00012
29
+ 6333175380032936690/00015
30
+ 6333604447265869137/00003
31
+ 6333604447265869137/00005
32
+ 6334149478615670679/00004
33
+ 6334149478615670679/00008
34
+ 6334149478615670679/00015
35
+ 6334149478615670679/00025
36
+ 6334331155732352379/00002
37
+ 6334563083966338309/00004
38
+ 6334563083966338309/00024
39
+ 6334563083966338309/00057
40
+ 6334563083966338309/00081
41
+ 6334563083966338309/00089
42
+ 6334563083966338309/00103
43
+ 6334563083966338309/00106
44
+ 6334934169140712754/00001
45
+ 6334934169140712754/00002
46
+ 6334934169140712754/00013
47
+ 6334934169140712754/00059
48
+ 6334934169140712754/00068
49
+ 6334934169140712754/00070
50
+ 6334934169140712754/00073
51
+ 6334934169140712754/00082
52
+ 6335003747610845928/00004
53
+ 6335003747610845928/00009
54
+ 6335003747610845928/00022
55
+ 6335003747610845928/00045
56
+ 6335305254315087182/00011
57
+ 6335305254315087182/00012
58
+ 6335305254315087182/00014
59
+ 6335305254315087182/00017
60
+ 6335305254315087182/00028
61
+ 6335305254315087182/00032
62
+ 6335305254315087182/00035
63
+ 6335305254315087182/00036
64
+ 6335305254315087182/00057
65
+ 6335305254315087182/00058
66
+ 6335676339489461610/00002
67
+ 6335676339489461610/00011
68
+ 6335676339489461610/00014
69
+ 6335676339489461610/00030
70
+ 6335676339489461610/00031
71
+ 6335676339489461610/00038
72
+ 6335676339489461610/00042
73
+ 6335676339489461610/00070
74
+ 6335676339489461610/00071
75
+ 6335676339489461610/00079
76
+ 6336047424663836038/00001
77
+ 6336047424663836038/00006
78
+ 6336047424663836038/00008
79
+ 6336047424663836038/00061
80
+ 6336047424663836038/00076
81
+ 6336117003133970558/00003
82
+ 6336117003133970558/00018
83
+ 6336117003133970558/00062
84
+ 6336117003133970558/00067
85
+ 6336739343895160063/00006
86
+ 6336739343895160063/00016
87
+ 6336739343895160063/00027
88
+ 6336739343895160063/00040
89
+ 6336739343895160063/00042
90
+ 6336739343895160063/00046
91
+ 6336739343895160063/00052
92
+ 6336739343895160063/00053
93
+ 6336739343895160063/00056
94
+ 6336851442541654996/00001
95
+ 6336917155541276097/00004
96
+ 6336917155541276097/00005
97
+ 6336917155541276097/00007
98
+ 6336917155541276097/00022
99
+ 6336917155541276097/00037
100
+ 6337160680186960682/00038
101
+ 6337160680186960682/00051
102
+ 6337160680186960682/00054
103
+ 6337160680186960682/00060
104
+ 6337160680186960682/00078
105
+ 6337230258657094880/00029
106
+ 6337531765361335111/00008
107
+ 6337531765361335111/00018
108
+ 6337531765361335111/00019
109
+ 6337531765361335111/00022
110
+ 6337531765361335111/00029
111
+ 6337531765361335111/00037
112
+ 6337531765361335111/00069
113
+ 6337531765361335111/00073
114
+ 6337902850535709539/00015
115
+ 6337902850535709539/00027
116
+ 6337902850535709539/00038
117
+ 6337902850535709539/00065
118
+ 6337902850535709539/00074
119
+ 6337902850535709539/00077
120
+ 6338130913429528164/00002
121
+ 6338130913429528164/00003
122
+ 6338130913429528164/00028
123
+ 6338130913429528164/00037
124
+ 6338130913429528164/00046
125
+ 6338273935710083967/00003
126
+ 6338273935710083967/00004
127
+ 6338273935710083967/00021
128
+ 6338273935710083967/00038
129
+ 6338273935710083967/00047
130
+ 6338273935710083967/00059
131
+ 6338273935710083967/00076
132
+ 6338645020884458400/00016
133
+ 6338645020884458400/00032
134
+ 6338645020884458400/00046
135
+ 6338645020884458400/00057
136
+ 6338645020884458400/00071
137
+ 6338807370648247218/00020
138
+ 6338807370648247218/00022
139
+ 6339077953587836416/00002
140
+ 6339077953587836416/00003
141
+ 6339077953587836416/00004
142
+ 6339077953587836416/00017
143
+ 6339077953587836416/00018
144
+ 6339077953587836416/00025
145
+ 6339077953587836416/00029
146
+ 6339077953587836416/00031
147
+ 6339077953587836416/00035
148
+ 6339356267468615354/00006
149
+ 6339356267468615354/00010
150
+ 6339356267468615354/00011
151
+ 6339356267468615354/00018
152
+ 6339356267468615354/00035
153
+ 6339356267468615354/00046
154
+ 6339464500644477822/00008
155
+ 6339464500644477822/00020
156
+ 6339464500644477822/00021
157
+ 6339464500644477822/00030
158
+ 6339464500644477822/00032
159
+ 6339526348173538836/00014
160
+ 6339615254127026753/00009
161
+ 6339615254127026753/00012
162
+ 6339615254127026753/00015
163
+ 6339758276407584924/00015
164
+ 6339758276407584924/00036
165
+ 6339758276407584924/00038
166
+ 6339758276407584924/00062
167
+ 6339758276407584924/00065
168
+ 6339758276407584924/00081
169
+ 6339758276407584924/00082
170
+ 6339758276407584924/00089
171
+ 6339758276407584924/00098
172
+ 6340129361581959353/00022
173
+ 6340299442417279404/00006
174
+ 6340299442417279404/00019
175
+ 6340299442417279404/00023
176
+ 6340500446756333781/00007
177
+ 6340500446756333781/00031
178
+ 6340500446756333781/00034
179
+ 6340500446756333781/00058
180
+ 6340500446756333781/00059
181
+ 6340871531930708209/00025
182
+ 6340871531930708209/00031
183
+ 6340871531930708209/00037
184
+ 6340871531930708209/00057
185
+ 6340871531930708209/00058
186
+ 6340871531930708209/00073
187
+ 6340871531930708209/00092
188
+ 6340871531930708209/00094
189
+ 6340871531930708209/00102
190
+ 6340871531930708209/00106
191
+ 6341242617105082637/00016
192
+ 6341242617105082637/00022
193
+ 6341242617105082637/00032
194
+ 6341242617105082637/00049
195
+ 6341242617105082637/00071
196
+ 6341242617105082637/00095
197
+ 6341242617105082637/00110
198
+ 6341242617105082637/00112
199
+ 6341381774045411442/00010
200
+ 6341404966868871455/00002
201
+ 6341404966868871455/00005
202
+ 6341404966868871455/00014
203
+ 6341404966868871455/00015
204
+ 6341949998218671745/00019
205
+ 6341949998218671745/00022
206
+ 6341949998218671745/00025
207
+ 6341949998218671745/00028
208
+ 6341949998218671745/00030
209
+ 6341949998218671745/00031
210
+ 6342112347982522696/00001
211
+ 6342112347982522696/00004
212
+ 6342112347982522696/00008
213
+ 6342112347982522696/00020
214
+ 6342112347982522696/00026
215
+ 6342440912980576694/00002
216
+ 6343252661930009508/00006
217
+ 6343252661930009508/00008
218
+ 6343252661930009508/00020
219
+ 6343252661930009508/00021
220
+ 6343252661930009508/00030
221
+ 6343252661930009508/00032
222
+ 6343252661930009508/00035
223
+ 6343252661930009508/00051
224
+ 6343252661930009508/00055
225
+ 6343252661930009508/00061
226
+ 6343252661930009508/00067
227
+ 6343252661930009508/00073
228
+ 6343252661930009508/00092
229
+ 6343252661930009508/00094
230
+ 6343252661930009508/00095
231
+ 6343252661930009508/00111
232
+ 6343252661930009508/00113
233
+ 6343252661930009508/00117
234
+ 6343608285091658983/00001
235
+ 6343608285091658983/00003
236
+ 6343979370266033402/00001
237
+ 6344002563089494087/00006
238
+ 6344002563089494087/00012
239
+ 6344002563089494087/00015
240
+ 6344002563089494087/00016
241
+ 6344350455440407821/00014
242
+ 6344350455440407821/00030
243
+ 6344350455440407821/00032
244
+ 6344350455440407821/00047
245
+ 6344547594439294233/00037
246
+ 6344709944203120665/00011
247
+ 6344709944203120665/00030
248
+ 6344737002497020519/00001
249
+ 6344737002497020519/00005
250
+ 6345541020505319391/00007
251
+ 6345541020505319391/00015
252
+ 6345850258020171127/00006
253
+ 6346600159310117136/00014
254
+ 6347195441777342774/00010
255
+ 6347195441777342774/00023
256
+ 6347195441777342774/00036
257
+ 6347195441777342774/00052
258
+ 6347195441777342774/00054
259
+ 6347195441777342774/00074
260
+ 6347195441777342774/00083
261
+ 6347195441777342774/00103
262
+ 6347195441777342774/00105
263
+ 6347195441777342774/00129
264
+ 6347195441777342774/00130
265
+ 6347195441777342774/00139
266
+ 6347195441777342774/00160
267
+ 6347195441777342774/00180
268
+ 6347195441777342774/00188
269
+ 6347195441777342774/00194
270
+ 6347271462698456331/00003
271
+ 6347271462698456331/00005
272
+ 6347271462698456331/00006
273
+ 6347271462698456331/00026
274
+ 6347271462698456331/00028
275
+ 6347338464188272871/00011
276
+ 6347350060599908703/00007
277
+ 6347524006775395501/00006
278
+ 6347524006775395501/00020
279
+ 6347667029186417939/00010
280
+ 6347667029186417939/00011
281
+ 6347667029186417939/00030
282
+ 6347667029186417939/00035
283
+ 6348038114360790454/00004
284
+ 6348038114360790454/00012
285
+ 6348409199535164855/00011
286
+ 6348409199535164855/00022
287
+ 6348409199535164855/00054
288
+ 6348440123299631026/00021
289
+ 6348463316123031920/00004
290
+ 6348463316123031920/00014
291
+ 6348463316123031920/00020
292
+ 6348463316123031920/00027
293
+ 6348714571709909926/00001
294
+ 6348714571709909926/00011
295
+ 6348780284709539256/00003
296
+ 6348780284709539256/00016
297
+ 6348780284709539256/00019
298
+ 6348780284709539256/00026
299
+ 6348834401297406331/00002
300
+ 6348834401297406331/00006
301
+ 6348834401297406331/00023
302
+ 6348834401297406331/00046
303
+ 6348834401297406331/00051
304
+ 6348834401427892766/00009
305
+ 6348834401427892766/00015
306
+ 6348834401427892766/00029
307
+ 6348834401427892766/00043
308
+ 6348834401427892766/00045
309
+ 6348834401427892766/00048
310
+ 6349108849707618270/00007
311
+ 6349174562707247076/00008
312
+ 6349174562707247076/00010
313
+ 6349174562707247076/00019
314
+ 6349190024589512678/00006
315
+ 6349213217412979095/00007
316
+ 6349213217412979095/00010
317
+ 6349228679295241171/00016
318
+ 6349420664333310663/00012
319
+ 6349559821273762790/00002
320
+ 6349559821273762790/00010
321
+ 6349793037997935601/00008
322
+ 6349793037997935601/00025
323
+ 6349793037997935601/00029
324
+ 6349793037997935601/00062
325
+ 6349793037997935601/00067
326
+ 6349793037997935601/00076
327
+ 6349793037997935601/00098
328
+ 6349793037997935601/00118
329
+ 6349793037997935601/00128
330
+ 6349793037997935601/00138
331
+ 6349793037997935601/00163
332
+ 6349793037997935601/00183
333
+ 6349847154585871175/00007
334
+ 6349847154585871175/00014
335
+ 6349847154585871175/00018
336
+ 6349847154585871175/00027
337
+ 6349847154585871175/00028
338
+ 6349847154585871175/00035
339
+ 6349847154585871175/00037
340
+ 6349847154585871175/00039
341
+ 6349916733056066377/00018
342
+ 6349947656820532043/00016
343
+ 6350152526760616781/00008
344
+ 6350152526760616781/00009
345
+ 6350152526760616781/00013
346
+ 6350152526760616781/00016
347
+ 6350152526760616781/00052
348
+ 6350152526760616781/00059
349
+ 6350152526760616781/00067
350
+ 6350222105230808621/00007
351
+ 6350222105230808621/00008
352
+ 6350222105230808621/00012
353
+ 6350264625407039025/00015
354
+ 6350295549171504559/00001
355
+ 6350295549171504559/00004
356
+ 6350295549171504559/00006
357
+ 6350295549171504559/00016
358
+ 6350523611934991188/00008
359
+ 6350523611934991188/00013
360
+ 6350523611934991188/00015
361
+ 6350523611934991188/00016
362
+ 6350523611934991188/00021
363
+ 6350523611934991188/00027
364
+ 6350523611934991188/00061
365
+ 6350523611934991188/00067
366
+ 6350666634345878987/00013
367
+ 6350921755403330389/00027
368
+ 6350921755403330389/00030
369
+ 6350921755403330389/00041
370
+ 6350921755403330389/00056
371
+ 6350921755403330389/00058
372
+ 6350921755403330389/00062
373
+ 6351037719520253414/00001
374
+ 6351037719520253414/00003
375
+ 6351234858519149621/00007
376
+ 6351234858519149621/00044
377
+ 6351265782283739990/00001
378
+ 6351265782283739990/00008
379
+ 6351265782283739990/00030
380
+ 6351265782283739990/00032
381
+ 6351265782283739990/00033
382
+ 6351424266576959115/00013
383
+ 6351424266576959115/00014
384
+ 6351424266576959115/00015
385
+ 6351431997518095202/00003
386
+ 6351431997518095202/00008
387
+ 6351431997518095202/00009
388
+ 6351431997518095202/00017
389
+ 6351431997518095202/00019
390
+ 6351636867458114391/00002
391
+ 6351636867458114391/00004
392
+ 6351636867458114391/00005
393
+ 6351636867458114391/00010
394
+ 6351636867458114391/00033
395
+ 6351636867458114391/00037
396
+ 6351636867458114391/00040
397
+ 6351714176869448803/00001
398
+ 6351714176869448803/00004
399
+ 6351714176869448803/00010
400
+ 6351772158927869467/00029
401
+ 6351772158927869467/00035
402
+ 6351810813633601326/00001
403
+ 6351810813633601326/00002
404
+ 6351810813633601326/00006
405
+ 6351810813633601326/00007
406
+ 6351810813633601326/00013
407
+ 6351810813633601326/00014
408
+ 6351810813633601326/00016
409
+ 6351810813633601326/00020
410
+ 6351826275515864748/00006
411
+ 6351841737398064668/00004
412
+ 6352157417494386368/00027
413
+ 6352157417494386368/00030
414
+ 6352157417494386368/00043
415
+ 6352157417494386368/00050
416
+ 6352157417494386368/00051
417
+ 6352498867394358158/00018
418
+ 6352498867394358158/00019
419
+ 6352498867394358158/00027
420
+ 6352533656629519062/00002
421
+ 6352533656629519062/00006
422
+ 6352533656629519062/00013
423
+ 6352815835980800496/00002
424
+ 6352815835980800496/00005
425
+ 6352815835980800496/00007
426
+ 6352893145392128503/00008
427
+ 6352893145392128503/00013
428
+ 6352893145392128503/00014
429
+ 6352893145392128503/00017
430
+ 6352893145392128503/00020
431
+ 6352893145392128503/00036
432
+ 6352916338215591806/00003
433
+ 6353179190214044575/00019
434
+ 6353179190214044575/00020
435
+ 6353190786625806236/00012
436
+ 6353233306802036640/00005
437
+ 6353233306802036640/00017
438
+ 6353233306802036640/00019
439
+ 6353233306802036640/00024
440
+ 6353233306802036640/00037
441
+ 6353233306802036640/00038
442
+ 6353233306802036640/00039
443
+ 6353264230566502930/00013
444
+ 6353264230566502930/00014
445
+ 6353561871800180662/00005
446
+ 6353561871800180662/00014
447
+ 6353561871800180662/00019
448
+ 6353561871800180662/00024
449
+ 6353604391976411066/00001
450
+ 6353604391976411066/00014
451
+ 6353635315740877357/00003
452
+ 6353635315740877357/00006
453
+ 6353909764151156687/00001
454
+ 6353909764151156687/00005
455
+ 6353932956974555090/00007
456
+ 6353975477150785494/00008
457
+ 6353975477150785494/00019
458
+ 6353975477150785494/00030
459
+ 6354006400915251783/00006
460
+ 6354006400915251783/00007
461
+ 6354304042148929518/00013
462
+ 6354346562325159922/00004
463
+ 6354346562325159922/00011
464
+ 6354346562325159922/00029
465
+ 6354346562325159922/00032
466
+ 6354346562325159922/00040
467
+ 6354346562325159922/00052
468
+ 6354369755148493407/00019
469
+ 6354369755148493407/00023
470
+ 6354369755148493407/00028
471
+ 6354369755148493407/00048
472
+ 6354369755148493407/00051
473
+ 6354369755148493407/00055
474
+ 6354617145264744350/00007
475
+ 6354755013715009552/00005
476
+ 6354988230439182363/00027
477
+ 6354988230439182363/00032
478
+ 6354988230439182363/00053
479
+ 6354988230439182363/00062
480
+ 6354988230439182363/00070
481
+ 6354988230439182363/00085
482
+ 6354988230439182363/00107
483
+ 6354988230439182363/00141
484
+ 6354988230439182363/00179
485
+ 6354988230439182363/00181
486
+ 6355115790967873574/00006
487
+ 6355115790967873574/00012
488
+ 6355115790967873574/00016
489
+ 6355115790967873574/00020
490
+ 6355115790967873574/00021
491
+ 6355115790967873574/00022
492
+ 6355115790967873574/00029
493
+ 6355115790967873574/00035
494
+ 6355193100379206640/00008
495
+ 6355414720691614656/00013
496
+ 6355459817848285433/00004
497
+ 6355459817848285433/00007
498
+ 6355544858200683461/00002
499
+ 6355556454612448247/00010
500
+ 6355556454612448247/00016
501
+ 6355568051024147448/00003
502
+ 6355568051024147448/00012
503
+ 6355568051024147448/00016
504
+ 6355788382846429521/00004
505
+ 6355788382846429521/00005
506
+ 6355788382846429521/00010
507
+ 6355830903022659925/00014
508
+ 6355861826787125225/00006
509
+ 6355861826787125225/00010
510
+ 6355861826787125225/00011
511
+ 6355861826787125225/00019
512
+ 6355861826787125225/00037
513
+ 6356201988197034394/00007
514
+ 6356201988197034394/00018
515
+ 6356201988197034394/00026
516
+ 6356201988197034394/00031
517
+ 6356201988197034394/00034
518
+ 6356201988197034394/00044
519
+ 6356232911961499649/00017
520
+ 6356232911961499649/00026
521
+ 6356530553195113872/00001
522
+ 6356530553195178439/00012
523
+ 6356530553195178439/00014
524
+ 6356573073371408843/00023
525
+ 6356573073371408843/00033
526
+ 6356573073371408843/00041
527
+ 6356573073371408843/00045
528
+ 6356603997135874072/00027
529
+ 6356619459018205648/00002
530
+ 6356619459018205648/00015
531
+ 6356878445546153116/00001
532
+ 6356878445546153116/00004
533
+ 6356878445546153116/00011
534
+ 6356878445546153116/00012
535
+ 6356901638369488289/00018
536
+ 6356998275133646895/00004
537
+ 6356998275133646895/00005
538
+ 6357006006074844331/00003
539
+ 6357006006074844331/00008
540
+ 6357006006074844331/00011
541
+ 6357006006074844331/00013
542
+ 6357006006074844331/00015
543
+ 6357353898425821669/00007
544
+ 6357353898425821669/00020
545
+ 6357353898425821669/00021
546
+ 6357353898425821669/00030
547
+ 6357353898425821669/00040
548
+ 6357353898425821669/00042
549
+ 6357353898425821669/00043
550
+ 6357701790776745251/00005
551
+ 6357701790776745251/00011
552
+ 6357701790776745251/00013
553
+ 6357701790776745251/00016
554
+ 6357701790776745251/00017
555
+ 6357701790776745251/00021
556
+ 6357714675678689620/00002
557
+ 6357714675678689620/00010
558
+ 6357714675678689620/00025
559
+ 6357714675678689620/00029
560
+ 6357714675678689620/00030
561
+ 6357798427540961623/00008
562
+ 6357798427540961623/00014
563
+ 6357798427540961623/00015
564
+ 6358014893892677091/00008
565
+ 6358057414068907495/00002
566
+ 6358057414068907495/00013
567
+ 6358088337833374405/00011
568
+ 6358088337833374405/00015
569
+ 6358111530656837102/00002
570
+ 6358428499243281970/00022
571
+ 6358428499243281970/00024
572
+ 6358428499243281970/00026
573
+ 6358428499243281970/00028
574
+ 6358428499243281970/00032
575
+ 6358459423007748830/00001
576
+ 6358474884890078775/00004
577
+ 6358474884890078775/00013
578
+ 6358757064241425994/00003
579
+ 6358830508182123252/00005
580
+ 6358830508182123252/00017
581
+ 6358830508182123252/00029
582
+ 6359128149415800422/00006
583
+ 6359201593356497677/00023
584
+ 6359499234590174850/00009
585
+ 6359541754766405254/00018
586
+ 6359541754766405254/00020
587
+ 6359564947589739760/00043
588
+ 6359580409472005362/00001
589
+ 6359580409472005362/00002
590
+ 6359580409472005362/00006
591
+ 6359580409472005362/00011
592
+ 6359588140413215496/00004
593
+ 6359603602295467662/00003
594
+ 6359603602295467662/00006
595
+ 6359603602295467662/00012
596
+ 6359951494646443684/00007
597
+ 6359982418410974886/00001
598
+ 6359982418410974886/00003
599
+ 6360322579951237696/00001
600
+ 6360322579951237696/00002
601
+ 6360322579951237696/00006
602
+ 6360322579951237696/00016
603
+ 6360322579951237696/00017
604
+ 6360322579951237696/00023
605
+ 6360322579951237696/00025
606
+ 6360322579951237696/00027
607
+ 6360327733781577947/00015
608
+ 6360327733781577947/00016
609
+ 6360327733781577947/00020
610
+ 6360393446781206759/00004
611
+ 6360393446781206759/00011
612
+ 6360393446781206759/00013
613
+ 6360393446781206759/00015
614
+ 6360393446781206759/00017
615
+ 6360612490113299870/00013
616
+ 6360612490113299870/00017
617
+ 6360685934053997353/00007
618
+ 6360709126877459881/00008
619
+ 6360709126877459881/00010
620
+ 6360709126877459881/00011
621
+ 6360740050641926958/00002
622
+ 6360740050641926958/00004
623
+ 6360983575287674299/00011
624
+ 6361028672444286629/00005
625
+ 6361028672444286629/00010
626
+ 6361028672444286629/00023
627
+ 6361028672444286629/00026
628
+ 6361354660462048727/00006
629
+ 6361354660462048727/00012
630
+ 6361428104402746195/00007
631
+ 6361725745636423155/00006
632
+ 6361725745636423155/00010
633
+ 6361725745636423155/00012
634
+ 6361725745636423155/00013
635
+ 6361799189577120616/00001
636
+ 6361799189577120616/00005
637
+ 6361814651459450364/00025
638
+ 6361822382531000645/00001
639
+ 6361822382531000645/00004
640
+ 6361822382531000645/00005
641
+ 6362096830810797583/00018
642
+ 6362096830810797583/00021
643
+ 6362143216457594387/00003
644
+ 6362143216457594387/00008
645
+ 6362143216457594387/00021
646
+ 6362143216457594387/00025
647
+ 6362162543810362236/00006
648
+ 6362162543810362236/00008
649
+ 6362162543810362236/00034
650
+ 6362162543810362236/00046
651
+ 6362162543810362236/00053
652
+ 6362193467574893437/00002
653
+ 6362193467574893437/00007
654
+ 6362460185044046481/00014
655
+ 6362460185044046481/00024
656
+ 6362460185044046481/00028
657
+ 6362546513886688816/00002
658
+ 6362546513886688816/00003
659
+ 6362546513886688816/00004
660
+ 6362546513886688816/00008
661
+ 6362726902513062509/00003
662
+ 6362726902513062509/00014
663
+ 6362913733590438579/00001
664
+ 6362913733590438579/00002
665
+ 6362913733590438579/00010
666
+ 6362913733590438579/00044
667
+ 6362913733590438579/00048
668
+ 6362913733590438579/00051
669
+ 6362913733590438579/00055
670
+ 6362913733590438579/00057
671
+ 6362913733590438579/00065
672
+ 6362913733590438579/00078
673
+ 6362913733590438579/00082
674
+ 6362913733590438579/00092
675
+ 6362913733590438579/00099
676
+ 6362913733590438579/00105
677
+ 6362913733590438579/00107
678
+ 6362913733590438579/00110
679
+ 6362913733590438579/00125
680
+ 6362913733590438579/00132
681
+ 6362913733590438579/00134
682
+ 6362913733590438579/00138
683
+ 6362913733590438579/00142
684
+ 6362913733590438579/00145
685
+ 6362913733590438579/00146
686
+ 6362913733590438579/00147
687
+ 6362913733590438579/00153
688
+ 6362913733590438579/00156
689
+ 6362913733590438579/00158
690
+ 6362913733590438579/00172
691
+ 6362913733590438579/00174
692
+ 6362913733590438579/00185
693
+ 6362913733590438579/00193
694
+ 6362913733590438579/00196
695
+ 6362913733590438579/00199
696
+ 6362913733590438579/00204
697
+ 6362913733590438579/00207
698
+ 6362913733590438579/00213
699
+ 6362913733590438579/00221
700
+ 6362913733590438579/00224
701
+ 6362925330002196038/00013
702
+ 6362925330002196038/00014
703
+ 6362925330002196038/00021
704
+ 6362958830877522951/00003
705
+ 6362958830877522951/00005
706
+ 6362958830877522951/00007
707
+ 6362958830877522951/00008
708
+ 6362993619982210246/00002
709
+ 6363210086333922442/00011
710
+ 6363283530274620169/00005
711
+ 6363283530274620169/00012
712
+ 6363306723098082453/00001
713
+ 6363581171508296879/00005
714
+ 6363581171508296879/00006
715
+ 6363654615448994597/00012
716
+ 6363654615448994597/00013
717
+ 6363654615448994597/00046
718
+ 6363948391212041701/00004
719
+ 6363952256682671319/00003
720
+ 6363952256682671319/00004
721
+ 6363952256682671319/00010
722
+ 6363952256682671319/00015
723
+ 6363952256682671319/00016
724
+ 6363956122153173818/00006
725
+ 6363956122153173818/00007
726
+ 6363956122153173818/00014
727
+ 6363956122153173818/00036
728
+ 6363997353839279323/00010
729
+ 6363997353839279323/00023
730
+ 6364025700623369025/00016
731
+ 6364025700623369025/00022
732
+ 6364319476386415444/00005
733
+ 6364319476386415444/00009
734
+ 6364327207327548190/00025
735
+ 6364327207327548190/00036
736
+ 6364396785797743449/00020
737
+ 6364760140030989000/00017
738
+ 6364760140030989000/00021
739
+ 6364791063795516278/00004
740
+ 6364791063795516278/00005
741
+ 6364791063795516278/00010
742
+ 6364791063795580193/00005
743
+ 6364791063795580193/00006
744
+ 6364798794736649079/00001
745
+ 6364798794736712994/00008
746
+ 6364798794736712994/00010
747
+ 6364798794736712994/00012
748
+ 6365141533126941637/00012
749
+ 6365141533126941637/00013
750
+ 6365141533126941637/00051
751
+ 6365141533126941637/00056
752
+ 6365141533126941637/00057
753
+ 6365141533126941637/00060
754
+ 6365413404556770633/00013
755
+ 6365413404556770633/00023
756
+ 6365413404556770633/00036
757
+ 6365888857436445152/00005
758
+ 6365888857436445152/00006
759
+ 6365888857436445152/00009
760
+ 6365888857436445152/00011
761
+ 6365904319318706417/00012
762
+ 6365935243083171934/00003
763
+ 6366259942610819561/00005
764
+ 6366259942610819561/00025
765
+ 6366267673551948044/00001
766
+ 6366267673551948044/00008
767
+ 6366267673551948044/00009
768
+ 6366631027785194041/00016
769
+ 6366631027785194041/00018
770
+ 6366944130901006716/00005
771
+ 6366944130901006716/00007
772
+ 6366944130901006716/00010
773
+ 6366944130901006716/00015
774
+ 6367002112959568594/00006
775
+ 6367002112959568594/00011
776
+ 6367002112959568594/00014
777
+ 6367373198133943465/00014
778
+ 6367373198133943465/00022
779
+ 6367373198133943465/00025
780
+ 6367373198133943465/00042
781
+ 6367373198133943465/00046
782
+ 6367373198133943465/00054
783
+ 6367373198133943465/00058
784
+ 6367373198133943465/00065
785
+ 6367373198133943465/00073
786
+ 6367373198133943465/00076
787
+ 6367373198133943465/00086
788
+ 6367373198133943465/00090
789
+ 6367373198133943465/00098
790
+ 6367373198133943465/00103
791
+ 6367373198133943465/00113
792
+ 6367373198133943465/00127
793
+ 6367373198133943465/00128
794
+ 6367373198133943465/00134
795
+ 6367373198133943465/00138
796
+ 6367373198133943465/00139
797
+ 6367373198133943465/00141
798
+ 6367373198133943465/00143
799
+ 6367373198133943465/00144
800
+ 6367373198133943465/00158
801
+ 6367373198133943465/00163
802
+ 6367373198133943465/00171
803
+ 6367396390957341434/00008
804
+ 6367396390957341434/00011
805
+ 6367396390957341434/00013
806
+ 6367396390957341434/00014
807
+ 6367744283308252235/00011
808
+ 6367813861908922495/00003
809
+ 6367813861908922495/00004
810
+ 6367813861908922495/00010
811
+ 6367813861908922495/00035
812
+ 6368096041129860047/00002
813
+ 6368111503012125648/00004
814
+ 6368111503012125648/00018
815
+ 6368111503012125648/00025
816
+ 6368111503012125648/00051
817
+ 6368154023188356050/00008
818
+ 6368177216011755289/00003
819
+ 6368177216011755289/00005
820
+ 6368177216011755289/00012
821
+ 6368177216011755289/00013
822
+ 6368177216011755289/00016
823
+ 6368494184598133861/00007
824
+ 6368494184598133861/00017
825
+ 6368494184598133861/00030
826
+ 6368494184598133861/00041
827
+ 6368494184598133861/00046
828
+ 6368525108362665063/00017
829
+ 6368525108362665063/00019
830
+ 6368525108362665063/00029
831
+ 6368525108362665063/00045
832
+ 6368525108362665063/00053
833
+ 6368525108362665063/00055
834
+ 6368525108362665063/00067
835
+ 6368525108362665063/00069
836
+ 6368857538831442335/00028
837
+ 6368903924478172740/00007
838
+ 6369220893064682263/00003
839
+ 6369220893064682263/00007
840
+ 6369220893064682263/00023
841
+ 6369220893064682263/00033
842
+ 6369220893064682263/00035
843
+ 6369259547770281088/00011
844
+ 6369259547770281088/00020
845
+ 6369259547770281088/00021
846
+ 6369259547770346264/00010
847
+ 6369259547770346264/00016
848
+ 6369599709180191149/00011
849
+ 6369599709180191149/00013
850
+ 6369599709180191149/00014
851
+ 6369599709180191149/00017
852
+ 6369599709180191149/00030
853
+ 6369607440121317877/00006
854
+ 6369912812296002056/00001
855
+ 6369912812296002056/00009
856
+ 6369912812296002056/00016
857
+ 6369912812296002056/00019
858
+ 6369912812296002056/00022
859
+ 6369912812296002056/00023
860
+ 6369912812296002056/00024
861
+ 6369912812296002056/00025
862
+ 6369970794354565537/00002
863
+ 6369970794354565537/00003
864
+ 6369986256236764320/00003
865
+ 6369986256236764320/00005
866
+ 6369986256236764320/00006
867
+ 6369986256236764320/00008
868
+ 6369986256236764320/00018
869
+ 6369986256236764320/00022
870
+ 6369986256236764320/00025
871
+ 6369986256236764320/00026
872
+ 6369986256236764320/00031
873
+ 6369986256236764320/00041
874
+ 6369986256236764320/00042
875
+ 6370331571607430336/00003
876
+ 6370331571607430336/00009
877
+ 6370331571607430336/00016
878
+ 6370331571607430336/00019
879
+ 6370331571607430336/00020
880
+ 6370331571607430336/00033
881
+ 6370366360842521130/00001
882
+ 6370366360842521130/00006
883
+ 6370728426585516325/00006
884
+ 6370728426585516325/00008
885
+ 6370728426585516325/00013
886
+ 6370728426585516325/00014
887
+ 6370728426585516325/00018
888
+ 6370997721034975856/00008
889
+ 6371091780818822750/00005
890
+ 6371091780818822750/00006
891
+ 6371091780818822750/00018
892
+ 6371114973642156346/00011
893
+ 6371114973642156346/00014
894
+ 6371114973642156346/00017
895
+ 6371114973642156346/00018
896
+ 6371114973642156346/00019
897
+ 6371114973642156346/00024
898
+ 6371114973642221152/00004
899
+ 6371114973642221152/00010
900
+ 6371389422052370754/00011
901
+ 6371462865993190004/00012
902
+ 6371470597064737331/00015
903
+ 6371470597064737331/00017
904
+ 6371470597064737331/00018
905
+ 6371470597064737331/00028
906
+ 6371470597064737331/00032
907
+ 6372918859906543042/00019
908
+ 6373112133434795034/00002
909
+ 6373112133434795034/00005
910
+ 6373112133434795034/00007
911
+ 6373202327748070121/00011
912
+ 6373318291865072119/00019
913
+ 6373318291865072119/00024
914
+ 6373318291865072119/00030
915
+ 6373318291865072119/00043
916
+ 6373326022806137973/00005
917
+ 6373326022806137973/00014
918
+ 6373326022806137973/00015
919
+ 6373627529510317190/00002
920
+ 6373627529510317190/00004
921
+ 6373627529510317190/00005
922
+ 6374060462213818017/00007
923
+ 6374060462213818017/00008
924
+ 6374083655037216420/00004
925
+ 6374083655167624227/00010
926
+ 6374083655167624227/00018
927
+ 6374083655167624227/00022
928
+ 6374083655167624227/00037
929
+ 6374083655167624227/00045
930
+ 6374083655167624227/00053
931
+ 6374083655167624227/00057
932
+ 6374083655167624227/00058
933
+ 6374083655167624227/00059
934
+ 6374083655167624227/00079
935
+ 6374083655167624227/00083
936
+ 6374083655167624227/00085
937
+ 6374083655167624227/00102
938
+ 6374083655167624227/00105
939
+ 6374083655167624227/00107
940
+ 6374083655167624227/00119
941
+ 6374454740211592999/00010
942
+ 6374802632562566873/00011
943
+ 6374802632562566873/00024
944
+ 6375181448678007969/00005
945
+ 6375181448678076214/00002
946
+ 6375448166147161013/00031
947
+ 6375480378401815497/00001
948
+ 6375480378401815497/00004
949
+ 6375480378401815497/00011
950
+ 6375480378401815497/00024
951
+ 6375516456127164915/00004
952
+ 6375516456127164915/00006
953
+ 6375516456127164915/00014
954
+ 6375915888085690147/00005
955
+ 6375915888085690147/00015
956
+ 6375915888085690147/00022
957
+ 6375915888085690147/00023
958
+ 6375915888085690147/00033
959
+ 6375915888085690147/00041
960
+ 6375915888085690147/00045
961
+ 6375915888085690147/00047
962
+ 6375915888085690147/00048
963
+ 6375923619026758902/00014
964
+ 6375923619026758902/00020
965
+ 6376310166083398929/00004
966
+ 6376623269199281113/00006
967
+ 6376623269199281113/00008
968
+ 6376623269199281113/00012
969
+ 6377052336432217027/00002
970
+ 6377052336432217027/00006
971
+ 6377052336432217027/00008
972
+ 6377365439548029922/00009
973
+ 6377365439548029922/00022
974
+ 6377365439548029922/00024
975
+ 6377365439548029922/00025
976
+ 6377365439548029922/00026
977
+ 6377365439548029922/00031
978
+ 6377365439548029922/00039
979
+ 6377400228783189968/00001
980
+ 6377400228783189968/00015
981
+ 6377779044898631026/00001
982
+ 6377794506780964609/00004
983
+ 6377794506780964609/00009
984
+ 6377794506780964609/00010
985
+ 6377794506780964609/00012
986
+ 6377794506780964609/00013
987
+ 6378096013485054233/00006
988
+ 6378324076248495598/00012
989
+ 6378795663657663776/00003
990
+ 6378795663657663776/00004
991
+ 6378795663657663776/00006
992
+ 6378853645716094465/00004
993
+ 6378853645716094465/00007
994
+ 6378907762304088259/00004
995
+ 6378907762304088259/00008
996
+ 6379224730890468911/00024
997
+ 6379224730890468911/00025
998
+ 6379537834006412580/00008
999
+ 6379537834006412580/00010
1000
+ 6379537834006412580/00017
1001
+ 6379537834006412580/00020
1002
+ 6379595816064843367/00017
1003
+ 6379649932652838513/00008
1004
+ 6379649932652838513/00016
1005
+ 6379908919180786981/00001
1006
+ 6379908919180786981/00003
1007
+ 6379908919180786981/00007
1008
+ 6380021017827118123/00015
1009
+ 6380021017957616097/00018
1010
+ 6380021017957616097/00021
1011
+ 6380021017957616097/00030
1012
+ 6380036479839881698/00007
1013
+ 6380036479839881698/00012
1014
+ 6380036479839881698/00027
1015
+ 6380036479839881698/00029
1016
+ 6380036479839881698/00036
1017
+ 6380036479839881698/00047
1018
+ 6380036479839881698/00049
1019
+ 6380280004355161382/00011
1020
+ 6380280004355161382/00018
1021
+ 6380921672469118671/00002
1022
+ 6381381663466492945/00005
1023
+ 6381381663466492945/00031
1024
+ 6381381663466492945/00032
1025
+ 6381395836858569746/00005
1026
+ 6381395836858569746/00009
1027
+ 6381766922032944158/00007
1028
+ 6381766922032944158/00011
1029
+ 6381766922032944158/00020
1030
+ 6381853250875656673/00027
1031
+ 6382138007207318567/00010
1032
+ 6382189546814897943/00006
1033
+ 6382189546814897943/00013
1034
+ 6382189546814897943/00014
1035
+ 6382189546814897943/00018
1036
+ 6382189546814897943/00019
1037
+ 6382189546814897943/00023
1038
+ 6382189546814897943/00024
1039
+ 6382189546814897943/00026
1040
+ 6382189546814897943/00036
1041
+ 6382232067121597643/00009
1042
+ 6382232067121597643/00013
1043
+ 6382247528873432347/00016
1044
+ 6382247528873432347/00020
1045
+ 6382506515401378320/00001
1046
+ 6382595421224405529/00009
1047
+ 6382595421224405529/00020
1048
+ 6382618614178237455/00003
1049
+ 6382618614178237455/00013
1050
+ 6382618614178237455/00014
1051
+ 6382618614178237455/00017
1052
+ 6382618614178237455/00020
1053
+ 6382618614178237455/00024
1054
+ 6382618614178237455/00026
1055
+ 6382618614178237455/00029
1056
+ 6382618614178237455/00033
1057
+ 6382618614178237455/00035
1058
+ 6382618614178237455/00036
1059
+ 6382618614178237455/00037
1060
+ 6382618614178237455/00045
1061
+ 6382866004163990600/00003
1062
+ 6382877600575782419/00001
1063
+ 6382880177556067401/00003
1064
+ 6382880177556067401/00006
1065
+ 6382880177556067401/00009
1066
+ 6382880177556067401/00014
1067
+ 6382880177556067401/00020
1068
+ 6382931717163617970/00008
1069
+ 6382931717163617970/00025
1070
+ 6382974237339848372/00005
1071
+ 6383716407688597209/00001
1072
+ 6383716407688597209/00006
1073
+ 6383716407688597209/00011
1074
+ 6383716407688597209/00018
1075
+ 6383716407688597209/00020
1076
+ 6383716407688597209/00024
1077
+ 6383716407688597209/00025
1078
+ 6383716407688597209/00035
1079
+ 6383716407688597209/00036
1080
+ 6383990856098877828/00004
1081
+ 6383990856098877828/00005
1082
+ 6383993433079191521/00008
1083
+ 6384044972686741229/00003
1084
+ 6384044972686741229/00013
1085
+ 6384044972686741229/00035
1086
+ 6384102954745239874/00007
1087
+ 6384102954745239874/00014
1088
+ 6384102954745239874/00019
1089
+ 6384361941273252259/00010
1090
+ 6384361941273252259/00012
1091
+ 6384364518253565937/00001
1092
+ 6384364518253565937/00011
1093
+ 6384364518253565937/00017
1094
+ 6384787143035490080/00008
1095
+ 6384787143035490080/00011
1096
+ 6384829663342218937/00003
1097
+ 6384829663342218937/00011
1098
+ 6384829663342218937/00013
1099
+ 6384829663342218937/00026
1100
+ 6384829663342218937/00028
1101
+ 6384829663342218937/00034
1102
+ 6384829663342218937/00039
1103
+ 6385104111622001114/00002
1104
+ 6385104111622001114/00007
1105
+ 6385106688602316013/00004
1106
+ 6385106688602316013/00013
1107
+ 6385106688602316013/00026
1108
+ 6385106688602316013/00028
1109
+ 6385106688602316013/00040
1110
+ 6385106688602316013/00041
1111
+ 6385158228209864505/00003
1112
+ 6385158228209864505/00005
1113
+ 6385158228209864505/00020
1114
+ 6385158228209864505/00028
1115
+ 6385158228209864505/00031
1116
+ 6385216210398859008/00005
1117
+ 6385216210398859008/00007
1118
+ 6385216210398859008/00009
1119
+ 6385475196796375542/00001
1120
+ 6385571833560469334/00009
1121
+ 6386314003909220420/00006
1122
+ 6386588452319500723/00008
1123
+ 6386588452319500723/00009
1124
+ 6386588452319500723/00014
1125
+ 6386700550965861901/00001
1126
+ 6386700550965861901/00013
1127
+ 6386700550965861901/00019
1128
+ 6386700550965861901/00030
1129
+ 6386959537493875163/00003
1130
+ 6386959537493875163/00004
1131
+ 6386959537493875163/00006
1132
+ 6386959537493875163/00014
1133
+ 6387319026256487668/00008
1134
+ 6387319026256487668/00016
1135
+ 6387330622668248413/00008
1136
+ 6387701707842623991/00004
1137
+ 6387701707842623991/00010
1138
+ 6387705573313124513/00008
1139
+ 6387705573313124513/00019
1140
+ 6387755824430487717/00016
1141
+ 6388072793016998420/00001
1142
+ 6388072793016998420/00005
1143
+ 6388072793016998420/00007
1144
+ 6388072793016998420/00013
1145
+ 6388076658487498938/00016
1146
+ 6388076658487498938/00021
1147
+ 6388126909604862142/00007
1148
+ 6388126909604862142/00013
1149
+ 6388126909604862142/00020
1150
+ 6388126909604862142/00022
1151
+ 6388126909604862142/00032
1152
+ 6388126909604862142/00033
1153
+ 6388126909604862142/00035
1154
+ 6388126909604862142/00038
1155
+ 6388726057542659435/00015
1156
+ 6388726057542659435/00028
1157
+ 6388772443189516866/00002
1158
+ 6388911600129842790/00013
1159
+ 6389545537302735360/00003
1160
+ 6389599653890730492/00015
1161
+ 6389599653890730492/00017
1162
+ 6389599653890730492/00020
1163
+ 6389599653890730492/00030
1164
+ 6389599653890730492/00034
1165
+ 6389599653890730492/00036
1166
+ 6389684694243125765/00017
1167
+ 6389933372849561261/00002
1168
+ 6389933372849561261/00016
1169
+ 6389933372849561261/00020
1170
+ 6389933372849561261/00027
1171
+ 6389933372849561261/00028
1172
+ 6389970739065104229/00029
1173
+ 6390299304063246834/00003
1174
+ 6390301881043558087/00005
1175
+ 6390301881043558087/00009
1176
+ 6390301881043558087/00023
1177
+ 6390301881043558087/00025
1178
+ 6390670389237621263/00005
1179
+ 6390670389237621263/00007
1180
+ 6390670389237621263/00012
1181
+ 6390672966217932513/00002
1182
+ 6390672966217932513/00050
1183
+ 6390672966217932513/00052
1184
+ 6390672966217932513/00055
1185
+ 6390672966217932513/00056
1186
+ 6390767026001714921/00009
1187
+ 6391420290527506887/00001
1188
+ 6391420290527506887/00023
1189
+ 6391420290527506887/00024
1190
+ 6391420290527506887/00036
1191
+ 6391783644760745881/00012
1192
+ 6392197250111351363/00010
1193
+ 6392197250111351363/00024
1194
+ 6392282290463747809/00003
1195
+ 6392282290463747809/00018
1196
+ 6392282290463747809/00025
1197
+ 6392525815109495392/00001
1198
+ 6392525815109495392/00004
1199
+ 6392525815109495392/00008
1200
+ 6392525815109495392/00010
1201
+ 6392525815109495392/00011
1202
+ 6392568335285725796/00003
1203
+ 6392568335285725796/00011
1204
+ 6392568335285725796/00013
1205
+ 6392568335285725796/00017
1206
+ 6392896900283869820/00003
1207
+ 6393267985458244248/00006
1208
+ 6393267985458244248/00017
data/LRS2_CTC1_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/LRS2_CTC1_val.txt ADDED
@@ -0,0 +1,984 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 6300370419826092098/00001
2
+ 6300370419826092098/00002
3
+ 6300370419826092098/00003
4
+ 6300370419826092098/00004
5
+ 6300370419826092098/00006
6
+ 6300370419826092098/00007
7
+ 6300370419826092098/00010
8
+ 6300370419826092098/00012
9
+ 6300370419826092098/00013
10
+ 6300370419826092098/00016
11
+ 6300370419826092098/00020
12
+ 6300370419826092098/00024
13
+ 6300370419826092098/00025
14
+ 6301320037095305408/00002
15
+ 6301320037095305408/00003
16
+ 6301320037095305408/00004
17
+ 6301320037095305408/00007
18
+ 6301320037095305408/00009
19
+ 6301320037095305408/00010
20
+ 6302978323968228875/00005
21
+ 6302978323968228875/00007
22
+ 6302978323968228875/00008
23
+ 6302978323968228875/00010
24
+ 6302978323968228875/00011
25
+ 6302978323968228875/00012
26
+ 6302978323968228875/00015
27
+ 6302978323968228875/00017
28
+ 6302978323968228875/00019
29
+ 6302978323968228875/00020
30
+ 6302978323968228875/00021
31
+ 6302978323968228875/00022
32
+ 6302978323968228875/00023
33
+ 6303167732026041278/00004
34
+ 6303167732026041278/00005
35
+ 6303167732026041278/00006
36
+ 6303167732026041278/00011
37
+ 6303167732026041278/00013
38
+ 6303167732026041278/00014
39
+ 6303167732026041278/00017
40
+ 6303167732026041278/00018
41
+ 6303167732026041278/00019
42
+ 6303167732026041278/00020
43
+ 6303167732026041278/00023
44
+ 6306811582279909115/00001
45
+ 6306811582279909115/00004
46
+ 6306811582279909115/00005
47
+ 6306811582279909115/00006
48
+ 6306811582279909115/00007
49
+ 6306811582279909115/00009
50
+ 6306811582279909115/00010
51
+ 6306811582279909115/00011
52
+ 6306811582279909115/00012
53
+ 6306811582279909115/00013
54
+ 6306811582279909115/00014
55
+ 6306811582279909115/00015
56
+ 6306811582279909115/00018
57
+ 6306811582279909115/00019
58
+ 6306811582279909115/00021
59
+ 6306811582279909115/00022
60
+ 6306811582279909115/00025
61
+ 6306811582279909115/00026
62
+ 6306811582279909115/00027
63
+ 6306811582279909115/00030
64
+ 6306811582279909115/00033
65
+ 6306811582279909115/00034
66
+ 6306811582279909115/00035
67
+ 6306870852828565379/00002
68
+ 6306870852828565379/00004
69
+ 6306870852828565379/00006
70
+ 6306870852828565379/00007
71
+ 6306870852828565379/00008
72
+ 6306870852828565379/00013
73
+ 6306870852828565379/00014
74
+ 6306870852828565379/00015
75
+ 6306870852828565379/00016
76
+ 6306870852828565379/00017
77
+ 6306870852828565379/00018
78
+ 6306870852828565379/00021
79
+ 6306870852828565379/00023
80
+ 6306870852828565379/00024
81
+ 6306870852828565379/00026
82
+ 6306870852828565379/00027
83
+ 6306870852828565379/00028
84
+ 6306870852828565379/00029
85
+ 6308177381880006979/00001
86
+ 6308177381880006979/00002
87
+ 6308177381880006979/00004
88
+ 6308177381880006979/00005
89
+ 6308177381880006979/00006
90
+ 6308177381880006979/00007
91
+ 6308177381880006979/00008
92
+ 6308177381880006979/00010
93
+ 6308177381880006979/00011
94
+ 6308177381880006979/00012
95
+ 6308177381880006979/00013
96
+ 6308177381880006979/00017
97
+ 6308177381880006979/00022
98
+ 6308177381880006979/00024
99
+ 6308177381880006979/00026
100
+ 6308177381880006979/00027
101
+ 6308177381880006979/00028
102
+ 6308312673349834578/00004
103
+ 6308312673349834578/00008
104
+ 6308312673349834578/00010
105
+ 6308312673349834578/00013
106
+ 6309468449049188125/00004
107
+ 6309468449049188125/00006
108
+ 6309468449049188125/00007
109
+ 6309468449049188125/00016
110
+ 6309468449049188125/00017
111
+ 6309468449049188125/00018
112
+ 6309468449049188125/00020
113
+ 6309468449049188125/00024
114
+ 6309468449049188125/00026
115
+ 6309824072341293478/00001
116
+ 6309824072341293478/00002
117
+ 6309824072341293478/00004
118
+ 6309824072341293478/00005
119
+ 6309824072341293478/00007
120
+ 6309824072341293478/00008
121
+ 6309824072341293478/00009
122
+ 6309824072341293478/00010
123
+ 6310166810731517953/00002
124
+ 6310166810731517953/00005
125
+ 6310166810731517953/00007
126
+ 6310166810731517953/00009
127
+ 6310166810731517953/00011
128
+ 6310166810731517953/00015
129
+ 6310166810731517953/00016
130
+ 6310166810731517953/00017
131
+ 6310166810731517953/00025
132
+ 6310166810731517953/00026
133
+ 6310195157515669986/00001
134
+ 6310195157515669986/00004
135
+ 6310195157515669986/00005
136
+ 6310195157515669986/00006
137
+ 6310195157515669986/00008
138
+ 6310195157515669986/00009
139
+ 6310195157515669986/00010
140
+ 6310195157515669986/00011
141
+ 6310195157515669986/00012
142
+ 6310195157515669986/00015
143
+ 6310195157515669986/00016
144
+ 6310195157515669986/00017
145
+ 6310968251628953184/00001
146
+ 6310968251628953184/00002
147
+ 6310968251628953184/00010
148
+ 6310968251628953184/00011
149
+ 6310968251628953184/00014
150
+ 6310968251628953184/00018
151
+ 6311014637275749987/00001
152
+ 6311014637275749987/00002
153
+ 6311014637275749987/00003
154
+ 6311014637275749987/00007
155
+ 6311014637275749987/00012
156
+ 6311014637275749987/00013
157
+ 6311014637275749987/00014
158
+ 6311014637275749987/00018
159
+ 6311014637275749987/00025
160
+ 6311014637275749987/00026
161
+ 6311014637275749987/00027
162
+ 6311014637275749987/00028
163
+ 6311014637275749987/00029
164
+ 6311014637275749987/00030
165
+ 6311014637275749987/00033
166
+ 6311014637275749987/00034
167
+ 6311014637275749987/00035
168
+ 6311014637275749987/00036
169
+ 6311014637275749987/00038
170
+ 6311014637275749987/00039
171
+ 6311014637275749987/00040
172
+ 6311014637275749987/00041
173
+ 6311014637275749987/00042
174
+ 6311014637275749987/00043
175
+ 6311014637275749987/00044
176
+ 6311014637275749987/00046
177
+ 6311014637275749987/00047
178
+ 6311014637275749987/00048
179
+ 6311014637275749987/00049
180
+ 6311014637275749987/00050
181
+ 6311014637275749987/00051
182
+ 6311014637275749987/00052
183
+ 6311014637275749987/00053
184
+ 6311014637275749987/00054
185
+ 6311014637275749987/00055
186
+ 6311014637275749987/00056
187
+ 6311014637275749987/00057
188
+ 6311014637275749987/00058
189
+ 6311014637275749987/00060
190
+ 6311014637275749987/00063
191
+ 6311014637275749987/00064
192
+ 6311014637275749987/00066
193
+ 6311014637275749987/00068
194
+ 6311014637275749987/00069
195
+ 6311280066254641716/00006
196
+ 6311280066254641716/00010
197
+ 6311280066254641716/00013
198
+ 6311651151429016127/00001
199
+ 6311651151429016127/00003
200
+ 6311651151429016127/00004
201
+ 6311651151429016127/00014
202
+ 6311651151429016127/00018
203
+ 6311651151429016127/00019
204
+ 6312022236603390541/00008
205
+ 6312022236603390541/00009
206
+ 6312022236603390541/00010
207
+ 6312022236603390541/00012
208
+ 6312022236603390541/00013
209
+ 6312066045269810824/00004
210
+ 6312066045269810824/00006
211
+ 6312066045269810824/00007
212
+ 6312066045269810824/00008
213
+ 6312066045269810824/00010
214
+ 6312066045269810824/00012
215
+ 6312066045269810824/00015
216
+ 6312066045269810824/00016
217
+ 6312066045269810824/00021
218
+ 6312066045269810824/00022
219
+ 6312066045269810824/00023
220
+ 6312066045269810824/00026
221
+ 6312066045269810824/00027
222
+ 6312066045269810824/00028
223
+ 6313565847849574520/00006
224
+ 6313565847849574520/00013
225
+ 6313656042293295351/00001
226
+ 6313656042293295351/00003
227
+ 6313656042293295351/00004
228
+ 6313656042293295351/00007
229
+ 6313656042293295351/00008
230
+ 6313656042293295351/00009
231
+ 6313656042293295351/00012
232
+ 6313656042293295351/00014
233
+ 6313656042293295351/00016
234
+ 6313656042293295351/00018
235
+ 6313877662475262663/00001
236
+ 6313877662475262663/00005
237
+ 6313877662475262663/00012
238
+ 6313877662475262663/00013
239
+ 6313877662475262663/00015
240
+ 6313877662475262663/00016
241
+ 6313877662475262663/00017
242
+ 6313877662475262663/00018
243
+ 6313877662475262663/00028
244
+ 6313877662475262663/00030
245
+ 6313877662475262663/00033
246
+ 6313877662475262663/00034
247
+ 6313877662475262663/00039
248
+ 6313936933024013236/00002
249
+ 6313936933024013236/00004
250
+ 6313936933024013236/00006
251
+ 6313936933024013236/00008
252
+ 6313936933024013236/00009
253
+ 6313936933024013236/00011
254
+ 6313936933024013236/00014
255
+ 6314248747649637090/00009
256
+ 6314248747649637090/00013
257
+ 6314248747649637090/00014
258
+ 6314248747649637090/00015
259
+ 6314248747649637090/00017
260
+ 6314248747649637090/00018
261
+ 6314308018198387664/00001
262
+ 6314308018198387664/00002
263
+ 6314308018198387664/00005
264
+ 6314308018198387664/00006
265
+ 6314308018198387664/00008
266
+ 6314619832824012968/00002
267
+ 6314619832824012968/00004
268
+ 6314619832824012968/00007
269
+ 6314619832824012968/00010
270
+ 6314619832824012968/00011
271
+ 6314619832824012968/00012
272
+ 6314619832824012968/00015
273
+ 6314990917998387385/00003
274
+ 6314990917998387385/00004
275
+ 6314990917998387385/00006
276
+ 6314990917998387385/00007
277
+ 6315050188547072188/00003
278
+ 6315050188547072188/00011
279
+ 6315050188547072188/00014
280
+ 6315405811839181004/00002
281
+ 6315405811839181004/00003
282
+ 6315405811839181004/00004
283
+ 6315405811839181004/00005
284
+ 6315405811839181004/00006
285
+ 6315405811839181004/00007
286
+ 6315405811839181004/00008
287
+ 6315405811839181004/00009
288
+ 6315405811839181004/00011
289
+ 6315405811839181004/00012
290
+ 6315405811839181004/00018
291
+ 6315405811839181004/00019
292
+ 6315405811839181004/00021
293
+ 6315405811839181004/00023
294
+ 6315405811839181004/00026
295
+ 6315405811839181004/00027
296
+ 6315405811839181004/00029
297
+ 6315405811839181004/00030
298
+ 6315405811839181004/00031
299
+ 6315405811839181004/00033
300
+ 6315405811839181004/00034
301
+ 6315405811839181004/00035
302
+ 6315405811839181004/00036
303
+ 6315405811839181004/00037
304
+ 6315405811839181004/00041
305
+ 6315405811839181004/00042
306
+ 6315405811839181004/00043
307
+ 6315405811839181004/00044
308
+ 6315405811839181004/00045
309
+ 6315405811839181004/00046
310
+ 6315405811839181004/00049
311
+ 6315405811839181004/00050
312
+ 6315405811839181004/00051
313
+ 6315405811839181004/00052
314
+ 6315405811839181004/00053
315
+ 6315421273721446605/00002
316
+ 6315421273721446605/00003
317
+ 6315421273721446605/00006
318
+ 6316024287129869379/00001
319
+ 6316024287129869379/00002
320
+ 6316024287129869379/00003
321
+ 6316024287129869379/00007
322
+ 6316024287129869379/00010
323
+ 6316024287129869379/00011
324
+ 6316024287129869379/00012
325
+ 6316024287129869379/00013
326
+ 6316024287129869379/00014
327
+ 6316024287129869379/00016
328
+ 6316024287129869379/00017
329
+ 6316024287129869379/00018
330
+ 6316024287129869379/00023
331
+ 6316024287129869379/00027
332
+ 6316024287129869379/00028
333
+ 6316024287129869379/00029
334
+ 6316024287129869379/00032
335
+ 6316024287129869379/00035
336
+ 6316024287129869379/00038
337
+ 6316024287129869379/00040
338
+ 6316024287129869379/00042
339
+ 6316024287129869379/00045
340
+ 6316024287129869379/00047
341
+ 6316024287129869379/00048
342
+ 6316024287129869379/00049
343
+ 6316163444070195447/00001
344
+ 6316163444070195447/00007
345
+ 6316163444070195447/00008
346
+ 6318761040290818803/00009
347
+ 6318761040290818803/00012
348
+ 6318761040290818803/00013
349
+ 6318761040290818803/00019
350
+ 6318761040290818803/00021
351
+ 6318761040290818803/00022
352
+ 6318761040290818803/00023
353
+ 6318761040290818803/00024
354
+ 6318761040290818803/00026
355
+ 6321358636511442057/00002
356
+ 6321358636511442057/00003
357
+ 6321358636511442057/00004
358
+ 6321358636511442057/00005
359
+ 6321358636511442057/00006
360
+ 6321358636511442057/00008
361
+ 6321358636511442057/00010
362
+ 6321358636511442057/00015
363
+ 6321358636511442057/00017
364
+ 6322100806860254619/00006
365
+ 6322100806860254619/00008
366
+ 6322100806860254619/00009
367
+ 6323198600501050831/00003
368
+ 6323198600501050831/00006
369
+ 6323198600501050831/00007
370
+ 6323198600501050831/00008
371
+ 6323198600501050831/00013
372
+ 6323198600501050831/00016
373
+ 6323198600501050831/00017
374
+ 6323198600501050831/00018
375
+ 6323198600501050831/00019
376
+ 6323198600501050831/00020
377
+ 6323198600501050831/00022
378
+ 6323198600501050831/00023
379
+ 6323198600501050831/00024
380
+ 6323198600501050831/00025
381
+ 6323198600501050831/00027
382
+ 6323198600501050831/00029
383
+ 6323198600501050831/00030
384
+ 6323198600501050831/00032
385
+ 6323198600501050831/00033
386
+ 6323198600501050831/00037
387
+ 6323221793324446979/00001
388
+ 6323221793324446979/00002
389
+ 6323221793324446979/00004
390
+ 6323221793324446979/00005
391
+ 6323221793324446979/00007
392
+ 6323221793324446979/00008
393
+ 6323221793324446979/00011
394
+ 6323221793324446979/00012
395
+ 6323221793324446979/00013
396
+ 6323221793324446979/00015
397
+ 6323221793324446979/00016
398
+ 6323221793324446979/00017
399
+ 6323221793324446979/00018
400
+ 6323221793324446979/00022
401
+ 6323221793324446979/00025
402
+ 6323221793324446979/00026
403
+ 6323221793324446979/00028
404
+ 6323221793324446979/00029
405
+ 6323221793324446979/00032
406
+ 6323221793324446979/00033
407
+ 6323221793324446979/00035
408
+ 6323221793324446979/00039
409
+ 6323221793324446979/00041
410
+ 6323221793324446979/00042
411
+ 6323221793324446979/00043
412
+ 6323221793324446979/00045
413
+ 6323817075791736335/00002
414
+ 6323817075791736335/00010
415
+ 6323817075791736335/00013
416
+ 6323817075791736335/00015
417
+ 6323817075791736335/00020
418
+ 6323817075791736335/00024
419
+ 6323817075791736335/00026
420
+ 6323817075791736335/00028
421
+ 6323817075791736335/00029
422
+ 6323817075791736335/00030
423
+ 6323817075791736335/00032
424
+ 6323817075791736335/00033
425
+ 6323817075791736335/00034
426
+ 6323817075791736335/00041
427
+ 6323817075791736335/00042
428
+ 6323817075791736335/00046
429
+ 6323817075791736335/00049
430
+ 6323817075791736335/00050
431
+ 6323817075791736335/00051
432
+ 6323817075791736335/00053
433
+ 6323817075791736335/00054
434
+ 6323817075791736335/00055
435
+ 6323817075791736335/00056
436
+ 6323817075791736335/00063
437
+ 6323817075791736335/00065
438
+ 6323817075791736335/00066
439
+ 6323817075791736335/00067
440
+ 6323817075791736335/00072
441
+ 6323817075791736335/00073
442
+ 6323817075791736335/00074
443
+ 6323817075791736335/00075
444
+ 6323817075791736335/00085
445
+ 6323817075791736335/00106
446
+ 6323956232732063947/00005
447
+ 6323956232732063947/00011
448
+ 6323956232732063947/00017
449
+ 6323956232732063947/00019
450
+ 6323956232732063947/00020
451
+ 6323956232732063947/00022
452
+ 6323956232732063947/00023
453
+ 6323956232732126743/00004
454
+ 6323956232732126743/00005
455
+ 6323956232732126743/00006
456
+ 6323956232732126743/00007
457
+ 6323956232732126743/00008
458
+ 6323956232732126743/00009
459
+ 6323956232732126743/00010
460
+ 6323956232732126743/00013
461
+ 6323956232732126743/00014
462
+ 6323956232732126743/00016
463
+ 6323956232732126743/00017
464
+ 6323956232732126743/00018
465
+ 6323956232732126743/00019
466
+ 6323956232732126743/00020
467
+ 6323956232732126743/00025
468
+ 6323956232732126743/00027
469
+ 6323956232732126743/00028
470
+ 6323956232732126743/00029
471
+ 6323956232732126743/00030
472
+ 6323956232732126743/00032
473
+ 6323956232732126743/00034
474
+ 6324230681142278360/00002
475
+ 6324230681142278360/00006
476
+ 6324230681142278360/00007
477
+ 6324230681142278360/00009
478
+ 6324230681142278360/00010
479
+ 6324230681142278360/00013
480
+ 6324230681142278360/00016
481
+ 6324698403080812792/00002
482
+ 6324698403080812792/00005
483
+ 6324698403080812792/00010
484
+ 6324698403080812792/00011
485
+ 6324698403080812792/00015
486
+ 6324698403080812792/00016
487
+ 6324698403080812792/00017
488
+ 6324698403080812792/00021
489
+ 6324698403080812792/00022
490
+ 6324698403080812792/00023
491
+ 6324698403080812792/00024
492
+ 6324698403080812792/00027
493
+ 6324698403080875597/00006
494
+ 6324698403080875597/00007
495
+ 6324713864963081921/00001
496
+ 6324713864963081921/00006
497
+ 6324713864963081921/00011
498
+ 6324713864963081921/00013
499
+ 6324713864963081921/00016
500
+ 6324713864963081921/00017
501
+ 6324713864963081921/00019
502
+ 6324713864963081921/00021
503
+ 6324713864963081921/00024
504
+ 6324713864963081921/00026
505
+ 6324764116080445123/00001
506
+ 6324764116080445123/00004
507
+ 6324764116080445123/00006
508
+ 6324764116080445123/00007
509
+ 6324764116080445123/00008
510
+ 6324764116080445123/00010
511
+ 6324764116080445123/00011
512
+ 6324764116080445123/00012
513
+ 6324764116080445123/00013
514
+ 6324764116080445123/00014
515
+ 6324764116080445123/00017
516
+ 6324764116080445123/00018
517
+ 6324764116080445123/00019
518
+ 6324764116080445123/00020
519
+ 6325119739372550419/00005
520
+ 6325119739372550419/00015
521
+ 6325119739372550419/00016
522
+ 6325119739372550419/00017
523
+ 6325119739372550419/00021
524
+ 6325119739372550419/00022
525
+ 6325119739372550419/00023
526
+ 6325119739372550419/00024
527
+ 6325119739372550419/00026
528
+ 6325119739372550419/00027
529
+ 6325440573560032726/00001
530
+ 6325440573560032726/00002
531
+ 6325440573560032726/00003
532
+ 6325440573560032726/00005
533
+ 6325440573560032726/00006
534
+ 6325440573560032726/00007
535
+ 6325440573560032726/00008
536
+ 6325440573560032726/00011
537
+ 6325440573560032726/00012
538
+ 6325440573560032726/00015
539
+ 6325440573560032726/00016
540
+ 6325440573560032726/00018
541
+ 6325440573560032726/00021
542
+ 6325440573560032726/00022
543
+ 6325440573560032726/00025
544
+ 6325440573560032726/00026
545
+ 6325440573560032726/00028
546
+ 6325440573560032726/00029
547
+ 6325440573560032726/00030
548
+ 6325440573560032726/00031
549
+ 6325440573560032726/00032
550
+ 6325440573560032726/00034
551
+ 6325440573560032726/00035
552
+ 6325440573560032726/00036
553
+ 6325456035311830751/00002
554
+ 6325456035311830751/00005
555
+ 6325456035311830751/00006
556
+ 6325456035311830751/00007
557
+ 6325456035311830751/00013
558
+ 6325456035311830751/00017
559
+ 6325796196721673967/00005
560
+ 6325796196721673967/00007
561
+ 6325796196721673967/00009
562
+ 6325796196721673967/00010
563
+ 6325796196721673967/00011
564
+ 6325819389545137915/00001
565
+ 6325819389545137915/00002
566
+ 6325819389545137915/00003
567
+ 6325819389545137915/00004
568
+ 6325819389545137915/00005
569
+ 6325819389545137915/00008
570
+ 6325819389545137915/00010
571
+ 6325819389545137915/00011
572
+ 6325819389545137915/00012
573
+ 6325819389545137915/00013
574
+ 6325894121976022773/00003
575
+ 6325894121976022773/00004
576
+ 6325894121976022773/00005
577
+ 6325894121976022773/00006
578
+ 6325894121976022773/00008
579
+ 6325894121976022773/00010
580
+ 6325894121976022773/00011
581
+ 6325894121976022773/00013
582
+ 6325894121976022773/00014
583
+ 6325894121976022773/00016
584
+ 6326360555424366722/00003
585
+ 6326360555424366722/00004
586
+ 6326360555424366722/00006
587
+ 6326360555424366722/00007
588
+ 6326360555424366722/00008
589
+ 6326360555424366722/00009
590
+ 6326360555424366722/00012
591
+ 6326360555424366722/00013
592
+ 6326360555424366722/00014
593
+ 6326360555424366722/00016
594
+ 6326360555424366722/00017
595
+ 6326360555424366722/00018
596
+ 6326360555424366722/00019
597
+ 6326360555424366722/00020
598
+ 6326360555424366722/00021
599
+ 6326360555424366722/00022
600
+ 6326360555424366722/00024
601
+ 6326360555424366722/00025
602
+ 6326360555424366722/00026
603
+ 6326360555424366722/00028
604
+ 6326360555424366722/00029
605
+ 6326360555424366722/00030
606
+ 6326360555424366722/00033
607
+ 6326360555424366722/00034
608
+ 6326360555424366722/00038
609
+ 6326360555424366722/00039
610
+ 6326360555424366722/00040
611
+ 6326360555424366722/00041
612
+ 6326360555424366722/00042
613
+ 6326360555424366722/00044
614
+ 6326360555424366722/00045
615
+ 6326360555424366722/00047
616
+ 6326360555424366722/00048
617
+ 6326360555424366722/00050
618
+ 6326360555424366722/00051
619
+ 6326360555424366722/00052
620
+ 6326360555424366722/00054
621
+ 6326414672012357313/00001
622
+ 6326414672012357313/00002
623
+ 6326414672012357313/00004
624
+ 6326414672012357313/00005
625
+ 6326414672012357313/00006
626
+ 6326414672012357313/00011
627
+ 6326414672012357313/00013
628
+ 6326414672012357313/00014
629
+ 6326414672012357313/00015
630
+ 6326414672012357313/00016
631
+ 6326414672012357313/00018
632
+ 6326414672012357313/00019
633
+ 6326414672012357313/00021
634
+ 6326414672012357313/00022
635
+ 6326414672012357313/00023
636
+ 6326414672012357313/00024
637
+ 6326414672012357313/00025
638
+ 6326414672012357313/00028
639
+ 6326414672012357313/00030
640
+ 6326414672012357313/00031
641
+ 6326414672012357313/00035
642
+ 6326414672012357313/00037
643
+ 6326414672012357313/00040
644
+ 6326414672012357313/00041
645
+ 6326414672012357313/00042
646
+ 6326414672012357313/00043
647
+ 6326414672012357313/00046
648
+ 6326414672012357313/00047
649
+ 6326414672012357313/00049
650
+ 6326414672012357313/00051
651
+ 6326414672012357313/00052
652
+ 6326414672012357313/00053
653
+ 6326414672012357313/00056
654
+ 6326414672012357313/00058
655
+ 6326414672012357313/00060
656
+ 6326414672012357313/00061
657
+ 6326414672012357313/00064
658
+ 6326414672012357313/00069
659
+ 6326414672012357313/00072
660
+ 6326414672012357313/00073
661
+ 6326414672012357313/00074
662
+ 6326414672012357313/00075
663
+ 6326414672012357313/00080
664
+ 6326414672012357313/00083
665
+ 6326414672012357313/00086
666
+ 6326414672012357313/00087
667
+ 6326461057659161695/00005
668
+ 6326461057659161695/00009
669
+ 6326461057659161695/00010
670
+ 6326461057659161695/00011
671
+ 6326461057659161695/00013
672
+ 6326461057659161695/00015
673
+ 6326461057659161695/00016
674
+ 6326461057659161695/00019
675
+ 6326538367070482119/00001
676
+ 6326538367070482119/00002
677
+ 6326538367070482119/00004
678
+ 6326553828952690654/00001
679
+ 6326553828952690654/00002
680
+ 6326553828952690654/00003
681
+ 6326553828952690654/00006
682
+ 6326553828952690654/00007
683
+ 6326553828952690654/00011
684
+ 6326553828952690654/00012
685
+ 6326553828952690654/00015
686
+ 6326553828952690654/00016
687
+ 6326553828952690654/00018
688
+ 6326553828952690654/00020
689
+ 6326553828952690654/00023
690
+ 6326866932068565154/00002
691
+ 6326866932068565154/00005
692
+ 6326866932068565154/00008
693
+ 6326866932068565154/00012
694
+ 6326866932068565154/00015
695
+ 6326866932068565154/00016
696
+ 6326990627126693682/00003
697
+ 6326990627126693682/00004
698
+ 6326990627126693682/00005
699
+ 6326990627126693682/00006
700
+ 6327199362537275576/00005
701
+ 6327199362537275576/00007
702
+ 6327199362537275576/00008
703
+ 6327199362537275576/00017
704
+ 6327295999301439627/00005
705
+ 6327295999301439627/00009
706
+ 6327295999301439627/00011
707
+ 6327295999301439627/00014
708
+ 6327295999301439627/00018
709
+ 6327295999301499598/00001
710
+ 6327295999301499598/00003
711
+ 6327295999301499598/00004
712
+ 6327295999301499598/00005
713
+ 6327295999301499598/00007
714
+ 6327295999301499598/00008
715
+ 6327295999301499598/00010
716
+ 6327570447711650000/00004
717
+ 6327570447711650000/00005
718
+ 6327609102417316299/00001
719
+ 6327609102417316299/00002
720
+ 6327609102417316299/00004
721
+ 6327609102417316299/00006
722
+ 6327609102417316299/00010
723
+ 6327609102417316299/00011
724
+ 6327609102417316299/00012
725
+ 6327713470253076639/00001
726
+ 6327713470253076639/00002
727
+ 6327713470253076639/00004
728
+ 6327713470253076639/00007
729
+ 6327713470253076639/00009
730
+ 6327713470253076639/00011
731
+ 6327713470253076639/00016
732
+ 6327713470253076639/00019
733
+ 6327713470253076639/00020
734
+ 6327713470253076639/00021
735
+ 6327713470253076639/00022
736
+ 6327713470253076639/00023
737
+ 6327713470253076639/00024
738
+ 6327713470253076639/00025
739
+ 6327713470253076639/00026
740
+ 6327713470253076639/00027
741
+ 6327713470253076639/00029
742
+ 6327713470253076639/00030
743
+ 6327713470253076639/00031
744
+ 6327713470253076639/00033
745
+ 6327713470253076639/00038
746
+ 6327713470253076639/00039
747
+ 6327713470253076639/00040
748
+ 6327713470253076639/00042
749
+ 6327713470253076639/00048
750
+ 6327713470253076639/00050
751
+ 6327713470253076639/00051
752
+ 6327713470253076639/00052
753
+ 6327713470253076639/00054
754
+ 6327713470253076639/00055
755
+ 6327713470253076639/00058
756
+ 6327713470253076639/00062
757
+ 6327740528416575363/00001
758
+ 6327740528416575363/00002
759
+ 6327740528416575363/00003
760
+ 6327740528416575363/00004
761
+ 6327740528416575363/00007
762
+ 6327740528416575363/00008
763
+ 6327740528416575363/00009
764
+ 6327740528416575363/00010
765
+ 6327740528416575363/00011
766
+ 6327740528416575363/00012
767
+ 6327740528416575363/00013
768
+ 6327740528416575363/00015
769
+ 6327740528416575363/00017
770
+ 6327740528416575363/00019
771
+ 6327740528416575363/00020
772
+ 6327740528416575363/00021
773
+ 6327740528416575363/00022
774
+ 6327740528416575363/00023
775
+ 6327740528416575363/00024
776
+ 6327740528416575363/00025
777
+ 6327740528416575363/00026
778
+ 6327740528416575363/00027
779
+ 6327740528416575363/00028
780
+ 6327740528416575363/00036
781
+ 6327740528416575363/00037
782
+ 6327740528416575363/00038
783
+ 6327740528416575363/00039
784
+ 6327941532886024424/00001
785
+ 6327941532886024424/00002
786
+ 6327941532886024424/00006
787
+ 6327980187591690710/00003
788
+ 6328038169780654524/00001
789
+ 6328038169780654524/00004
790
+ 6328038169780654524/00005
791
+ 6328038169780654524/00008
792
+ 6328038169780654524/00009
793
+ 6328038169780654524/00010
794
+ 6328038169780654524/00012
795
+ 6328038169780654524/00013
796
+ 6328038169780654524/00014
797
+ 6328111613590949805/00003
798
+ 6328111613590949805/00004
799
+ 6328111613590949805/00009
800
+ 6328111613590949805/00010
801
+ 6328111613590949805/00012
802
+ 6328111613590949805/00013
803
+ 6328111613590949805/00015
804
+ 6328111613590949805/00016
805
+ 6328111613590949805/00017
806
+ 6328111613590949805/00018
807
+ 6328111613590949805/00019
808
+ 6328111613590949805/00021
809
+ 6328111613590949805/00023
810
+ 6328111613590949805/00024
811
+ 6328111613590949805/00025
812
+ 6328111613590949805/00026
813
+ 6328111613590949805/00027
814
+ 6328111613590949805/00029
815
+ 6328111613590949805/00030
816
+ 6328312618060398848/00010
817
+ 6328312618060398848/00011
818
+ 6328351272766065122/00002
819
+ 6328351272766065122/00003
820
+ 6328351272766065122/00006
821
+ 6328351272766065122/00007
822
+ 6328393792942295524/00001
823
+ 6328393792942295524/00002
824
+ 6328393792942295524/00003
825
+ 6328393792942295524/00004
826
+ 6328393792942295524/00005
827
+ 6328393792942295524/00006
828
+ 6328393792942295524/00010
829
+ 6328512334039666732/00003
830
+ 6328512334039666732/00005
831
+ 6328512334039666732/00007
832
+ 6328512334039666732/00008
833
+ 6328512334039666732/00010
834
+ 6328512334039666732/00012
835
+ 6328512334039666732/00013
836
+ 6328656644940810739/00006
837
+ 6328764878116731644/00005
838
+ 6328764878116731644/00006
839
+ 6328764878116731644/00007
840
+ 6328764878116731644/00008
841
+ 6328764878116731644/00010
842
+ 6328764878116731644/00013
843
+ 6328764878116731644/00014
844
+ 6328764878116731644/00019
845
+ 6328764878116731644/00021
846
+ 6328764878116731644/00023
847
+ 6328764878116731644/00025
848
+ 6328764878116731644/00028
849
+ 6328764878116731644/00029
850
+ 6328764878116731644/00030
851
+ 6328764878116731644/00031
852
+ 6328764878116731644/00032
853
+ 6328962017115556355/00001
854
+ 6328962017115556355/00002
855
+ 6328962017115556355/00003
856
+ 6328962017115556355/00004
857
+ 6328962017115556355/00007
858
+ 6328962017115556355/00009
859
+ 6328962017115556355/00010
860
+ 6328962017115556355/00011
861
+ 6329054788409218032/00003
862
+ 6329054788409218032/00004
863
+ 6329054788409218032/00008
864
+ 6329054788409218032/00016
865
+ 6329054788409218032/00017
866
+ 6329062519350282760/00002
867
+ 6329062519350282760/00006
868
+ 6329062519350282760/00009
869
+ 6329062519350282760/00011
870
+ 6329062519350282760/00013
871
+ 6329062519350282760/00014
872
+ 6329062519350282760/00016
873
+ 6329062519350282760/00017
874
+ 6329151425173313518/00001
875
+ 6329151425173313518/00002
876
+ 6329151425173313518/00003
877
+ 6329151425173313518/00004
878
+ 6329151425173313518/00005
879
+ 6329151425173313518/00006
880
+ 6329151425173313518/00007
881
+ 6329151425173313518/00010
882
+ 6329151425173313518/00011
883
+ 6329151425173313518/00013
884
+ 6329151425173313518/00015
885
+ 6329151425173313518/00016
886
+ 6329151425173313518/00017
887
+ 6329151425173313518/00018
888
+ 6329151425173313518/00023
889
+ 6329151425173313518/00024
890
+ 6329151425173313518/00025
891
+ 6329151425173313518/00026
892
+ 6329151425173313518/00029
893
+ 6329151425173313518/00030
894
+ 6329151425173313518/00031
895
+ 6329151425173313518/00034
896
+ 6329151425173313518/00036
897
+ 6329151425173313518/00037
898
+ 6329151425173313518/00039
899
+ 6329151425173313518/00040
900
+ 6329151425173313518/00041
901
+ 6329151425173313518/00042
902
+ 6329151425173313518/00043
903
+ 6329151425173313518/00044
904
+ 6329151425173313518/00046
905
+ 6329151425173313518/00047
906
+ 6329151425173313518/00049
907
+ 6329151425173313518/00051
908
+ 6329151425173313518/00054
909
+ 6329151425173313518/00056
910
+ 6329151425173313518/00057
911
+ 6329151425173313518/00060
912
+ 6329151425173313518/00061
913
+ 6329151425173313518/00062
914
+ 6329151425173313518/00064
915
+ 6329151425173313518/00066
916
+ 6329151425173313518/00067
917
+ 6329151425173313518/00068
918
+ 6329151425173313518/00071
919
+ 6329151425173313518/00072
920
+ 6329151425173313518/00073
921
+ 6329151425173313518/00074
922
+ 6329151425173313518/00075
923
+ 6329151425173313518/00076
924
+ 6329151425173313518/00077
925
+ 6329151425173313518/00078
926
+ 6329151425173313518/00079
927
+ 6329151425173313518/00080
928
+ 6329151425173313518/00082
929
+ 6329151425173313518/00085
930
+ 6329151425173313518/00086
931
+ 6329151425173313518/00087
932
+ 6329151425173313518/00090
933
+ 6329151425173313518/00092
934
+ 6329151425173313518/00095
935
+ 6329151425173313518/00096
936
+ 6329151425173313518/00098
937
+ 6329151425173313518/00099
938
+ 6329151425173313518/00100
939
+ 6329151425173313518/00101
940
+ 6329151425173313518/00102
941
+ 6329151425173313518/00103
942
+ 6329151425173313518/00104
943
+ 6329151425173313518/00105
944
+ 6329151425173313518/00107
945
+ 6329151425173313518/00108
946
+ 6329151425173313518/00111
947
+ 6329151425173313518/00112
948
+ 6329151425173313518/00113
949
+ 6329151425173313518/00114
950
+ 6329151425173313518/00115
951
+ 6329151425173313518/00116
952
+ 6329151425173313518/00117
953
+ 6329151425173313518/00118
954
+ 6329151425173313518/00119
955
+ 6329151425173313518/00120
956
+ 6329835613463566698/00001
957
+ 6329835613463566698/00002
958
+ 6329835613463566698/00005
959
+ 6329835613463566698/00007
960
+ 6329835613463566698/00011
961
+ 6329835613463566698/00015
962
+ 6329835613463566698/00017
963
+ 6329835613463566698/00018
964
+ 6329835613463566698/00020
965
+ 6329835613463566698/00021
966
+ 6329835613463566698/00022
967
+ 6329835613463566698/00023
968
+ 6329835613463566698/00024
969
+ 6329835613463566698/00025
970
+ 6329835613463566698/00026
971
+ 6329835613463566698/00027
972
+ 6329893595522062514/00003
973
+ 6329893595522062514/00004
974
+ 6329893595522062514/00005
975
+ 6329893595522062514/00007
976
+ 6329893595522062514/00009
977
+ 6329893595522062514/00010
978
+ 6329893595522122781/00002
979
+ 6329893595522122781/00005
980
+ 6329893595522122781/00006
981
+ 6329893595522122781/00007
982
+ 6329893595522122781/00008
983
+ 6329893595522122781/00010
984
+ 6329893595522122781/00011
data/LRS2_CTC2_test.txt ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 6330311066473698535/00011
2
+ 6331559613336179781/00021
3
+ 6331559613336179781/00036
4
+ 6331733559511729306/00011
5
+ 6331733559511729306/00025
6
+ 6331733559511729306/00031
7
+ 6332062124509813446/00016
8
+ 6332491191742745853/00014
9
+ 6332804294858562278/00020
10
+ 6333175380032936690/00012
11
+ 6334934169140712754/00002
12
+ 6335305254315087182/00028
13
+ 6335676339489461610/00002
14
+ 6335676339489461610/00011
15
+ 6335676339489461610/00070
16
+ 6336047424663836038/00006
17
+ 6336047424663836038/00008
18
+ 6336739343895160063/00006
19
+ 6336739343895160063/00027
20
+ 6337160680186960682/00054
21
+ 6337160680186960682/00078
22
+ 6337531765361335111/00018
23
+ 6337531765361335111/00019
24
+ 6337531765361335111/00022
25
+ 6337902850535709539/00015
26
+ 6337902850535709539/00038
27
+ 6337902850535709539/00077
28
+ 6338130913429528164/00037
29
+ 6338273935710083967/00003
30
+ 6338273935710083967/00076
31
+ 6338645020884458400/00032
32
+ 6338645020884458400/00046
33
+ 6338807370648247218/00020
34
+ 6339077953587836416/00025
35
+ 6339077953587836416/00029
36
+ 6339077953587836416/00031
37
+ 6339356267468615354/00006
38
+ 6339758276407584924/00036
39
+ 6339758276407584924/00089
40
+ 6340299442417279404/00006
41
+ 6340500446756333781/00059
42
+ 6340871531930708209/00057
43
+ 6340871531930708209/00073
44
+ 6340871531930708209/00102
45
+ 6340871531930708209/00106
46
+ 6341242617105082637/00022
47
+ 6341404966868871455/00002
48
+ 6342112347982522696/00020
49
+ 6342440912980576694/00002
50
+ 6343252661930009508/00006
51
+ 6343252661930009508/00061
52
+ 6343252661930009508/00111
53
+ 6343979370266033402/00001
54
+ 6344002563089494087/00016
55
+ 6344350455440407821/00030
56
+ 6344350455440407821/00032
57
+ 6344709944203120665/00030
58
+ 6344737002497020519/00001
59
+ 6347195441777342774/00054
60
+ 6347195441777342774/00074
61
+ 6347350060599908703/00007
62
+ 6347524006775395501/00006
63
+ 6348038114360790454/00012
64
+ 6348409199535164855/00011
65
+ 6348409199535164855/00054
66
+ 6348463316123031920/00004
67
+ 6348463316123031920/00014
68
+ 6348714571709909926/00001
69
+ 6348780284709539256/00026
70
+ 6348834401297406331/00023
71
+ 6348834401297406331/00046
72
+ 6349108849707618270/00007
73
+ 6349174562707247076/00008
74
+ 6349213217412979095/00010
75
+ 6349559821273762790/00002
76
+ 6349793037997935601/00067
77
+ 6349793037997935601/00138
78
+ 6349847154585871175/00027
79
+ 6349847154585871175/00037
80
+ 6350152526760616781/00013
81
+ 6350222105230808621/00007
82
+ 6350222105230808621/00012
83
+ 6350295549171504559/00016
84
+ 6350523611934991188/00013
85
+ 6350523611934991188/00021
86
+ 6350666634345878987/00013
87
+ 6350921755403330389/00027
88
+ 6351037719520253414/00001
89
+ 6351265782283739990/00001
90
+ 6351431997518095202/00017
91
+ 6351714176869448803/00004
92
+ 6351714176869448803/00010
93
+ 6351772158927869467/00029
94
+ 6351810813633601326/00001
95
+ 6351810813633601326/00007
96
+ 6351810813633601326/00014
97
+ 6351810813633601326/00020
98
+ 6352157417494386368/00030
99
+ 6352157417494386368/00043
100
+ 6352533656629519062/00013
101
+ 6352815835980800496/00002
102
+ 6352893145392128503/00013
103
+ 6352893145392128503/00020
104
+ 6353233306802036640/00005
105
+ 6353233306802036640/00019
106
+ 6353233306802036640/00037
107
+ 6353264230566502930/00014
108
+ 6353604391976411066/00001
109
+ 6353975477150785494/00019
110
+ 6354304042148929518/00013
111
+ 6354369755148493407/00023
112
+ 6354755013715009552/00005
113
+ 6354988230439182363/00053
114
+ 6354988230439182363/00085
115
+ 6354988230439182363/00181
116
+ 6355544858200683461/00002
117
+ 6355568051024147448/00012
118
+ 6356201988197034394/00044
119
+ 6356232911961499649/00017
120
+ 6356232911961499649/00026
121
+ 6356530553195178439/00014
122
+ 6356573073371408843/00033
123
+ 6356573073371408843/00045
124
+ 6356603997135874072/00027
125
+ 6356619459018205648/00002
126
+ 6356878445546153116/00004
127
+ 6357006006074844331/00008
128
+ 6357006006074844331/00013
129
+ 6357353898425821669/00020
130
+ 6357353898425821669/00043
131
+ 6357701790776745251/00011
132
+ 6357701790776745251/00017
133
+ 6357714675678689620/00010
134
+ 6357714675678689620/00025
135
+ 6357798427540961623/00008
136
+ 6358088337833374405/00011
137
+ 6358428499243281970/00026
138
+ 6358757064241425994/00003
139
+ 6359128149415800422/00006
140
+ 6359541754766405254/00018
141
+ 6359541754766405254/00020
142
+ 6359564947589739760/00043
143
+ 6359580409472005362/00001
144
+ 6359951494646443684/00007
145
+ 6359982418410974886/00001
146
+ 6359982418410974886/00003
147
+ 6360322579951237696/00016
148
+ 6360322579951237696/00027
149
+ 6360327733781577947/00020
150
+ 6360393446781206759/00013
151
+ 6360709126877459881/00011
152
+ 6360740050641926958/00002
153
+ 6360740050641926958/00004
154
+ 6361028672444286629/00023
155
+ 6361028672444286629/00026
156
+ 6361354660462048727/00012
157
+ 6362143216457594387/00021
158
+ 6362162543810362236/00006
159
+ 6362460185044046481/00014
160
+ 6362546513886688816/00002
161
+ 6362546513886688816/00008
162
+ 6362913733590438579/00002
163
+ 6362913733590438579/00082
164
+ 6362913733590438579/00105
165
+ 6362913733590438579/00132
166
+ 6362913733590438579/00147
167
+ 6362913733590438579/00156
168
+ 6362913733590438579/00199
169
+ 6362913733590438579/00213
170
+ 6362925330002196038/00013
171
+ 6362925330002196038/00014
172
+ 6362958830877522951/00003
173
+ 6363210086333922442/00011
174
+ 6363306723098082453/00001
175
+ 6363654615448994597/00013
176
+ 6363952256682671319/00004
177
+ 6363952256682671319/00010
178
+ 6363956122153173818/00006
179
+ 6364319476386415444/00005
180
+ 6364319476386415444/00009
181
+ 6364760140030989000/00017
182
+ 6364760140030989000/00021
183
+ 6364791063795516278/00005
184
+ 6364791063795580193/00005
185
+ 6364791063795580193/00006
186
+ 6365141533126941637/00012
187
+ 6365141533126941637/00013
188
+ 6365141533126941637/00056
189
+ 6366944130901006716/00005
190
+ 6367373198133943465/00025
191
+ 6367373198133943465/00086
192
+ 6367373198133943465/00138
193
+ 6367373198133943465/00143
194
+ 6367373198133943465/00144
195
+ 6367373198133943465/00163
196
+ 6367396390957341434/00014
197
+ 6367813861908922495/00003
198
+ 6367813861908922495/00004
199
+ 6368111503012125648/00018
200
+ 6368111503012125648/00025
201
+ 6368494184598133861/00007
202
+ 6368494184598133861/00017
203
+ 6368525108362665063/00017
204
+ 6368525108362665063/00053
205
+ 6368525108362665063/00069
206
+ 6369259547770281088/00021
207
+ 6369599709180191149/00017
208
+ 6369912812296002056/00019
209
+ 6369912812296002056/00022
210
+ 6369912812296002056/00024
211
+ 6369986256236764320/00008
212
+ 6369986256236764320/00041
213
+ 6370331571607430336/00009
214
+ 6370728426585516325/00008
215
+ 6370728426585516325/00018
216
+ 6371114973642156346/00011
217
+ 6371114973642221152/00004
218
+ 6371114973642221152/00010
219
+ 6371470597064737331/00017
220
+ 6371470597064737331/00032
221
+ 6373112133434795034/00002
222
+ 6373202327748070121/00011
223
+ 6373318291865072119/00019
224
+ 6373627529510317190/00004
225
+ 6374083655167624227/00010
226
+ 6374083655167624227/00053
227
+ 6374454740211592999/00010
228
+ 6375480378401815497/00011
229
+ 6375516456127164915/00004
230
+ 6375915888085690147/00047
231
+ 6375923619026758902/00014
232
+ 6376623269199281113/00006
233
+ 6376623269199281113/00008
234
+ 6376623269199281113/00012
235
+ 6377400228783189968/00015
236
+ 6377779044898631026/00001
237
+ 6377794506780964609/00012
238
+ 6378324076248495598/00012
239
+ 6378795663657663776/00006
240
+ 6378907762304088259/00008
241
+ 6379537834006412580/00020
242
+ 6380036479839881698/00007
243
+ 6380036479839881698/00029
244
+ 6380036479839881698/00049
245
+ 6381381663466492945/00031
246
+ 6381381663466492945/00032
247
+ 6381766922032944158/00007
248
+ 6382189546814897943/00006
249
+ 6382247528873432347/00020
250
+ 6382618614178237455/00003
251
+ 6382618614178237455/00013
252
+ 6382618614178237455/00020
253
+ 6382618614178237455/00024
254
+ 6382618614178237455/00035
255
+ 6382618614178237455/00045
256
+ 6382866004163990600/00003
257
+ 6382877600575782419/00001
258
+ 6382880177556067401/00009
259
+ 6383716407688597209/00025
260
+ 6383990856098877828/00004
261
+ 6384361941273252259/00010
262
+ 6384829663342218937/00026
263
+ 6385158228209864505/00005
264
+ 6385216210398859008/00005
265
+ 6386314003909220420/00006
266
+ 6386700550965861901/00019
267
+ 6387319026256487668/00016
268
+ 6387701707842623991/00004
269
+ 6387705573313124513/00008
270
+ 6388126909604862142/00032
271
+ 6388726057542659435/00015
272
+ 6388772443189516866/00002
273
+ 6388911600129842790/00013
274
+ 6389970739065104229/00029
275
+ 6390299304063246834/00003
276
+ 6390672966217932513/00002
277
+ 6391420290527506887/00024
278
+ 6392282290463747809/00018
279
+ 6392568335285725796/00013
data/LRS2_CTC2_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/LRS2_CTC2_val.txt ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 6300370419826092098/00001
2
+ 6300370419826092098/00003
3
+ 6300370419826092098/00012
4
+ 6300370419826092098/00020
5
+ 6300370419826092098/00024
6
+ 6300370419826092098/00025
7
+ 6301320037095305408/00010
8
+ 6302978323968228875/00005
9
+ 6302978323968228875/00011
10
+ 6302978323968228875/00015
11
+ 6302978323968228875/00020
12
+ 6303167732026041278/00014
13
+ 6306811582279909115/00011
14
+ 6306811582279909115/00012
15
+ 6306870852828565379/00008
16
+ 6306870852828565379/00026
17
+ 6306870852828565379/00028
18
+ 6306870852828565379/00029
19
+ 6308177381880006979/00001
20
+ 6308177381880006979/00002
21
+ 6308177381880006979/00013
22
+ 6308177381880006979/00028
23
+ 6309468449049188125/00006
24
+ 6310166810731517953/00009
25
+ 6310166810731517953/00016
26
+ 6310166810731517953/00026
27
+ 6310195157515669986/00006
28
+ 6310195157515669986/00011
29
+ 6311014637275749987/00007
30
+ 6311014637275749987/00012
31
+ 6311014637275749987/00033
32
+ 6311014637275749987/00038
33
+ 6311014637275749987/00055
34
+ 6311014637275749987/00057
35
+ 6311651151429016127/00004
36
+ 6312066045269810824/00010
37
+ 6312066045269810824/00015
38
+ 6312066045269810824/00026
39
+ 6313656042293295351/00009
40
+ 6313656042293295351/00018
41
+ 6313877662475262663/00033
42
+ 6314248747649637090/00013
43
+ 6314248747649637090/00017
44
+ 6314308018198387664/00001
45
+ 6314308018198387664/00002
46
+ 6314308018198387664/00005
47
+ 6314308018198387664/00006
48
+ 6314619832824012968/00007
49
+ 6314619832824012968/00015
50
+ 6314990917998387385/00004
51
+ 6314990917998387385/00007
52
+ 6315050188547072188/00003
53
+ 6315050188547072188/00014
54
+ 6315405811839181004/00003
55
+ 6315405811839181004/00021
56
+ 6315405811839181004/00033
57
+ 6315405811839181004/00034
58
+ 6315405811839181004/00051
59
+ 6315405811839181004/00052
60
+ 6316024287129869379/00010
61
+ 6316024287129869379/00014
62
+ 6316024287129869379/00017
63
+ 6316024287129869379/00023
64
+ 6316024287129869379/00027
65
+ 6316024287129869379/00047
66
+ 6318761040290818803/00022
67
+ 6321358636511442057/00003
68
+ 6322100806860254619/00006
69
+ 6323198600501050831/00003
70
+ 6323198600501050831/00029
71
+ 6323221793324446979/00004
72
+ 6323221793324446979/00018
73
+ 6323817075791736335/00002
74
+ 6323817075791736335/00010
75
+ 6323817075791736335/00026
76
+ 6323817075791736335/00034
77
+ 6323817075791736335/00041
78
+ 6323817075791736335/00053
79
+ 6323817075791736335/00054
80
+ 6323817075791736335/00075
81
+ 6323956232732126743/00009
82
+ 6323956232732126743/00010
83
+ 6323956232732126743/00016
84
+ 6323956232732126743/00018
85
+ 6323956232732126743/00029
86
+ 6323956232732126743/00030
87
+ 6324230681142278360/00009
88
+ 6324230681142278360/00016
89
+ 6324698403080812792/00002
90
+ 6324698403080812792/00015
91
+ 6324698403080812792/00017
92
+ 6324698403080812792/00022
93
+ 6324698403080875597/00006
94
+ 6324713864963081921/00016
95
+ 6324713864963081921/00026
96
+ 6324764116080445123/00006
97
+ 6324764116080445123/00013
98
+ 6325119739372550419/00015
99
+ 6325119739372550419/00017
100
+ 6325119739372550419/00022
101
+ 6325440573560032726/00008
102
+ 6325440573560032726/00015
103
+ 6325440573560032726/00032
104
+ 6325796196721673967/00007
105
+ 6325796196721673967/00011
106
+ 6325819389545137915/00004
107
+ 6325819389545137915/00005
108
+ 6325819389545137915/00013
109
+ 6325894121976022773/00011
110
+ 6326360555424366722/00003
111
+ 6326360555424366722/00014
112
+ 6326360555424366722/00022
113
+ 6326360555424366722/00030
114
+ 6326360555424366722/00039
115
+ 6326360555424366722/00048
116
+ 6326414672012357313/00001
117
+ 6326414672012357313/00004
118
+ 6326414672012357313/00006
119
+ 6326414672012357313/00016
120
+ 6326414672012357313/00024
121
+ 6326414672012357313/00030
122
+ 6326414672012357313/00031
123
+ 6326414672012357313/00035
124
+ 6326414672012357313/00043
125
+ 6326414672012357313/00047
126
+ 6326414672012357313/00056
127
+ 6326414672012357313/00058
128
+ 6326414672012357313/00064
129
+ 6326461057659161695/00009
130
+ 6326461057659161695/00010
131
+ 6326461057659161695/00015
132
+ 6326461057659161695/00016
133
+ 6326538367070482119/00001
134
+ 6326538367070482119/00004
135
+ 6326553828952690654/00012
136
+ 6326553828952690654/00015
137
+ 6326553828952690654/00018
138
+ 6326553828952690654/00020
139
+ 6327295999301439627/00018
140
+ 6327570447711650000/00004
141
+ 6327570447711650000/00005
142
+ 6327609102417316299/00011
143
+ 6327740528416575363/00008
144
+ 6327740528416575363/00011
145
+ 6327740528416575363/00023
146
+ 6328038169780654524/00009
147
+ 6328038169780654524/00010
148
+ 6328111613590949805/00003
149
+ 6328111613590949805/00004
150
+ 6328111613590949805/00018
151
+ 6328111613590949805/00027
152
+ 6328111613590949805/00029
153
+ 6328351272766065122/00006
154
+ 6328512334039666732/00012
155
+ 6328764878116731644/00007
156
+ 6328962017115556355/00009
157
+ 6328962017115556355/00011
158
+ 6329054788409218032/00003
159
+ 6329054788409218032/00008
160
+ 6329054788409218032/00016
161
+ 6329054788409218032/00017
162
+ 6329151425173313518/00001
163
+ 6329151425173313518/00002
164
+ 6329151425173313518/00017
165
+ 6329151425173313518/00024
166
+ 6329151425173313518/00025
167
+ 6329151425173313518/00026
168
+ 6329151425173313518/00031
169
+ 6329151425173313518/00039
170
+ 6329151425173313518/00040
171
+ 6329151425173313518/00046
172
+ 6329151425173313518/00047
173
+ 6329151425173313518/00051
174
+ 6329151425173313518/00054
175
+ 6329151425173313518/00056
176
+ 6329151425173313518/00061
177
+ 6329151425173313518/00080
178
+ 6329151425173313518/00086
179
+ 6329151425173313518/00087
180
+ 6329151425173313518/00101
181
+ 6329151425173313518/00107
182
+ 6329151425173313518/00112
183
+ 6329151425173313518/00113
184
+ 6329151425173313518/00114
185
+ 6329151425173313518/00115
186
+ 6329151425173313518/00116
187
+ 6329835613463566698/00001
188
+ 6329835613463566698/00015
189
+ 6329893595522062514/00010
data/overlap_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/overlap_val.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/phonemes_overlap_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/phonemes_overlap_val.txt ADDED
@@ -0,0 +1,3570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lip/GRID/s4/lgaz6a.mpg
2
+ lip/GRID/s4/lwie4a.mpg
3
+ lip/GRID/s4/lbwr2a.mpg
4
+ lip/GRID/s4/brif4a.mpg
5
+ lip/GRID/s4/bbws5n.mpg
6
+ lip/GRID/s4/bbwz9n.mpg
7
+ lip/GRID/s4/prbp8a.mpg
8
+ lip/GRID/s4/srbu6a.mpg
9
+ lip/GRID/s4/bwam6s.mpg
10
+ lip/GRID/s4/lwiq9n.mpg
11
+ lip/GRID/s4/prwd1n.mpg
12
+ lip/GRID/s4/lwae6s.mpg
13
+ lip/GRID/s4/bgahza.mpg
14
+ lip/GRID/s4/priv1n.mpg
15
+ lip/GRID/s4/bramzs.mpg
16
+ lip/GRID/s4/sran5n.mpg
17
+ lip/GRID/s4/lbiqza.mpg
18
+ lip/GRID/s4/prac5p.mpg
19
+ lip/GRID/s4/bgwu5p.mpg
20
+ lip/GRID/s4/bbil1p.mpg
21
+ lip/GRID/s4/pwiv8s.mpg
22
+ lip/GRID/s4/bbwgza.mpg
23
+ lip/GRID/s4/pwbd6a.mpg
24
+ lip/GRID/s4/srwi2a.mpg
25
+ lip/GRID/s4/brbm3n.mpg
26
+ lip/GRID/s4/srig7n.mpg
27
+ lip/GRID/s4/pgaq3n.mpg
28
+ lip/GRID/s4/lwbfzs.mpg
29
+ lip/GRID/s4/pbbo9n.mpg
30
+ lip/GRID/s4/pbai4a.mpg
31
+ lip/GRID/s4/lgaf4a.mpg
32
+ lip/GRID/s4/prap2s.mpg
33
+ lip/GRID/s4/swao1n.mpg
34
+ lip/GRID/s4/pwwk2s.mpg
35
+ lip/GRID/s4/bwbt3n.mpg
36
+ lip/GRID/s4/sria5p.mpg
37
+ lip/GRID/s4/bbwm4a.mpg
38
+ lip/GRID/s4/pgix3n.mpg
39
+ lip/GRID/s4/pgayza.mpg
40
+ lip/GRID/s4/bwbn1p.mpg
41
+ lip/GRID/s4/lrbk8s.mpg
42
+ lip/GRID/s4/lgal7p.mpg
43
+ lip/GRID/s4/sbba7p.mpg
44
+ lip/GRID/s4/lbaj9p.mpg
45
+ lip/GRID/s4/lbwy4s.mpg
46
+ lip/GRID/s4/bwigza.mpg
47
+ lip/GRID/s4/sbim7p.mpg
48
+ lip/GRID/s4/sgbp4a.mpg
49
+ lip/GRID/s4/swab6a.mpg
50
+ lip/GRID/s4/sbiaza.mpg
51
+ lip/GRID/s4/lbaj8s.mpg
52
+ lip/GRID/s4/bbbz8a.mpg
53
+ lip/GRID/s4/lwbsza.mpg
54
+ lip/GRID/s4/brwt4a.mpg
55
+ lip/GRID/s4/lwie1n.mpg
56
+ lip/GRID/s4/pbio1n.mpg
57
+ lip/GRID/s4/bbar7n.mpg
58
+ lip/GRID/s4/swau6s.mpg
59
+ lip/GRID/s4/bbaz1n.mpg
60
+ lip/GRID/s4/lwwf3n.mpg
61
+ lip/GRID/s4/pbbi6s.mpg
62
+ lip/GRID/s4/lrwzzs.mpg
63
+ lip/GRID/s4/pwwx9n.mpg
64
+ lip/GRID/s4/srbh6s.mpg
65
+ lip/GRID/s4/srbo2a.mpg
66
+ lip/GRID/s4/lbad4s.mpg
67
+ lip/GRID/s4/lrbr1n.mpg
68
+ lip/GRID/s4/sgab9n.mpg
69
+ lip/GRID/s4/lbaq4a.mpg
70
+ lip/GRID/s4/prai8s.mpg
71
+ lip/GRID/s4/srbh8a.mpg
72
+ lip/GRID/s4/lwal2a.mpg
73
+ lip/GRID/s4/sbwh3n.mpg
74
+ lip/GRID/s4/priv3p.mpg
75
+ lip/GRID/s4/bwwn6a.mpg
76
+ lip/GRID/s4/lbbq6s.mpg
77
+ lip/GRID/s4/lrikzs.mpg
78
+ lip/GRID/s4/pbwc7p.mpg
79
+ lip/GRID/s4/pgbk4s.mpg
80
+ lip/GRID/s4/pbiu7p.mpg
81
+ lip/GRID/s4/pwweza.mpg
82
+ lip/GRID/s4/lbix3p.mpg
83
+ lip/GRID/s4/sgwx1p.mpg
84
+ lip/GRID/s4/pgix4s.mpg
85
+ lip/GRID/s4/bgit3p.mpg
86
+ lip/GRID/s4/lgal8a.mpg
87
+ lip/GRID/s4/bbal3n.mpg
88
+ lip/GRID/s4/sria4s.mpg
89
+ lip/GRID/s4/srwb5n.mpg
90
+ lip/GRID/s4/lbwe1n.mpg
91
+ lip/GRID/s4/lrwe7n.mpg
92
+ lip/GRID/s4/brwnza.mpg
93
+ lip/GRID/s4/lwiy5p.mpg
94
+ lip/GRID/s4/lgil3p.mpg
95
+ lip/GRID/s4/lrak3n.mpg
96
+ lip/GRID/s4/pbwjzs.mpg
97
+ lip/GRID/s4/bwis6s.mpg
98
+ lip/GRID/s4/srin4a.mpg
99
+ lip/GRID/s4/pbwxza.mpg
100
+ lip/GRID/s4/lbbq8a.mpg
101
+ lip/GRID/s4/pwixza.mpg
102
+ lip/GRID/s4/bbbf5p.mpg
103
+ lip/GRID/s4/bgwo1p.mpg
104
+ lip/GRID/s4/lwazza.mpg
105
+ lip/GRID/s4/lriq4s.mpg
106
+ lip/GRID/s4/pgwy7p.mpg
107
+ lip/GRID/s4/bras3n.mpg
108
+ lip/GRID/s4/lbbk4a.mpg
109
+ lip/GRID/s4/lgiz2a.mpg
110
+ lip/GRID/s4/prbj3p.mpg
111
+ lip/GRID/s4/bbws8a.mpg
112
+ lip/GRID/s4/brif2s.mpg
113
+ lip/GRID/s4/lrarza.mpg
114
+ lip/GRID/s4/bril7p.mpg
115
+ lip/GRID/s4/lrbk9p.mpg
116
+ lip/GRID/s4/swbi3p.mpg
117
+ lip/GRID/s4/brwa2a.mpg
118
+ lip/GRID/s4/bgwb2s.mpg
119
+ lip/GRID/s4/pgbk5p.mpg
120
+ lip/GRID/s4/srah4a.mpg
121
+ lip/GRID/s4/pgaq4s.mpg
122
+ lip/GRID/s4/lbwk7p.mpg
123
+ lip/GRID/s4/lwwmza.mpg
124
+ lip/GRID/s4/pwwq5n.mpg
125
+ lip/GRID/s4/bgat5n.mpg
126
+ lip/GRID/s4/pbiiza.mpg
127
+ lip/GRID/s4/pbao8a.mpg
128
+ lip/GRID/s4/pwwy2a.mpg
129
+ lip/GRID/s4/srbu5p.mpg
130
+ lip/GRID/s4/bwam8a.mpg
131
+ lip/GRID/s4/lwie2s.mpg
132
+ lip/GRID/s4/lgwm6a.mpg
133
+ lip/GRID/s4/pgbq9p.mpg
134
+ lip/GRID/s4/pwic5n.mpg
135
+ lip/GRID/s4/lbbd8s.mpg
136
+ lip/GRID/s4/lriq6a.mpg
137
+ lip/GRID/s4/swbv2a.mpg
138
+ lip/GRID/s4/sbwh4s.mpg
139
+ lip/GRID/s4/pgwe3n.mpg
140
+ lip/GRID/s4/bras5p.mpg
141
+ lip/GRID/s4/bgim8s.mpg
142
+ lip/GRID/s4/bwba4a.mpg
143
+ lip/GRID/s4/pbwp5p.mpg
144
+ lip/GRID/s4/lwws4a.mpg
145
+ lip/GRID/s4/sbwu1n.mpg
146
+ lip/GRID/s4/lgwg2a.mpg
147
+ lip/GRID/s4/sgbc6a.mpg
148
+ lip/GRID/s4/pwwq7p.mpg
149
+ lip/GRID/s4/bbaf2a.mpg
150
+ lip/GRID/s4/lgbf5n.mpg
151
+ lip/GRID/s4/lbid2a.mpg
152
+ lip/GRID/s4/srat9n.mpg
153
+ lip/GRID/s4/lgil2s.mpg
154
+ lip/GRID/s4/pwap9p.mpg
155
+ lip/GRID/s4/brwt3p.mpg
156
+ lip/GRID/s4/lwalzs.mpg
157
+ lip/GRID/s4/pgij5n.mpg
158
+ lip/GRID/s4/lbij5p.mpg
159
+ lip/GRID/s4/lbwe3p.mpg
160
+ lip/GRID/s4/pric2a.mpg
161
+ lip/GRID/s4/srbozs.mpg
162
+ lip/GRID/s4/lwar3n.mpg
163
+ lip/GRID/s4/lwbr8s.mpg
164
+ lip/GRID/s4/bbiy7n.mpg
165
+ lip/GRID/s4/pwij2a.mpg
166
+ lip/GRID/s4/bras4s.mpg
167
+ lip/GRID/s4/sgbp1n.mpg
168
+ lip/GRID/s4/bwba2s.mpg
169
+ lip/GRID/s4/sbaa2s.mpg
170
+ lip/GRID/s4/bbiy8s.mpg
171
+ lip/GRID/s4/brir9n.mpg
172
+ lip/GRID/s4/sraa7n.mpg
173
+ lip/GRID/s4/lrix7n.mpg
174
+ lip/GRID/s4/srah1n.mpg
175
+ lip/GRID/s4/lgas1p.mpg
176
+ lip/GRID/s4/pbio3p.mpg
177
+ lip/GRID/s4/pbiu8a.mpg
178
+ lip/GRID/s4/sbaa1n.mpg
179
+ lip/GRID/s4/prwp9n.mpg
180
+ lip/GRID/s4/pwap8s.mpg
181
+ lip/GRID/s4/bginza.mpg
182
+ lip/GRID/s4/bgbn7p.mpg
183
+ lip/GRID/s4/lwar6a.mpg
184
+ lip/GRID/s4/pbwp6a.mpg
185
+ lip/GRID/s4/pbao5n.mpg
186
+ lip/GRID/s4/bbar9p.mpg
187
+ lip/GRID/s4/swbb7n.mpg
188
+ lip/GRID/s4/bwbg6s.mpg
189
+ lip/GRID/s4/pwbx7p.mpg
190
+ lip/GRID/s4/lrak5p.mpg
191
+ lip/GRID/s4/prwj5n.mpg
192
+ lip/GRID/s4/sbwa9n.mpg
193
+ lip/GRID/s4/swab3n.mpg
194
+ lip/GRID/s4/bwwn5p.mpg
195
+ lip/GRID/s4/prav8a.mpg
196
+ lip/GRID/s4/srwo4s.mpg
197
+ lip/GRID/s4/lgwtza.mpg
198
+ lip/GRID/s4/lwik6s.mpg
199
+ lip/GRID/s4/swwi5n.mpg
200
+ lip/GRID/s4/bbws7p.mpg
201
+ lip/GRID/s4/pgax8s.mpg
202
+ lip/GRID/s4/bbbf4s.mpg
203
+ lip/GRID/s4/bbie6s.mpg
204
+ lip/GRID/s4/pwax4a.mpg
205
+ lip/GRID/s4/srah3p.mpg
206
+ lip/GRID/s4/sgwp6s.mpg
207
+ lip/GRID/s4/bgim9p.mpg
208
+ lip/GRID/s4/lwal1p.mpg
209
+ lip/GRID/s4/lwak9n.mpg
210
+ lip/GRID/s4/bbaz4a.mpg
211
+ lip/GRID/s4/pgad6s.mpg
212
+ lip/GRID/s4/pwbq2s.mpg
213
+ lip/GRID/s4/brbs7n.mpg
214
+ lip/GRID/s4/bbwm1n.mpg
215
+ lip/GRID/s4/pgbe1p.mpg
216
+ lip/GRID/s4/swwv5p.mpg
217
+ lip/GRID/s4/sgbi9p.mpg
218
+ lip/GRID/s4/bwbnzs.mpg
219
+ lip/GRID/s4/lriq5p.mpg
220
+ lip/GRID/s4/lbax7p.mpg
221
+ lip/GRID/s4/pwic8a.mpg
222
+ lip/GRID/s4/srau1p.mpg
223
+ lip/GRID/s4/braf8a.mpg
224
+ lip/GRID/s4/swbb9p.mpg
225
+ lip/GRID/s4/swbi1n.mpg
226
+ lip/GRID/s4/lgws7n.mpg
227
+ lip/GRID/s4/lwws3p.mpg
228
+ lip/GRID/s4/lgwm4s.mpg
229
+ lip/GRID/s4/srwu8s.mpg
230
+ lip/GRID/s4/prwd4a.mpg
231
+ lip/GRID/s4/srbu3n.mpg
232
+ lip/GRID/s4/lgws9p.mpg
233
+ lip/GRID/s4/bbir3n.mpg
234
+ lip/GRID/s4/lbaq1n.mpg
235
+ lip/GRID/s4/sgio6a.mpg
236
+ lip/GRID/s4/brwm8s.mpg
237
+ lip/GRID/s4/pgwe6a.mpg
238
+ lip/GRID/s4/pwad2a.mpg
239
+ lip/GRID/s4/braz9p.mpg
240
+ lip/GRID/s4/pwbj8s.mpg
241
+ lip/GRID/s4/pbbp1p.mpg
242
+ lip/GRID/s4/sbat4s.mpg
243
+ lip/GRID/s4/prap4a.mpg
244
+ lip/GRID/s4/sbaa3p.mpg
245
+ lip/GRID/s4/pwbd4s.mpg
246
+ lip/GRID/s4/lrwl2s.mpg
247
+ lip/GRID/s4/pgiq2a.mpg
248
+ lip/GRID/s4/pbab7n.mpg
249
+ lip/GRID/s4/swwpzs.mpg
250
+ lip/GRID/s4/lgbs6a.mpg
251
+ lip/GRID/s4/pgak2a.mpg
252
+ lip/GRID/s4/pgwr1n.mpg
253
+ lip/GRID/s4/pgiq1p.mpg
254
+ lip/GRID/s4/pwadzs.mpg
255
+ lip/GRID/s4/bbwf8s.mpg
256
+ lip/GRID/s8/bwis4a.mpg
257
+ lip/GRID/s8/lbax1n.mpg
258
+ lip/GRID/s8/srbn5n.mpg
259
+ lip/GRID/s8/prwv9n.mpg
260
+ lip/GRID/s8/srag7n.mpg
261
+ lip/GRID/s8/lgaz2a.mpg
262
+ lip/GRID/s8/pbbo7p.mpg
263
+ lip/GRID/s8/bgaazs.mpg
264
+ lip/GRID/s8/lrix3n.mpg
265
+ lip/GRID/s8/lwbr3n.mpg
266
+ lip/GRID/s8/sbag2s.mpg
267
+ lip/GRID/s8/prac2a.mpg
268
+ lip/GRID/s8/bbar4s.mpg
269
+ lip/GRID/s8/bbws4a.mpg
270
+ lip/GRID/s8/pgbkzs.mpg
271
+ lip/GRID/s8/bgwh2s.mpg
272
+ lip/GRID/s8/pwbj3n.mpg
273
+ lip/GRID/s8/lgwf8a.mpg
274
+ lip/GRID/s8/lrbk4s.mpg
275
+ lip/GRID/s8/sgib1n.mpg
276
+ lip/GRID/s8/swbu6s.mpg
277
+ lip/GRID/s8/lrbq7n.mpg
278
+ lip/GRID/s8/lbwy1p.mpg
279
+ lip/GRID/s8/brir8a.mpg
280
+ lip/GRID/s8/bbwf4s.mpg
281
+ lip/GRID/s8/prbp2s.mpg
282
+ lip/GRID/s8/swab2a.mpg
283
+ lip/GRID/s8/lrix6a.mpg
284
+ lip/GRID/s8/bbbz3p.mpg
285
+ lip/GRID/s8/brie9p.mpg
286
+ lip/GRID/s8/lbwk2s.mpg
287
+ lip/GRID/s8/bwwg7p.mpg
288
+ lip/GRID/s8/lbwk3p.mpg
289
+ lip/GRID/s8/srwb4a.mpg
290
+ lip/GRID/s8/brbs3n.mpg
291
+ lip/GRID/s8/sgbv1n.mpg
292
+ lip/GRID/s8/swbh7n.mpg
293
+ lip/GRID/s8/sgiu5p.mpg
294
+ lip/GRID/s8/bgwh4a.mpg
295
+ lip/GRID/s8/pwiv4s.mpg
296
+ lip/GRID/s8/lgwf6s.mpg
297
+ lip/GRID/s8/prbv5n.mpg
298
+ lip/GRID/s8/lgie3n.mpg
299
+ lip/GRID/s8/lrwy6s.mpg
300
+ lip/GRID/s8/bbazza.mpg
301
+ lip/GRID/s8/sgwjza.mpg
302
+ lip/GRID/s8/srbh2s.mpg
303
+ lip/GRID/s8/sbba4a.mpg
304
+ lip/GRID/s8/sbbt6a.mpg
305
+ lip/GRID/s8/bwbt1p.mpg
306
+ lip/GRID/s8/swin3n.mpg
307
+ lip/GRID/s8/srwo1p.mpg
308
+ lip/GRID/s8/lbixza.mpg
309
+ lip/GRID/s8/sbif8s.mpg
310
+ lip/GRID/s8/swbo1n.mpg
311
+ lip/GRID/s8/brir7p.mpg
312
+ lip/GRID/s8/pbbo8a.mpg
313
+ lip/GRID/s8/swan9p.mpg
314
+ lip/GRID/s8/lrbrza.mpg
315
+ lip/GRID/s8/bgwu2a.mpg
316
+ lip/GRID/s8/lgbz5p.mpg
317
+ lip/GRID/s8/pbbv2a.mpg
318
+ lip/GRID/s8/brifza.mpg
319
+ lip/GRID/s8/lbbx8a.mpg
320
+ lip/GRID/s8/pbiu3p.mpg
321
+ lip/GRID/s8/sbis6s.mpg
322
+ lip/GRID/s8/lbbq1n.mpg
323
+ lip/GRID/s8/lrwk7n.mpg
324
+ lip/GRID/s8/bwbg3p.mpg
325
+ lip/GRID/s8/sbbnzs.mpg
326
+ lip/GRID/s8/swia5n.mpg
327
+ lip/GRID/s8/pbwo9n.mpg
328
+ lip/GRID/s8/sgiu6a.mpg
329
+ lip/GRID/s8/swwv1p.mpg
330
+ lip/GRID/s8/bwwn1p.mpg
331
+ lip/GRID/s8/brwg1p.mpg
332
+ lip/GRID/s8/lrwk8s.mpg
333
+ lip/GRID/s8/srbn6s.mpg
334
+ lip/GRID/s8/bgig1p.mpg
335
+ lip/GRID/s8/lwbe7p.mpg
336
+ lip/GRID/s8/pbbi1n.mpg
337
+ lip/GRID/s8/lgws3n.mpg
338
+ lip/GRID/s8/brwm6a.mpg
339
+ lip/GRID/s8/sgau9p.mpg
340
+ lip/GRID/s8/lgir1n.mpg
341
+ lip/GRID/s8/sbbm9n.mpg
342
+ lip/GRID/s8/pbin7n.mpg
343
+ lip/GRID/s8/srbt9n.mpg
344
+ lip/GRID/s8/sraa3n.mpg
345
+ lip/GRID/s8/bgwh1n.mpg
346
+ lip/GRID/s8/bbbl3n.mpg
347
+ lip/GRID/s8/pwap5p.mpg
348
+ lip/GRID/s8/lbiv8s.mpg
349
+ lip/GRID/s8/sgwi8s.mpg
350
+ lip/GRID/s8/bwwt4s.mpg
351
+ lip/GRID/s8/sgib2s.mpg
352
+ lip/GRID/s8/bbiy3n.mpg
353
+ lip/GRID/s8/lbap8s.mpg
354
+ lip/GRID/s8/pgbq5p.mpg
355
+ lip/GRID/s8/sbwh1p.mpg
356
+ lip/GRID/s8/bbbz1n.mpg
357
+ lip/GRID/s8/lwik1n.mpg
358
+ lip/GRID/s8/bwwt3n.mpg
359
+ lip/GRID/s8/pgic8s.mpg
360
+ lip/GRID/s8/lbweza.mpg
361
+ lip/GRID/s8/bbiy4s.mpg
362
+ lip/GRID/s8/swwo5n.mpg
363
+ lip/GRID/s8/lrid2s.mpg
364
+ lip/GRID/s8/brbz8s.mpg
365
+ lip/GRID/s8/lgws4s.mpg
366
+ lip/GRID/s8/pwwx5n.mpg
367
+ lip/GRID/s8/swan8s.mpg
368
+ lip/GRID/s8/sgab5n.mpg
369
+ lip/GRID/s8/sgiozs.mpg
370
+ lip/GRID/s8/pwii8a.mpg
371
+ lip/GRID/s8/prbp4a.mpg
372
+ lip/GRID/s8/swbiza.mpg
373
+ lip/GRID/s8/pgax5p.mpg
374
+ lip/GRID/s8/sgbi5p.mpg
375
+ lip/GRID/s8/sbim3p.mpg
376
+ lip/GRID/s8/bbak9n.mpg
377
+ lip/GRID/s8/bwwa4a.mpg
378
+ lip/GRID/s8/pwbc9n.mpg
379
+ lip/GRID/s8/sraa6a.mpg
380
+ lip/GRID/s8/sgwv6s.mpg
381
+ lip/GRID/s8/bwbaza.mpg
382
+ lip/GRID/s8/lbwk1n.mpg
383
+ lip/GRID/s8/lwiq5n.mpg
384
+ lip/GRID/s8/pgic7n.mpg
385
+ lip/GRID/s8/brbl9n.mpg
386
+ lip/GRID/s8/sgbc1p.mpg
387
+ lip/GRID/s8/srim7n.mpg
388
+ lip/GRID/s8/lbbq4a.mpg
389
+ lip/GRID/s8/sbim1n.mpg
390
+ lip/GRID/s8/sgbc2a.mpg
391
+ lip/GRID/s8/pgax4s.mpg
392
+ lip/GRID/s8/pgbd8a.mpg
393
+ lip/GRID/s8/lraq5p.mpg
394
+ lip/GRID/s8/bbbr7n.mpg
395
+ lip/GRID/s8/bbalzs.mpg
396
+ lip/GRID/s8/bbwz5n.mpg
397
+ lip/GRID/s8/lbax4a.mpg
398
+ lip/GRID/s8/bbae6s.mpg
399
+ lip/GRID/s8/sgao5p.mpg
400
+ lip/GRID/s8/lgae9p.mpg
401
+ lip/GRID/s8/bwam3p.mpg
402
+ lip/GRID/s8/swit7n.mpg
403
+ lip/GRID/s8/lbbd5p.mpg
404
+ lip/GRID/s8/pgax3n.mpg
405
+ lip/GRID/s8/sbat1p.mpg
406
+ lip/GRID/s8/lwwf2a.mpg
407
+ lip/GRID/s8/bbir2a.mpg
408
+ lip/GRID/s8/swah4s.mpg
409
+ lip/GRID/s8/bbiy5p.mpg
410
+ lip/GRID/s8/bgat1n.mpg
411
+ lip/GRID/s8/sriazs.mpg
412
+ lip/GRID/s8/bwbm6s.mpg
413
+ lip/GRID/s8/bwbm5n.mpg
414
+ lip/GRID/s8/sbam5n.mpg
415
+ lip/GRID/s8/lwar2a.mpg
416
+ lip/GRID/s8/bbwmza.mpg
417
+ lip/GRID/s8/sgai2a.mpg
418
+ lip/GRID/s8/pbwp1p.mpg
419
+ lip/GRID/s8/lwwe9n.mpg
420
+ lip/GRID/s8/sbam6s.mpg
421
+ lip/GRID/s8/bbbsza.mpg
422
+ lip/GRID/s8/sgwv8a.mpg
423
+ lip/GRID/s8/prbi8s.mpg
424
+ lip/GRID/s8/lbaj4s.mpg
425
+ lip/GRID/s8/lwwl5p.mpg
426
+ lip/GRID/s8/swbu7p.mpg
427
+ lip/GRID/s8/sgiu3n.mpg
428
+ lip/GRID/s8/bbwl9p.mpg
429
+ lip/GRID/s8/lgws6a.mpg
430
+ lip/GRID/s8/prio6a.mpg
431
+ lip/GRID/s8/pgaq2a.mpg
432
+ lip/GRID/s8/bbws2s.mpg
433
+ lip/GRID/s8/sgib4a.mpg
434
+ lip/GRID/s8/bwwnzs.mpg
435
+ lip/GRID/s8/pgic9p.mpg
436
+ lip/GRID/s8/sgbczs.mpg
437
+ lip/GRID/s8/sbbg7p.mpg
438
+ lip/GRID/s8/swah5p.mpg
439
+ lip/GRID/s8/bgim6a.mpg
440
+ lip/GRID/s8/lbwd9p.mpg
441
+ lip/GRID/s8/swbb6a.mpg
442
+ lip/GRID/s8/priu8s.mpg
443
+ lip/GRID/s8/pbwc2s.mpg
444
+ lip/GRID/s8/lrwy8a.mpg
445
+ lip/GRID/s8/bgag5p.mpg
446
+ lip/GRID/s8/bwimza.mpg
447
+ lip/GRID/s8/sran3p.mpg
448
+ lip/GRID/s8/pwbp9p.mpg
449
+ lip/GRID/s8/bbay7n.mpg
450
+ lip/GRID/s8/lbijzs.mpg
451
+ lip/GRID/s8/swab1p.mpg
452
+ lip/GRID/s8/lwwr9p.mpg
453
+ lip/GRID/s8/pwwj7n.mpg
454
+ lip/GRID/s8/srat5n.mpg
455
+ lip/GRID/s8/lriq2a.mpg
456
+ lip/GRID/s8/pbau8a.mpg
457
+ lip/GRID/s8/lwwfzs.mpg
458
+ lip/GRID/s8/prib8a.mpg
459
+ lip/GRID/s8/brir6s.mpg
460
+ lip/GRID/s8/prav3p.mpg
461
+ lip/GRID/s8/prab9n.mpg
462
+ lip/GRID/s8/pwii7p.mpg
463
+ lip/GRID/s8/pgwe2a.mpg
464
+ lip/GRID/s8/lbbq3p.mpg
465
+ lip/GRID/s8/pgip5n.mpg
466
+ lip/GRID/s8/swbb5p.mpg
467
+ lip/GRID/s8/pwwd4s.mpg
468
+ lip/GRID/s8/pwbp7n.mpg
469
+ lip/GRID/s8/bbiy6a.mpg
470
+ lip/GRID/s8/srba9p.mpg
471
+ lip/GRID/s8/bgba4s.mpg
472
+ lip/GRID/s8/bgba5p.mpg
473
+ lip/GRID/s8/bwiz6s.mpg
474
+ lip/GRID/s8/sbif9p.mpg
475
+ lip/GRID/s8/bwbtzs.mpg
476
+ lip/GRID/s8/srig4s.mpg
477
+ lip/GRID/s8/bgitza.mpg
478
+ lip/GRID/s8/sgio2a.mpg
479
+ lip/GRID/s8/bgbg8s.mpg
480
+ lip/GRID/s8/pbao4a.mpg
481
+ lip/GRID/s8/sbbg8a.mpg
482
+ lip/GRID/s8/bgis7n.mpg
483
+ lip/GRID/s8/pwwq3p.mpg
484
+ lip/GRID/s8/sbba2s.mpg
485
+ lip/GRID/s8/bbbr8s.mpg
486
+ lip/GRID/s8/lgbs2a.mpg
487
+ lip/GRID/s8/pgad2s.mpg
488
+ lip/GRID/s8/lwik3p.mpg
489
+ lip/GRID/s8/bgba6a.mpg
490
+ lip/GRID/s8/bbwz8a.mpg
491
+ lip/GRID/s8/lrix4s.mpg
492
+ lip/GRID/s8/bbwl7n.mpg
493
+ lip/GRID/s8/briy9n.mpg
494
+ lip/GRID/s8/srat6s.mpg
495
+ lip/GRID/s8/swbu5n.mpg
496
+ lip/GRID/s8/swau2s.mpg
497
+ lip/GRID/s8/pgix1p.mpg
498
+ lip/GRID/s8/lrak1p.mpg
499
+ lip/GRID/s8/lwbe5n.mpg
500
+ lip/GRID/s8/prapza.mpg
501
+ lip/GRID/s8/bwwt6a.mpg
502
+ lip/GRID/s8/bgbt8a.mpg
503
+ lip/GRID/s8/bral6s.mpg
504
+ lip/GRID/s8/sgbi6a.mpg
505
+ lip/GRID/s8/srat7p.mpg
506
+ lip/GRID/s8/brwm4s.mpg
507
+ lip/GRID/s8/pwwj9p.mpg
508
+ lip/GRID/s8/lgal3p.mpg
509
+ lip/GRID/s8/sgwc5p.mpg
510
+ lip/GRID/s8/prbi7n.mpg
511
+ lip/GRID/s3/brbs8n.mpg
512
+ lip/GRID/s3/pgbk4n.mpg
513
+ lip/GRID/s3/prav6n.mpg
514
+ lip/GRID/s3/sgbc6p.mpg
515
+ lip/GRID/s3/lgbs5s.mpg
516
+ lip/GRID/s3/swwv5s.mpg
517
+ lip/GRID/s3/lrwe9s.mpg
518
+ lip/GRID/s3/bbbf7a.mpg
519
+ lip/GRID/s3/lgiz1s.mpg
520
+ lip/GRID/s3/pwap9s.mpg
521
+ lip/GRID/s3/bgat8p.mpg
522
+ lip/GRID/s3/bbwgzp.mpg
523
+ lip/GRID/s3/pwwk5a.mpg
524
+ lip/GRID/s3/pbih9s.mpg
525
+ lip/GRID/s3/lgbm3a.mpg
526
+ lip/GRID/s3/bgin1a.mpg
527
+ lip/GRID/s3/brwg5s.mpg
528
+ lip/GRID/s3/pwaqzp.mpg
529
+ lip/GRID/s3/lgil3s.mpg
530
+ lip/GRID/s3/srit6n.mpg
531
+ lip/GRID/s3/sria5s.mpg
532
+ lip/GRID/s3/pbwjzn.mpg
533
+ lip/GRID/s3/lwws5a.mpg
534
+ lip/GRID/s3/pwic9a.mpg
535
+ lip/GRID/s3/lbwy5s.mpg
536
+ lip/GRID/s3/lwir1s.mpg
537
+ lip/GRID/s3/lwal3a.mpg
538
+ lip/GRID/s3/bgaa6p.mpg
539
+ lip/GRID/s3/sbit2p.mpg
540
+ lip/GRID/s3/lrbe5s.mpg
541
+ lip/GRID/s3/lwae7s.mpg
542
+ lip/GRID/s3/srin5a.mpg
543
+ lip/GRID/s3/bgwb2n.mpg
544
+ lip/GRID/s3/swab7a.mpg
545
+ lip/GRID/s3/bbizzp.mpg
546
+ lip/GRID/s3/bgig5s.mpg
547
+ lip/GRID/s3/pbbc4p.mpg
548
+ lip/GRID/s3/srihzp.mpg
549
+ lip/GRID/s3/lgir8p.mpg
550
+ lip/GRID/s3/pwbd5s.mpg
551
+ lip/GRID/s3/lraq8n.mpg
552
+ lip/GRID/s3/swau8p.mpg
553
+ lip/GRID/s3/bwif8n.mpg
554
+ lip/GRID/s3/bwat2p.mpg
555
+ lip/GRID/s3/lbix2n.mpg
556
+ lip/GRID/s3/bbwm5a.mpg
557
+ lip/GRID/s3/brbg1s.mpg
558
+ lip/GRID/s3/pbwxzp.mpg
559
+ lip/GRID/s3/lbwk8p.mpg
560
+ lip/GRID/s3/pbaczp.mpg
561
+ lip/GRID/s3/lbad4n.mpg
562
+ lip/GRID/s3/bgia2p.mpg
563
+ lip/GRID/s3/sbim7s.mpg
564
+ lip/GRID/s3/bwwa6n.mpg
565
+ lip/GRID/s3/swab5s.mpg
566
+ lip/GRID/s3/pwaj4n.mpg
567
+ lip/GRID/s3/lbij6p.mpg
568
+ lip/GRID/s3/bwbn1s.mpg
569
+ lip/GRID/s3/lrblzp.mpg
570
+ lip/GRID/s3/lray5a.mpg
571
+ lip/GRID/s3/lwiy7a.mpg
572
+ lip/GRID/s3/pbio4p.mpg
573
+ lip/GRID/s3/bwwt9s.mpg
574
+ lip/GRID/s3/bwat1s.mpg
575
+ lip/GRID/s3/pgaq4n.mpg
576
+ lip/GRID/s3/lrwr7s.mpg
577
+ lip/GRID/s3/bbaf1s.mpg
578
+ lip/GRID/s3/pgaq7a.mpg
579
+ lip/GRID/s3/braf7s.mpg
580
+ lip/GRID/s3/lwiy5s.mpg
581
+ lip/GRID/s3/swah9s.mpg
582
+ lip/GRID/s3/bwag4p.mpg
583
+ lip/GRID/s3/lwiy4n.mpg
584
+ lip/GRID/s3/swwi9a.mpg
585
+ lip/GRID/s3/brif5a.mpg
586
+ lip/GRID/s3/lrwl3s.mpg
587
+ lip/GRID/s3/lwirzn.mpg
588
+ lip/GRID/s3/swwp2p.mpg
589
+ lip/GRID/s3/bwwn5s.mpg
590
+ lip/GRID/s3/srig8n.mpg
591
+ lip/GRID/s3/prwj8p.mpg
592
+ lip/GRID/s3/lrwzzn.mpg
593
+ lip/GRID/s3/sgap1a.mpg
594
+ lip/GRID/s3/sbbn7a.mpg
595
+ lip/GRID/s3/lrbr2n.mpg
596
+ lip/GRID/s3/pwwy3a.mpg
597
+ lip/GRID/s3/bbal7a.mpg
598
+ lip/GRID/s3/bwif9s.mpg
599
+ lip/GRID/s3/pgiq1s.mpg
600
+ lip/GRID/s3/bwam8p.mpg
601
+ lip/GRID/s3/lrwfzp.mpg
602
+ lip/GRID/s3/bgbu1s.mpg
603
+ lip/GRID/s3/bwam7s.mpg
604
+ lip/GRID/s3/pbwc8p.mpg
605
+ lip/GRID/s3/pgbq8n.mpg
606
+ lip/GRID/s3/bgwu5s.mpg
607
+ lip/GRID/s3/bwbn3a.mpg
608
+ lip/GRID/s3/pgak2p.mpg
609
+ lip/GRID/s3/lrwz2p.mpg
610
+ lip/GRID/s3/pwwd9s.mpg
611
+ lip/GRID/s3/pgax9s.mpg
612
+ lip/GRID/s3/pwbx9a.mpg
613
+ lip/GRID/s3/prbd1a.mpg
614
+ lip/GRID/s3/pwwq8p.mpg
615
+ lip/GRID/s3/lgir7s.mpg
616
+ lip/GRID/s3/pgwr5a.mpg
617
+ lip/GRID/s3/swaizp.mpg
618
+ lip/GRID/s3/bbir4n.mpg
619
+ lip/GRID/s3/swwi7s.mpg
620
+ lip/GRID/s3/sgao8n.mpg
621
+ lip/GRID/s3/lrid7s.mpg
622
+ lip/GRID/s3/sbwu3s.mpg
623
+ lip/GRID/s3/pbwp7a.mpg
624
+ lip/GRID/s3/sgiv1a.mpg
625
+ lip/GRID/s3/bwaa1a.mpg
626
+ lip/GRID/s3/pbiizp.mpg
627
+ lip/GRID/s3/bwwn7a.mpg
628
+ lip/GRID/s3/brwazn.mpg
629
+ lip/GRID/s3/lbby3a.mpg
630
+ lip/GRID/s3/srah2n.mpg
631
+ lip/GRID/s3/sbag6n.mpg
632
+ lip/GRID/s3/sbbu1a.mpg
633
+ lip/GRID/s3/bbil1s.mpg
634
+ lip/GRID/s3/bgag8n.mpg
635
+ lip/GRID/s3/bgwu4n.mpg
636
+ lip/GRID/s3/pbio3s.mpg
637
+ lip/GRID/s3/bbal5s.mpg
638
+ lip/GRID/s3/sraa8n.mpg
639
+ lip/GRID/s3/lwae9a.mpg
640
+ lip/GRID/s3/sbbh3a.mpg
641
+ lip/GRID/s3/srab1a.mpg
642
+ lip/GRID/s3/bwis7s.mpg
643
+ lip/GRID/s3/lraezn.mpg
644
+ lip/GRID/s3/lbbk4p.mpg
645
+ lip/GRID/s3/brwg4n.mpg
646
+ lip/GRID/s3/pwbkzp.mpg
647
+ lip/GRID/s3/bgaa4n.mpg
648
+ lip/GRID/s3/brbm5s.mpg
649
+ lip/GRID/s3/lwwm1a.mpg
650
+ lip/GRID/s3/bgwu6p.mpg
651
+ lip/GRID/s3/pgbq9s.mpg
652
+ lip/GRID/s3/sbaa3s.mpg
653
+ lip/GRID/s3/bwwh3a.mpg
654
+ lip/GRID/s3/pwwd8n.mpg
655
+ lip/GRID/s3/lbak1a.mpg
656
+ lip/GRID/s3/lrid9a.mpg
657
+ lip/GRID/s3/prav8p.mpg
658
+ lip/GRID/s3/lbbe1a.mpg
659
+ lip/GRID/s3/swwpzn.mpg
660
+ lip/GRID/s3/bgbn8p.mpg
661
+ lip/GRID/s3/sgbp2n.mpg
662
+ lip/GRID/s3/bbas1a.mpg
663
+ lip/GRID/s3/lgws9s.mpg
664
+ lip/GRID/s3/sgbp3s.mpg
665
+ lip/GRID/s3/lbip8n.mpg
666
+ lip/GRID/s3/bgag9s.mpg
667
+ lip/GRID/s3/sban2p.mpg
668
+ lip/GRID/s3/prap4p.mpg
669
+ lip/GRID/s3/bwam9a.mpg
670
+ lip/GRID/s3/sbba6n.mpg
671
+ lip/GRID/s3/bwis8p.mpg
672
+ lip/GRID/s3/sgwx3a.mpg
673
+ lip/GRID/s3/bbil3a.mpg
674
+ lip/GRID/s3/sgwd1a.mpg
675
+ lip/GRID/s3/bgwo1s.mpg
676
+ lip/GRID/s3/bwwh1s.mpg
677
+ lip/GRID/s3/lgwg3a.mpg
678
+ lip/GRID/s3/lbwy4n.mpg
679
+ lip/GRID/s3/swib3a.mpg
680
+ lip/GRID/s3/bras6p.mpg
681
+ lip/GRID/s3/sgwp9a.mpg
682
+ lip/GRID/s3/swih5s.mpg
683
+ lip/GRID/s3/srbb3s.mpg
684
+ lip/GRID/s3/lwbl7a.mpg
685
+ lip/GRID/s3/pgby4p.mpg
686
+ lip/GRID/s3/sgwp7s.mpg
687
+ lip/GRID/s3/bwwu1a.mpg
688
+ lip/GRID/s3/brif2n.mpg
689
+ lip/GRID/s3/swwp1s.mpg
690
+ lip/GRID/s3/pbbi9a.mpg
691
+ lip/GRID/s3/swab4n.mpg
692
+ lip/GRID/s3/prio8n.mpg
693
+ lip/GRID/s3/bgbuzn.mpg
694
+ lip/GRID/s3/prbx3a.mpg
695
+ lip/GRID/s3/lwik7s.mpg
696
+ lip/GRID/s3/sbwh6p.mpg
697
+ lip/GRID/s3/bgwb4p.mpg
698
+ lip/GRID/s3/sria6p.mpg
699
+ lip/GRID/s3/pgaq5s.mpg
700
+ lip/GRID/s3/srbo1s.mpg
701
+ lip/GRID/s3/pwbx7s.mpg
702
+ lip/GRID/s3/pwij2p.mpg
703
+ lip/GRID/s3/lbix5a.mpg
704
+ lip/GRID/s3/sgwxzn.mpg
705
+ lip/GRID/s3/bwwhzn.mpg
706
+ lip/GRID/s3/pbbp1s.mpg
707
+ lip/GRID/s3/lgaz4n.mpg
708
+ lip/GRID/s3/swio1a.mpg
709
+ lip/GRID/s3/srwb8p.mpg
710
+ lip/GRID/s3/lbwy7a.mpg
711
+ lip/GRID/s3/pwbk1a.mpg
712
+ lip/GRID/s3/bgwb5a.mpg
713
+ lip/GRID/s3/lwik8p.mpg
714
+ lip/GRID/s3/pbav2p.mpg
715
+ lip/GRID/s3/srbu4n.mpg
716
+ lip/GRID/s3/lwbs1a.mpg
717
+ lip/GRID/s3/bwwh2p.mpg
718
+ lip/GRID/s3/lrikzn.mpg
719
+ lip/GRID/s3/lbaq5a.mpg
720
+ lip/GRID/s3/lbwk7s.mpg
721
+ lip/GRID/s3/srwu9s.mpg
722
+ lip/GRID/s3/bgan3s.mpg
723
+ lip/GRID/s3/swbv1s.mpg
724
+ lip/GRID/s3/lrbr5a.mpg
725
+ lip/GRID/s3/bwwt8n.mpg
726
+ lip/GRID/s3/bwbg6n.mpg
727
+ lip/GRID/s3/sgii3a.mpg
728
+ lip/GRID/s3/srwo4n.mpg
729
+ lip/GRID/s3/swbo7s.mpg
730
+ lip/GRID/s3/lrak7a.mpg
731
+ lip/GRID/s3/bwwuzp.mpg
732
+ lip/GRID/s3/brbm6p.mpg
733
+ lip/GRID/s3/prwx4n.mpg
734
+ lip/GRID/s3/bbafzn.mpg
735
+ lip/GRID/s3/bwwn4n.mpg
736
+ lip/GRID/s3/sbitzn.mpg
737
+ lip/GRID/s3/bwbg7s.mpg
738
+ lip/GRID/s3/srwi1s.mpg
739
+ lip/GRID/s3/lbiq1a.mpg
740
+ lip/GRID/s3/bbwf8n.mpg
741
+ lip/GRID/s3/bgbh3s.mpg
742
+ lip/GRID/s3/sbim9a.mpg
743
+ lip/GRID/s3/pbai3s.mpg
744
+ lip/GRID/s3/bris1s.mpg
745
+ lip/GRID/s3/pgwlzp.mpg
746
+ lip/GRID/s3/lbbq8p.mpg
747
+ lip/GRID/s3/pbbc5a.mpg
748
+ lip/GRID/s3/brwg7a.mpg
749
+ lip/GRID/s3/bbir7a.mpg
750
+ lip/GRID/s3/lwie2n.mpg
751
+ lip/GRID/s3/sgbi9s.mpg
752
+ lip/GRID/s3/sbim6n.mpg
753
+ lip/GRID/s3/bgbn6n.mpg
754
+ lip/GRID/s3/swbo8p.mpg
755
+ lip/GRID/s3/sbwn9s.mpg
756
+ lip/GRID/s3/lrik1s.mpg
757
+ lip/GRID/s3/pgad6n.mpg
758
+ lip/GRID/s3/lray3s.mpg
759
+ lip/GRID/s3/lbby1s.mpg
760
+ lip/GRID/s3/lgiz3a.mpg
761
+ lip/GRID/s3/swab6p.mpg
762
+ lip/GRID/s3/lgas1s.mpg
763
+ lip/GRID/s3/lwbz5a.mpg
764
+ lip/GRID/s3/sgiu9s.mpg
765
+ lip/GRID/s3/pwiv8n.mpg
766
+ lip/GRID/s1/bgan6p.mpg
767
+ lip/GRID/s1/sbin1a.mpg
768
+ lip/GRID/s1/bgbb1s.mpg
769
+ lip/GRID/s1/lbay1a.mpg
770
+ lip/GRID/s1/brbg4p.mpg
771
+ lip/GRID/s1/lgwm9a.mpg
772
+ lip/GRID/s1/prap5s.mpg
773
+ lip/GRID/s1/brag1a.mpg
774
+ lip/GRID/s1/pwwezn.mpg
775
+ lip/GRID/s1/sgbc9a.mpg
776
+ lip/GRID/s1/bgaa6n.mpg
777
+ lip/GRID/s1/lwiy7s.mpg
778
+ lip/GRID/s1/srbizp.mpg
779
+ lip/GRID/s1/brbazp.mpg
780
+ lip/GRID/s1/prap4n.mpg
781
+ lip/GRID/s1/pgwzzp.mpg
782
+ lip/GRID/s1/bragzp.mpg
783
+ lip/GRID/s1/swab7s.mpg
784
+ lip/GRID/s1/sbaa7a.mpg
785
+ lip/GRID/s1/bbwg3a.mpg
786
+ lip/GRID/s1/swbo9s.mpg
787
+ lip/GRID/s1/bgbh5s.mpg
788
+ lip/GRID/s1/sbim9s.mpg
789
+ lip/GRID/s1/pbwdzp.mpg
790
+ lip/GRID/s1/swwi8n.mpg
791
+ lip/GRID/s1/sriuzp.mpg
792
+ lip/GRID/s1/sbwh7s.mpg
793
+ lip/GRID/s1/pbbv6n.mpg
794
+ lip/GRID/s1/sbim8n.mpg
795
+ lip/GRID/s1/pgbr3a.mpg
796
+ lip/GRID/s1/bbwm5s.mpg
797
+ lip/GRID/s1/sgbx1a.mpg
798
+ lip/GRID/s1/prbd2p.mpg
799
+ lip/GRID/s1/prwq4p.mpg
800
+ lip/GRID/s1/srabzn.mpg
801
+ lip/GRID/s1/lrbe9a.mpg
802
+ lip/GRID/s1/prii7s.mpg
803
+ lip/GRID/s1/sria9a.mpg
804
+ lip/GRID/s1/prwd5s.mpg
805
+ lip/GRID/s1/brwg9a.mpg
806
+ lip/GRID/s1/pbbc5s.mpg
807
+ lip/GRID/s1/lwir5a.mpg
808
+ lip/GRID/s1/srbb5s.mpg
809
+ lip/GRID/s1/lbwlzp.mpg
810
+ lip/GRID/s1/lwik8n.mpg
811
+ lip/GRID/s1/bwis9s.mpg
812
+ lip/GRID/s1/lwws6p.mpg
813
+ lip/GRID/s1/pwij5a.mpg
814
+ lip/GRID/s1/pgad8n.mpg
815
+ lip/GRID/s1/bbas2p.mpg
816
+ lip/GRID/s1/bbiz2p.mpg
817
+ lip/GRID/s1/sbbh3s.mpg
818
+ lip/GRID/s1/pbwp7s.mpg
819
+ lip/GRID/s1/prac9a.mpg
820
+ lip/GRID/s1/prwq2n.mpg
821
+ lip/GRID/s1/bbws9s.mpg
822
+ lip/GRID/s1/bbbs6p.mpg
823
+ lip/GRID/s1/pbivzp.mpg
824
+ lip/GRID/s1/srbb6p.mpg
825
+ lip/GRID/s1/lwaz2p.mpg
826
+ lip/GRID/s1/lgwg5a.mpg
827
+ lip/GRID/s1/sgbp6p.mpg
828
+ lip/GRID/s1/pgbe2n.mpg
829
+ lip/GRID/s1/prwx6n.mpg
830
+ lip/GRID/s1/bbie8n.mpg
831
+ lip/GRID/s1/lgas5a.mpg
832
+ lip/GRID/s1/lgil4n.mpg
833
+ lip/GRID/s1/lrak9a.mpg
834
+ lip/GRID/s1/prii6n.mpg
835
+ lip/GRID/s1/pwwr1a.mpg
836
+ lip/GRID/s1/bbwt1a.mpg
837
+ lip/GRID/s1/sbwb3s.mpg
838
+ lip/GRID/s1/brwg6n.mpg
839
+ lip/GRID/s1/prap7a.mpg
840
+ lip/GRID/s1/bgbn9s.mpg
841
+ lip/GRID/s1/lwafzp.mpg
842
+ lip/GRID/s1/sbwo2p.mpg
843
+ lip/GRID/s1/lwaz3a.mpg
844
+ lip/GRID/s1/pbbi8n.mpg
845
+ lip/GRID/s1/bgwi1a.mpg
846
+ lip/GRID/s1/pbwxzn.mpg
847
+ lip/GRID/s1/lgaf6p.mpg
848
+ lip/GRID/s1/bgit5s.mpg
849
+ lip/GRID/s1/lrik5a.mpg
850
+ lip/GRID/s1/sria8p.mpg
851
+ lip/GRID/s1/bgia2n.mpg
852
+ lip/GRID/s1/bgan4n.mpg
853
+ lip/GRID/s1/lbiq2p.mpg
854
+ lip/GRID/s1/lray4n.mpg
855
+ lip/GRID/s1/sbwb5a.mpg
856
+ lip/GRID/s1/lbbezn.mpg
857
+ lip/GRID/s1/lwbz4n.mpg
858
+ lip/GRID/s1/lgbm4p.mpg
859
+ lip/GRID/s1/sbbu1s.mpg
860
+ lip/GRID/s1/sgav7a.mpg
861
+ lip/GRID/s1/bwwh4p.mpg
862
+ lip/GRID/s1/bgbh7a.mpg
863
+ lip/GRID/s1/lbbrzp.mpg
864
+ lip/GRID/s1/pgix9a.mpg
865
+ lip/GRID/s1/bwba6p.mpg
866
+ lip/GRID/s1/bbaz4n.mpg
867
+ lip/GRID/s1/srbb7a.mpg
868
+ lip/GRID/s1/srwv2p.mpg
869
+ lip/GRID/s1/bwba4n.mpg
870
+ lip/GRID/s1/lgbg1a.mpg
871
+ lip/GRID/s1/bwwu2p.mpg
872
+ lip/GRID/s1/srwc1a.mpg
873
+ lip/GRID/s1/lbwr4p.mpg
874
+ lip/GRID/s1/prwx7s.mpg
875
+ lip/GRID/s1/lbid4p.mpg
876
+ lip/GRID/s1/pwwrzp.mpg
877
+ lip/GRID/s1/sriu1a.mpg
878
+ lip/GRID/s1/brbg3s.mpg
879
+ lip/GRID/s1/pwaq3a.mpg
880
+ lip/GRID/s1/lbak3a.mpg
881
+ lip/GRID/s1/sbwu6p.mpg
882
+ lip/GRID/s1/sbiazn.mpg
883
+ lip/GRID/s1/brbm7s.mpg
884
+ lip/GRID/s1/sbwh8p.mpg
885
+ lip/GRID/s1/lwbz5s.mpg
886
+ lip/GRID/s1/sgwd2p.mpg
887
+ lip/GRID/s1/bwim5s.mpg
888
+ lip/GRID/s1/sgbj1s.mpg
889
+ lip/GRID/s1/swio3a.mpg
890
+ lip/GRID/s1/bbaz6p.mpg
891
+ lip/GRID/s1/pripzn.mpg
892
+ lip/GRID/s1/lbaq4n.mpg
893
+ lip/GRID/s1/pwaj9a.mpg
894
+ lip/GRID/s1/lgal9s.mpg
895
+ lip/GRID/s1/sbbb1a.mpg
896
+ lip/GRID/s1/srwczp.mpg
897
+ lip/GRID/s1/bwam8n.mpg
898
+ lip/GRID/s1/brif6p.mpg
899
+ lip/GRID/s1/bwaa1s.mpg
900
+ lip/GRID/s1/swih8p.mpg
901
+ lip/GRID/s1/pwbx8n.mpg
902
+ lip/GRID/s1/bwis8n.mpg
903
+ lip/GRID/s1/sran8n.mpg
904
+ lip/GRID/s1/lgbs9a.mpg
905
+ lip/GRID/s1/srao1a.mpg
906
+ lip/GRID/s1/pwby1a.mpg
907
+ lip/GRID/s1/praj2p.mpg
908
+ lip/GRID/s1/bwim6p.mpg
909
+ lip/GRID/s1/sgbv9s.mpg
910
+ lip/GRID/s1/bwwu3a.mpg
911
+ lip/GRID/s1/lrwl4n.mpg
912
+ lip/GRID/s1/lgwm8p.mpg
913
+ lip/GRID/s1/bbiz1s.mpg
914
+ lip/GRID/s1/prwk1a.mpg
915
+ lip/GRID/s1/lwae8n.mpg
916
+ lip/GRID/s1/lrie1a.mpg
917
+ lip/GRID/s1/pwbk3a.mpg
918
+ lip/GRID/s1/srin5s.mpg
919
+ lip/GRID/s1/bbaf2n.mpg
920
+ lip/GRID/s1/sgio7s.mpg
921
+ lip/GRID/s1/sgiv2p.mpg
922
+ lip/GRID/s1/pwwq9s.mpg
923
+ lip/GRID/s1/lrae3s.mpg
924
+ lip/GRID/s1/sbig7a.mpg
925
+ lip/GRID/s1/lwik9s.mpg
926
+ lip/GRID/s1/lgas3s.mpg
927
+ lip/GRID/s1/prwq3s.mpg
928
+ lip/GRID/s1/lbax8n.mpg
929
+ lip/GRID/s1/srwv3a.mpg
930
+ lip/GRID/s1/lrws1a.mpg
931
+ lip/GRID/s1/lrbl3a.mpg
932
+ lip/GRID/s1/brbm9a.mpg
933
+ lip/GRID/s1/lwwm2p.mpg
934
+ lip/GRID/s1/sgap3a.mpg
935
+ lip/GRID/s1/sgap2p.mpg
936
+ lip/GRID/s1/sgib9s.mpg
937
+ lip/GRID/s1/bwwh2n.mpg
938
+ lip/GRID/s1/swaizn.mpg
939
+ lip/GRID/s1/pbiizn.mpg
940
+ lip/GRID/s1/sgwdzn.mpg
941
+ lip/GRID/s1/lbbk7a.mpg
942
+ lip/GRID/s1/bbwm6p.mpg
943
+ lip/GRID/s1/pbap1a.mpg
944
+ lip/GRID/s1/pbii2p.mpg
945
+ lip/GRID/s1/priv7a.mpg
946
+ lip/GRID/s1/bgahzn.mpg
947
+ lip/GRID/s1/brbm6n.mpg
948
+ lip/GRID/s1/swib5a.mpg
949
+ lip/GRID/s1/swab6n.mpg
950
+ lip/GRID/s1/pwix1s.mpg
951
+ lip/GRID/s1/sbwu7a.mpg
952
+ lip/GRID/s1/bwig3a.mpg
953
+ lip/GRID/s1/swab9a.mpg
954
+ lip/GRID/s1/prwj8n.mpg
955
+ lip/GRID/s1/sgbc8p.mpg
956
+ lip/GRID/s1/brbt1s.mpg
957
+ lip/GRID/s1/sbwb4p.mpg
958
+ lip/GRID/s1/lgif1s.mpg
959
+ lip/GRID/s1/bram5a.mpg
960
+ lip/GRID/s1/srwb8n.mpg
961
+ lip/GRID/s1/lwwf7s.mpg
962
+ lip/GRID/s1/lgamzp.mpg
963
+ lip/GRID/s1/prbp9s.mpg
964
+ lip/GRID/s1/srbh8n.mpg
965
+ lip/GRID/s1/lbad8p.mpg
966
+ lip/GRID/s1/bris4p.mpg
967
+ lip/GRID/s1/srwi5a.mpg
968
+ lip/GRID/s1/sban2n.mpg
969
+ lip/GRID/s1/lgaf4n.mpg
970
+ lip/GRID/s1/bras9a.mpg
971
+ lip/GRID/s1/lgbgzp.mpg
972
+ lip/GRID/s1/prwd4n.mpg
973
+ lip/GRID/s1/swib4p.mpg
974
+ lip/GRID/s1/lgil5s.mpg
975
+ lip/GRID/s1/bwwh5a.mpg
976
+ lip/GRID/s1/pbwp6n.mpg
977
+ lip/GRID/s1/brim1a.mpg
978
+ lip/GRID/s1/lbbr1a.mpg
979
+ lip/GRID/s1/sbwh6n.mpg
980
+ lip/GRID/s1/sbbu3a.mpg
981
+ lip/GRID/s1/pbav4p.mpg
982
+ lip/GRID/s1/lgaf5s.mpg
983
+ lip/GRID/s1/lwwf6n.mpg
984
+ lip/GRID/s1/lbby3s.mpg
985
+ lip/GRID/s1/pgae1a.mpg
986
+ lip/GRID/s1/pbbv7s.mpg
987
+ lip/GRID/s1/pgbk6n.mpg
988
+ lip/GRID/s1/sgio9a.mpg
989
+ lip/GRID/s1/lgwg4p.mpg
990
+ lip/GRID/s1/pbio5s.mpg
991
+ lip/GRID/s1/lwwm3a.mpg
992
+ lip/GRID/s1/bwag5s.mpg
993
+ lip/GRID/s1/sbia3a.mpg
994
+ lip/GRID/s1/bbil3s.mpg
995
+ lip/GRID/s1/sria6n.mpg
996
+ lip/GRID/s1/swwv7s.mpg
997
+ lip/GRID/s1/bgbo1a.mpg
998
+ lip/GRID/s1/pwax6p.mpg
999
+ lip/GRID/s1/sbig6p.mpg
1000
+ lip/GRID/s1/sgwd1s.mpg
1001
+ lip/GRID/s1/sgbv8n.mpg
1002
+ lip/GRID/s1/sbwozn.mpg
1003
+ lip/GRID/s1/bwigzn.mpg
1004
+ lip/GRID/s1/lrak7s.mpg
1005
+ lip/GRID/s1/prwd7a.mpg
1006
+ lip/GRID/s1/lbwr5a.mpg
1007
+ lip/GRID/s1/lgir8n.mpg
1008
+ lip/GRID/s1/sbwu4n.mpg
1009
+ lip/GRID/s1/brwt6p.mpg
1010
+ lip/GRID/s1/lrbe7s.mpg
1011
+ lip/GRID/s1/lwbl6n.mpg
1012
+ lip/GRID/s1/lrak6n.mpg
1013
+ lip/GRID/s1/pwbk1s.mpg
1014
+ lip/GRID/s1/bgau1a.mpg
1015
+ lip/GRID/s1/bwwu1s.mpg
1016
+ lip/GRID/s1/bbaf3s.mpg
1017
+ lip/GRID/s1/srbo3s.mpg
1018
+ lip/GRID/s1/bwanzp.mpg
1019
+ lip/GRID/s1/pwixzn.mpg
1020
+ lip/GRID/s1/srau5a.mpg
1021
+ lip/GRID/s17/lrwj9s.mpg
1022
+ lip/GRID/s17/lgix9a.mpg
1023
+ lip/GRID/s17/briq7s.mpg
1024
+ lip/GRID/s17/lgwz1a.mpg
1025
+ lip/GRID/s17/swbt9a.mpg
1026
+ lip/GRID/s17/bgwtzn.mpg
1027
+ lip/GRID/s17/pgwj5s.mpg
1028
+ lip/GRID/s17/lbapzp.mpg
1029
+ lip/GRID/s17/pwbc3a.mpg
1030
+ lip/GRID/s17/prit8n.mpg
1031
+ lip/GRID/s17/pwbi7a.mpg
1032
+ lip/GRID/s17/pbbu2p.mpg
1033
+ lip/GRID/s17/bgwt2p.mpg
1034
+ lip/GRID/s17/pbwu7a.mpg
1035
+ lip/GRID/s17/lbwj4p.mpg
1036
+ lip/GRID/s17/sgwu9a.mpg
1037
+ lip/GRID/s17/bbak2p.mpg
1038
+ lip/GRID/s17/lwidzp.mpg
1039
+ lip/GRID/s17/sbbm3a.mpg
1040
+ lip/GRID/s17/swat4p.mpg
1041
+ lip/GRID/s17/lrwx9a.mpg
1042
+ lip/GRID/s17/bbby4p.mpg
1043
+ lip/GRID/s17/brbr4n.mpg
1044
+ lip/GRID/s17/swaazn.mpg
1045
+ lip/GRID/s17/lgik1a.mpg
1046
+ lip/GRID/s17/lrii6n.mpg
1047
+ lip/GRID/s17/prwo9a.mpg
1048
+ lip/GRID/s17/lgid5s.mpg
1049
+ lip/GRID/s17/swbn5a.mpg
1050
+ lip/GRID/s17/lrwx7s.mpg
1051
+ lip/GRID/s17/lwip6n.mpg
1052
+ lip/GRID/s17/lbib7s.mpg
1053
+ lip/GRID/s17/lbwc9s.mpg
1054
+ lip/GRID/s17/swwb1a.mpg
1055
+ lip/GRID/s17/pwio2p.mpg
1056
+ lip/GRID/s17/prih3a.mpg
1057
+ lip/GRID/s17/bbwe6p.mpg
1058
+ lip/GRID/s17/pbbn7s.mpg
1059
+ lip/GRID/s17/pbbh4p.mpg
1060
+ lip/GRID/s17/lbwxzn.mpg
1061
+ lip/GRID/s17/bbij6n.mpg
1062
+ lip/GRID/s17/lrbqzp.mpg
1063
+ lip/GRID/s17/pwwv8p.mpg
1064
+ lip/GRID/s17/lrbx2n.mpg
1065
+ lip/GRID/s17/lrbdzn.mpg
1066
+ lip/GRID/s17/pwao6p.mpg
1067
+ lip/GRID/s17/lwwk7a.mpg
1068
+ lip/GRID/s17/lgaq6n.mpg
1069
+ lip/GRID/s17/lwaqzn.mpg
1070
+ lip/GRID/s17/bwbs2p.mpg
1071
+ lip/GRID/s17/prau2n.mpg
1072
+ lip/GRID/s17/pbwb4p.mpg
1073
+ lip/GRID/s17/lgwr5s.mpg
1074
+ lip/GRID/s17/sbiz1s.mpg
1075
+ lip/GRID/s17/lgad9s.mpg
1076
+ lip/GRID/s17/lrbj7a.mpg
1077
+ lip/GRID/s17/pbwh7s.mpg
1078
+ lip/GRID/s17/sgia4p.mpg
1079
+ lip/GRID/s17/prbizp.mpg
1080
+ lip/GRID/s17/brbe8p.mpg
1081
+ lip/GRID/s17/swim6p.mpg
1082
+ lip/GRID/s17/sgbh5s.mpg
1083
+ lip/GRID/s17/pbbh5a.mpg
1084
+ lip/GRID/s17/lbwd1a.mpg
1085
+ lip/GRID/s17/brik2n.mpg
1086
+ lip/GRID/s17/pban3s.mpg
1087
+ lip/GRID/s17/sbwm5s.mpg
1088
+ lip/GRID/s17/brbe6n.mpg
1089
+ lip/GRID/s17/prab2p.mpg
1090
+ lip/GRID/s17/pwao7a.mpg
1091
+ lip/GRID/s17/prihzn.mpg
1092
+ lip/GRID/s17/lwix1s.mpg
1093
+ lip/GRID/s17/bwiy9a.mpg
1094
+ lip/GRID/s17/pbit2n.mpg
1095
+ lip/GRID/s17/pbaa6p.mpg
1096
+ lip/GRID/s17/pbat8p.mpg
1097
+ lip/GRID/s17/srwg6n.mpg
1098
+ lip/GRID/s17/pwwv6n.mpg
1099
+ lip/GRID/s17/pgav5s.mpg
1100
+ lip/GRID/s17/swba5s.mpg
1101
+ lip/GRID/s17/pbbh2n.mpg
1102
+ lip/GRID/s17/prwo6n.mpg
1103
+ lip/GRID/s17/srbt2p.mpg
1104
+ lip/GRID/s17/pgbv8n.mpg
1105
+ lip/GRID/s17/lwij4p.mpg
1106
+ lip/GRID/s17/lwwrzp.mpg
1107
+ lip/GRID/s17/lbio6p.mpg
1108
+ lip/GRID/s17/lrwj8n.mpg
1109
+ lip/GRID/s17/pgac4p.mpg
1110
+ lip/GRID/s17/swba4n.mpg
1111
+ lip/GRID/s17/lgaezp.mpg
1112
+ lip/GRID/s17/bgaz9a.mpg
1113
+ lip/GRID/s17/brae3s.mpg
1114
+ lip/GRID/s17/sgbh7a.mpg
1115
+ lip/GRID/s17/sgah3a.mpg
1116
+ lip/GRID/s17/pwab6n.mpg
1117
+ lip/GRID/s17/sgwi1a.mpg
1118
+ lip/GRID/s17/bwwm1s.mpg
1119
+ lip/GRID/s17/lwaq1s.mpg
1120
+ lip/GRID/s17/bgir9s.mpg
1121
+ lip/GRID/s17/sraf9s.mpg
1122
+ lip/GRID/s17/pwwc5s.mpg
1123
+ lip/GRID/s17/bray4n.mpg
1124
+ lip/GRID/s17/bwbf4p.mpg
1125
+ lip/GRID/s17/lbiu8n.mpg
1126
+ lip/GRID/s17/lriv4n.mpg
1127
+ lip/GRID/s17/swwa8n.mpg
1128
+ lip/GRID/s17/prwo8p.mpg
1129
+ lip/GRID/s17/lbivzp.mpg
1130
+ lip/GRID/s17/pwbi4n.mpg
1131
+ lip/GRID/s17/sgig8p.mpg
1132
+ lip/GRID/s17/lraj1s.mpg
1133
+ lip/GRID/s17/bwws7a.mpg
1134
+ lip/GRID/s17/brid8n.mpg
1135
+ lip/GRID/s17/sbwm6p.mpg
1136
+ lip/GRID/s17/pbia1s.mpg
1137
+ lip/GRID/s17/bwal5a.mpg
1138
+ lip/GRID/s17/pbit3s.mpg
1139
+ lip/GRID/s17/pgii2n.mpg
1140
+ lip/GRID/s17/pbwu6p.mpg
1141
+ lip/GRID/s17/sgbb2p.mpg
1142
+ lip/GRID/s17/pwbv5a.mpg
1143
+ lip/GRID/s17/pbbu1s.mpg
1144
+ lip/GRID/s17/pgii3s.mpg
1145
+ lip/GRID/s17/lbwj2n.mpg
1146
+ lip/GRID/s17/prwv3a.mpg
1147
+ lip/GRID/s17/sbwg1s.mpg
1148
+ lip/GRID/s17/lwbd6n.mpg
1149
+ lip/GRID/s17/pgav4n.mpg
1150
+ lip/GRID/s17/pwwc4n.mpg
1151
+ lip/GRID/s17/sgbb1s.mpg
1152
+ lip/GRID/s17/lbac2p.mpg
1153
+ lip/GRID/s17/sram3s.mpg
1154
+ lip/GRID/s17/pwwp5a.mpg
1155
+ lip/GRID/s17/sram2n.mpg
1156
+ lip/GRID/s17/pgwx3s.mpg
1157
+ lip/GRID/s17/lrap5s.mpg
1158
+ lip/GRID/s17/lbai6p.mpg
1159
+ lip/GRID/s17/lrav9s.mpg
1160
+ lip/GRID/s17/bbakzn.mpg
1161
+ lip/GRID/s17/lgiq5a.mpg
1162
+ lip/GRID/s17/srbazp.mpg
1163
+ lip/GRID/s17/lwid1a.mpg
1164
+ lip/GRID/s17/bbwl1a.mpg
1165
+ lip/GRID/s17/lwbk1s.mpg
1166
+ lip/GRID/s17/pwavzp.mpg
1167
+ lip/GRID/s17/lriv7a.mpg
1168
+ lip/GRID/s17/sbws8n.mpg
1169
+ lip/GRID/s17/lrip1s.mpg
1170
+ lip/GRID/s17/bbbk5s.mpg
1171
+ lip/GRID/s17/pgav6p.mpg
1172
+ lip/GRID/s17/pwab8p.mpg
1173
+ lip/GRID/s17/sris4p.mpg
1174
+ lip/GRID/s17/brws1a.mpg
1175
+ lip/GRID/s17/bwws5s.mpg
1176
+ lip/GRID/s17/lrbx3s.mpg
1177
+ lip/GRID/s17/pwao4n.mpg
1178
+ lip/GRID/s17/lbac1s.mpg
1179
+ lip/GRID/s17/prabzn.mpg
1180
+ lip/GRID/s17/sbbm1s.mpg
1181
+ lip/GRID/s17/swbg8n.mpg
1182
+ lip/GRID/s17/pgbx1a.mpg
1183
+ lip/GRID/s17/bgif2p.mpg
1184
+ lip/GRID/s17/brae4p.mpg
1185
+ lip/GRID/s17/bwar7s.mpg
1186
+ lip/GRID/s17/pgwj4n.mpg
1187
+ lip/GRID/s17/prah6p.mpg
1188
+ lip/GRID/s17/lwad4p.mpg
1189
+ lip/GRID/s17/pgii5a.mpg
1190
+ lip/GRID/s17/bwbs1s.mpg
1191
+ lip/GRID/s17/sgan6p.mpg
1192
+ lip/GRID/s17/lbav5a.mpg
1193
+ lip/GRID/s17/lgbr3a.mpg
1194
+ lip/GRID/s17/lbav2n.mpg
1195
+ lip/GRID/s17/bbax8n.mpg
1196
+ lip/GRID/s17/srimzp.mpg
1197
+ lip/GRID/s17/sbaz5s.mpg
1198
+ lip/GRID/s17/lrbp9s.mpg
1199
+ lip/GRID/s17/lrac6n.mpg
1200
+ lip/GRID/s17/lbao8n.mpg
1201
+ lip/GRID/s17/lbwj3s.mpg
1202
+ lip/GRID/s17/lbwc8n.mpg
1203
+ lip/GRID/s17/pbwb3s.mpg
1204
+ lip/GRID/s17/lwbd9a.mpg
1205
+ lip/GRID/s17/lbwj5a.mpg
1206
+ lip/GRID/s17/pbwozn.mpg
1207
+ lip/GRID/s17/lwwk4n.mpg
1208
+ lip/GRID/s17/lwax4n.mpg
1209
+ lip/GRID/s17/bwaz1s.mpg
1210
+ lip/GRID/s17/lbav4p.mpg
1211
+ lip/GRID/s17/pgwqzp.mpg
1212
+ lip/GRID/s17/lbiv1a.mpg
1213
+ lip/GRID/s17/lbbv6n.mpg
1214
+ lip/GRID/s17/lwbk3a.mpg
1215
+ lip/GRID/s17/bbax9s.mpg
1216
+ lip/GRID/s17/pgai9a.mpg
1217
+ lip/GRID/s17/lriv5s.mpg
1218
+ lip/GRID/s17/pgac3s.mpg
1219
+ lip/GRID/s17/sbaz4n.mpg
1220
+ lip/GRID/s17/briy3a.mpg
1221
+ lip/GRID/s17/lrajzn.mpg
1222
+ lip/GRID/s17/pgiv2p.mpg
1223
+ lip/GRID/s17/bgil6p.mpg
1224
+ lip/GRID/s17/brwfzn.mpg
1225
+ lip/GRID/s17/lric3s.mpg
1226
+ lip/GRID/s17/bwiy7s.mpg
1227
+ lip/GRID/s17/pbinzp.mpg
1228
+ lip/GRID/s17/lbwp9a.mpg
1229
+ lip/GRID/s17/bgbf9s.mpg
1230
+ lip/GRID/s17/swwh2n.mpg
1231
+ lip/GRID/s17/bray7a.mpg
1232
+ lip/GRID/s17/lwad5a.mpg
1233
+ lip/GRID/s17/sgbu3s.mpg
1234
+ lip/GRID/s17/lbbv9a.mpg
1235
+ lip/GRID/s17/bwae9s.mpg
1236
+ lip/GRID/s17/pwib5a.mpg
1237
+ lip/GRID/s17/swbt6n.mpg
1238
+ lip/GRID/s17/sbas2p.mpg
1239
+ lip/GRID/s17/lwwe2p.mpg
1240
+ lip/GRID/s17/lgwl3a.mpg
1241
+ lip/GRID/s17/srwa5a.mpg
1242
+ lip/GRID/s17/swwu1s.mpg
1243
+ lip/GRID/s17/lgix7s.mpg
1244
+ lip/GRID/s17/lgbr2p.mpg
1245
+ lip/GRID/s17/sbwg2p.mpg
1246
+ lip/GRID/s17/pgbc6n.mpg
1247
+ lip/GRID/s17/lgad8n.mpg
1248
+ lip/GRID/s17/lgby4n.mpg
1249
+ lip/GRID/s17/bgbs8p.mpg
1250
+ lip/GRID/s17/pgac2n.mpg
1251
+ lip/GRID/s17/bbbe2p.mpg
1252
+ lip/GRID/s17/sbal6n.mpg
1253
+ lip/GRID/s17/srag1a.mpg
1254
+ lip/GRID/s17/brwf2p.mpg
1255
+ lip/GRID/s17/lwax7a.mpg
1256
+ lip/GRID/s17/pbba8n.mpg
1257
+ lip/GRID/s17/swwn9a.mpg
1258
+ lip/GRID/s17/lwwy5a.mpg
1259
+ lip/GRID/s17/sgwo5a.mpg
1260
+ lip/GRID/s17/lgak4p.mpg
1261
+ lip/GRID/s17/pwiu7a.mpg
1262
+ lip/GRID/s17/brwl6p.mpg
1263
+ lip/GRID/s17/pwbp1a.mpg
1264
+ lip/GRID/s17/prau5a.mpg
1265
+ lip/GRID/s17/srbm6n.mpg
1266
+ lip/GRID/s17/sraf8n.mpg
1267
+ lip/GRID/s17/pwwp2n.mpg
1268
+ lip/GRID/s17/swag5s.mpg
1269
+ lip/GRID/s17/brarzn.mpg
1270
+ lip/GRID/s17/pwbo9s.mpg
1271
+ lip/GRID/s17/bbwlzp.mpg
1272
+ lip/GRID/s17/briezp.mpg
1273
+ lip/GRID/s17/lgayzn.mpg
1274
+ lip/GRID/s17/swig1s.mpg
1275
+ lip/GRID/s17/bbid3s.mpg
1276
+ lip/GRID/s9/pgbx7s.mpg
1277
+ lip/GRID/s9/prbi6n.mpg
1278
+ lip/GRID/s9/pbah8p.mpg
1279
+ lip/GRID/s9/sbas8n.mpg
1280
+ lip/GRID/s9/bbwz7a.mpg
1281
+ lip/GRID/s9/swah3s.mpg
1282
+ lip/GRID/s9/pbih4p.mpg
1283
+ lip/GRID/s9/lbip4p.mpg
1284
+ lip/GRID/s9/lwwz1s.mpg
1285
+ lip/GRID/s9/brbf7a.mpg
1286
+ lip/GRID/s9/bbbz3a.mpg
1287
+ lip/GRID/s9/sgbb8n.mpg
1288
+ lip/GRID/s9/pwbd1a.mpg
1289
+ lip/GRID/s9/pbibzp.mpg
1290
+ lip/GRID/s9/srwozp.mpg
1291
+ lip/GRID/s9/bbbl4p.mpg
1292
+ lip/GRID/s9/bgwh3a.mpg
1293
+ lip/GRID/s9/pbwi5s.mpg
1294
+ lip/GRID/s9/lwix8n.mpg
1295
+ lip/GRID/s9/brafzn.mpg
1296
+ lip/GRID/s9/sbif9a.mpg
1297
+ lip/GRID/s9/pwwj8p.mpg
1298
+ lip/GRID/s9/brwgzp.mpg
1299
+ lip/GRID/s9/pgic6n.mpg
1300
+ lip/GRID/s9/lrix3s.mpg
1301
+ lip/GRID/s9/prwj3a.mpg
1302
+ lip/GRID/s9/lwix9s.mpg
1303
+ lip/GRID/s9/lbbj9a.mpg
1304
+ lip/GRID/s9/srbt8n.mpg
1305
+ lip/GRID/s9/bgbt4n.mpg
1306
+ lip/GRID/s9/srbu1a.mpg
1307
+ lip/GRID/s9/pravzn.mpg
1308
+ lip/GRID/s9/swit6n.mpg
1309
+ lip/GRID/s9/sgib1s.mpg
1310
+ lip/GRID/s9/pgax3s.mpg
1311
+ lip/GRID/s9/swia7a.mpg
1312
+ lip/GRID/s9/sgiozp.mpg
1313
+ lip/GRID/s9/bbie2p.mpg
1314
+ lip/GRID/s9/bbay9a.mpg
1315
+ lip/GRID/s9/sbbnzp.mpg
1316
+ lip/GRID/s9/lrby3a.mpg
1317
+ lip/GRID/s9/bbiy4p.mpg
1318
+ lip/GRID/s9/bbbr9a.mpg
1319
+ lip/GRID/s9/pwiv5a.mpg
1320
+ lip/GRID/s9/sgib2p.mpg
1321
+ lip/GRID/s9/sgih7a.mpg
1322
+ lip/GRID/s9/lrij4n.mpg
1323
+ lip/GRID/s9/pwwj7s.mpg
1324
+ lip/GRID/s9/bgbg7s.mpg
1325
+ lip/GRID/s9/swwo6p.mpg
1326
+ lip/GRID/s9/sraa5a.mpg
1327
+ lip/GRID/s9/sgih5s.mpg
1328
+ lip/GRID/s9/bbbz2p.mpg
1329
+ lip/GRID/s9/bral6p.mpg
1330
+ lip/GRID/s9/sbbt4p.mpg
1331
+ lip/GRID/s9/pwbj5a.mpg
1332
+ lip/GRID/s9/pwwd2n.mpg
1333
+ lip/GRID/s9/lwbe5s.mpg
1334
+ lip/GRID/s9/bras1a.mpg
1335
+ lip/GRID/s9/lrbk5a.mpg
1336
+ lip/GRID/s9/lrbq7s.mpg
1337
+ lip/GRID/s9/lgae7s.mpg
1338
+ lip/GRID/s9/bwis3a.mpg
1339
+ lip/GRID/s9/lway4p.mpg
1340
+ lip/GRID/s9/sgiu3s.mpg
1341
+ lip/GRID/s9/bbae4n.mpg
1342
+ lip/GRID/s9/bbwl6n.mpg
1343
+ lip/GRID/s9/pgix1a.mpg
1344
+ lip/GRID/s9/lwbl1a.mpg
1345
+ lip/GRID/s9/lbbx6p.mpg
1346
+ lip/GRID/s9/srig5a.mpg
1347
+ lip/GRID/s9/bwil7s.mpg
1348
+ lip/GRID/s9/lgae9a.mpg
1349
+ lip/GRID/s9/bgam9a.mpg
1350
+ lip/GRID/s9/bgigzp.mpg
1351
+ lip/GRID/s9/lwbr2n.mpg
1352
+ lip/GRID/s9/prbv7a.mpg
1353
+ lip/GRID/s9/pgic7s.mpg
1354
+ lip/GRID/s9/sbwt8p.mpg
1355
+ lip/GRID/s9/bwif2n.mpg
1356
+ lip/GRID/s9/sgao2n.mpg
1357
+ lip/GRID/s9/pgiv9s.mpg
1358
+ lip/GRID/s9/priu9a.mpg
1359
+ lip/GRID/s9/swbu7a.mpg
1360
+ lip/GRID/s9/lbbx4n.mpg
1361
+ lip/GRID/s9/lwiy1a.mpg
1362
+ lip/GRID/s9/pgad1s.mpg
1363
+ lip/GRID/s9/pbwi4n.mpg
1364
+ lip/GRID/s9/pwbj3s.mpg
1365
+ lip/GRID/s9/srbuzp.mpg
1366
+ lip/GRID/s9/sbwn2n.mpg
1367
+ lip/GRID/s9/lbap8p.mpg
1368
+ lip/GRID/s9/bbbr7s.mpg
1369
+ lip/GRID/s9/pgwk3s.mpg
1370
+ lip/GRID/s9/pbbb6n.mpg
1371
+ lip/GRID/s9/bbbr8p.mpg
1372
+ lip/GRID/s9/bgwn4n.mpg
1373
+ lip/GRID/s9/lway5a.mpg
1374
+ lip/GRID/s9/brwm2n.mpg
1375
+ lip/GRID/s9/lrbk2n.mpg
1376
+ lip/GRID/s9/sgab6p.mpg
1377
+ lip/GRID/s9/swwi2p.mpg
1378
+ lip/GRID/s9/swin5a.mpg
1379
+ lip/GRID/s9/lbip2n.mpg
1380
+ lip/GRID/s9/lbaxzn.mpg
1381
+ lip/GRID/s9/brie8p.mpg
1382
+ lip/GRID/s9/lgwz7s.mpg
1383
+ lip/GRID/s9/brws8p.mpg
1384
+ lip/GRID/s9/lrad4n.mpg
1385
+ lip/GRID/s9/lbwq5s.mpg
1386
+ lip/GRID/s9/pbbvzp.mpg
1387
+ lip/GRID/s9/lwwl2n.mpg
1388
+ lip/GRID/s9/sbas9s.mpg
1389
+ lip/GRID/s9/sbis6p.mpg
1390
+ lip/GRID/s9/lgbf2p.mpg
1391
+ lip/GRID/s9/sbimzn.mpg
1392
+ lip/GRID/s9/bwwa3a.mpg
1393
+ lip/GRID/s9/pgwd9s.mpg
1394
+ lip/GRID/s9/pwio9s.mpg
1395
+ lip/GRID/s9/bbak8n.mpg
1396
+ lip/GRID/s9/lrwrzn.mpg
1397
+ lip/GRID/s9/lwwr9a.mpg
1398
+ lip/GRID/s9/swau3a.mpg
1399
+ lip/GRID/s9/brizzp.mpg
1400
+ lip/GRID/s9/pbwo9s.mpg
1401
+ lip/GRID/s9/srig4p.mpg
1402
+ lip/GRID/s9/bgag3s.mpg
1403
+ lip/GRID/s9/lwaq9s.mpg
1404
+ lip/GRID/s9/braz5a.mpg
1405
+ lip/GRID/s9/prwp6p.mpg
1406
+ lip/GRID/s9/lgwz8p.mpg
1407
+ lip/GRID/s9/sgai1a.mpg
1408
+ lip/GRID/s9/bbiq8n.mpg
1409
+ lip/GRID/s9/lrwy5s.mpg
1410
+ lip/GRID/s9/lrbk3s.mpg
1411
+ lip/GRID/s9/bbbl5a.mpg
1412
+ lip/GRID/s9/lrwr2p.mpg
1413
+ lip/GRID/s9/bwas5s.mpg
1414
+ lip/GRID/s9/bbik6p.mpg
1415
+ lip/GRID/s9/srwn9s.mpg
1416
+ lip/GRID/s9/pgwy1s.mpg
1417
+ lip/GRID/s9/lriqzp.mpg
1418
+ lip/GRID/s9/pbau7a.mpg
1419
+ lip/GRID/s9/srbn7a.mpg
1420
+ lip/GRID/s9/lgbz5a.mpg
1421
+ lip/GRID/s9/pwav9a.mpg
1422
+ lip/GRID/s9/bwam3a.mpg
1423
+ lip/GRID/s9/sbwh1a.mpg
1424
+ lip/GRID/s9/lwbe4n.mpg
1425
+ lip/GRID/s9/prih9s.mpg
1426
+ lip/GRID/s9/srwu2n.mpg
1427
+ lip/GRID/s9/sgau6n.mpg
1428
+ lip/GRID/s9/sbbn1a.mpg
1429
+ lip/GRID/s9/swbb5a.mpg
1430
+ lip/GRID/s9/bwbt1a.mpg
1431
+ lip/GRID/s9/bwwg5s.mpg
1432
+ lip/GRID/s9/lwby7s.mpg
1433
+ lip/GRID/s9/lgbf1s.mpg
1434
+ lip/GRID/s9/braszp.mpg
1435
+ lip/GRID/s9/sbam7a.mpg
1436
+ lip/GRID/s9/lrwk7s.mpg
1437
+ lip/GRID/s9/lbic4n.mpg
1438
+ lip/GRID/s9/sbat1a.mpg
1439
+ lip/GRID/s9/prbv6p.mpg
1440
+ lip/GRID/s9/prbp3a.mpg
1441
+ lip/GRID/s9/sgwv6p.mpg
1442
+ lip/GRID/s9/braf1s.mpg
1443
+ lip/GRID/s9/lrwk8p.mpg
1444
+ lip/GRID/s9/briy8n.mpg
1445
+ lip/GRID/s9/lgir1s.mpg
1446
+ lip/GRID/s9/bgim3s.mpg
1447
+ lip/GRID/s9/sgih6p.mpg
1448
+ lip/GRID/s9/lway3s.mpg
1449
+ lip/GRID/s9/swia6p.mpg
1450
+ lip/GRID/s9/pbia9s.mpg
1451
+ lip/GRID/s9/sbbg4n.mpg
1452
+ lip/GRID/s9/bgwt8n.mpg
1453
+ lip/GRID/s9/pbah7s.mpg
1454
+ lip/GRID/s9/pwbxzn.mpg
1455
+ lip/GRID/s9/pbin7s.mpg
1456
+ lip/GRID/s9/sgio1a.mpg
1457
+ lip/GRID/s9/srwb3a.mpg
1458
+ lip/GRID/s9/lgbl7a.mpg
1459
+ lip/GRID/s9/pgad3a.mpg
1460
+ lip/GRID/s9/bwas4n.mpg
1461
+ lip/GRID/s9/bgwh2p.mpg
1462
+ lip/GRID/s9/bbar5a.mpg
1463
+ lip/GRID/s9/brwf8n.mpg
1464
+ lip/GRID/s9/sgwc3s.mpg
1465
+ lip/GRID/s9/prbpzn.mpg
1466
+ lip/GRID/s9/pbao3a.mpg
1467
+ lip/GRID/s9/bwwg4n.mpg
1468
+ lip/GRID/s9/lrad6p.mpg
1469
+ lip/GRID/s9/lwid6n.mpg
1470
+ lip/GRID/s9/lrax8p.mpg
1471
+ lip/GRID/s9/pbib1a.mpg
1472
+ lip/GRID/s9/bbae6p.mpg
1473
+ lip/GRID/s9/bwbm5s.mpg
1474
+ lip/GRID/s9/bwbgzn.mpg
1475
+ lip/GRID/s9/lbiv8p.mpg
1476
+ lip/GRID/s9/lbaj2n.mpg
1477
+ lip/GRID/s9/swwo5s.mpg
1478
+ lip/GRID/s9/brie9a.mpg
1479
+ lip/GRID/s9/pwwx6p.mpg
1480
+ lip/GRID/s9/lgik8p.mpg
1481
+ lip/GRID/s9/lgwf7a.mpg
1482
+ lip/GRID/s9/srwh4n.mpg
1483
+ lip/GRID/s9/bgwa9a.mpg
1484
+ lip/GRID/s9/swah2n.mpg
1485
+ lip/GRID/s9/lwwl4p.mpg
1486
+ lip/GRID/s9/lgiy7a.mpg
1487
+ lip/GRID/s9/bgbn3a.mpg
1488
+ lip/GRID/s9/lwid9a.mpg
1489
+ lip/GRID/s9/swwu9s.mpg
1490
+ lip/GRID/s9/pgwezp.mpg
1491
+ lip/GRID/s9/swbozn.mpg
1492
+ lip/GRID/s9/pgbx9a.mpg
1493
+ lip/GRID/s9/brwg1a.mpg
1494
+ lip/GRID/s9/pbbizn.mpg
1495
+ lip/GRID/s9/lrad7a.mpg
1496
+ lip/GRID/s9/lgie4p.mpg
1497
+ lip/GRID/s9/prai4p.mpg
1498
+ lip/GRID/s9/sgbb9s.mpg
1499
+ lip/GRID/s9/lwwz3a.mpg
1500
+ lip/GRID/s9/lrwr3a.mpg
1501
+ lip/GRID/s9/sbbg6p.mpg
1502
+ lip/GRID/s9/lgws4p.mpg
1503
+ lip/GRID/s9/lbap9a.mpg
1504
+ lip/GRID/s9/bbik5s.mpg
1505
+ lip/GRID/s9/lgiy5s.mpg
1506
+ lip/GRID/s9/sbam6p.mpg
1507
+ lip/GRID/s9/prib6p.mpg
1508
+ lip/GRID/s9/lgwz6n.mpg
1509
+ lip/GRID/s9/pwiv4p.mpg
1510
+ lip/GRID/s9/bwiz4n.mpg
1511
+ lip/GRID/s9/swbu5s.mpg
1512
+ lip/GRID/s9/sgbi3s.mpg
1513
+ lip/GRID/s9/sgin9s.mpg
1514
+ lip/GRID/s9/pgax4p.mpg
1515
+ lip/GRID/s9/bwaz9s.mpg
1516
+ lip/GRID/s9/pbih2n.mpg
1517
+ lip/GRID/s9/lbiv9a.mpg
1518
+ lip/GRID/s9/lrbk4p.mpg
1519
+ lip/GRID/s9/bwas7a.mpg
1520
+ lip/GRID/s9/lrwy4n.mpg
1521
+ lip/GRID/s9/lbac9s.mpg
1522
+ lip/GRID/s9/brbmzp.mpg
1523
+ lip/GRID/s9/swwb8p.mpg
1524
+ lip/GRID/s9/lwiyzp.mpg
1525
+ lip/GRID/s9/lwwl5a.mpg
1526
+ lip/GRID/s9/pgbx8p.mpg
1527
+ lip/GRID/s9/sgiu5a.mpg
1528
+ lip/GRID/s9/pgwk5a.mpg
1529
+ lip/GRID/s9/lbbd5a.mpg
1530
+ lip/GRID/s9/bgatzn.mpg
1531
+ lip/GRID/s30/lgwq1n.mpg
1532
+ lip/GRID/s30/bbio7n.mpg
1533
+ lip/GRID/s30/prwa6s.mpg
1534
+ lip/GRID/s30/lgac8a.mpg
1535
+ lip/GRID/s30/bbbdza.mpg
1536
+ lip/GRID/s30/pgan9p.mpg
1537
+ lip/GRID/s30/swbf7p.mpg
1538
+ lip/GRID/s30/pgbu7p.mpg
1539
+ lip/GRID/s30/sralzs.mpg
1540
+ lip/GRID/s30/sbiyza.mpg
1541
+ lip/GRID/s30/bwakzs.mpg
1542
+ lip/GRID/s30/bbav6s.mpg
1543
+ lip/GRID/s30/sbbk7n.mpg
1544
+ lip/GRID/s30/brap9p.mpg
1545
+ lip/GRID/s30/bwwr4a.mpg
1546
+ lip/GRID/s30/bbipza.mpg
1547
+ lip/GRID/s30/pwia1p.mpg
1548
+ lip/GRID/s30/brbq2s.mpg
1549
+ lip/GRID/s30/bbap1n.mpg
1550
+ lip/GRID/s30/pwbh1n.mpg
1551
+ lip/GRID/s30/lwib6s.mpg
1552
+ lip/GRID/s30/bwij8a.mpg
1553
+ lip/GRID/s30/lrao4a.mpg
1554
+ lip/GRID/s30/bgik1n.mpg
1555
+ lip/GRID/s30/sgbtzs.mpg
1556
+ lip/GRID/s30/bgwz3p.mpg
1557
+ lip/GRID/s30/pgbh8s.mpg
1558
+ lip/GRID/s30/lwbc4s.mpg
1559
+ lip/GRID/s30/sbbr2s.mpg
1560
+ lip/GRID/s30/lgbx1n.mpg
1561
+ lip/GRID/s30/pgia5n.mpg
1562
+ lip/GRID/s30/lgbp9p.mpg
1563
+ lip/GRID/s30/pwwu4s.mpg
1564
+ lip/GRID/s30/lbau2a.mpg
1565
+ lip/GRID/s30/lbah3p.mpg
1566
+ lip/GRID/s30/lbwb6s.mpg
1567
+ lip/GRID/s30/bgak7p.mpg
1568
+ lip/GRID/s30/pbamzs.mpg
1569
+ lip/GRID/s30/srie1n.mpg
1570
+ lip/GRID/s30/lbin3p.mpg
1571
+ lip/GRID/s30/lgipzs.mpg
1572
+ lip/GRID/s30/sbbk9p.mpg
1573
+ lip/GRID/s30/pbwa2a.mpg
1574
+ lip/GRID/s30/bgarzs.mpg
1575
+ lip/GRID/s30/lbwo4s.mpg
1576
+ lip/GRID/s30/bbiv3p.mpg
1577
+ lip/GRID/s30/bwwe6a.mpg
1578
+ lip/GRID/s30/lraiza.mpg
1579
+ lip/GRID/s30/pwig3n.mpg
1580
+ lip/GRID/s30/pbaf8a.mpg
1581
+ lip/GRID/s30/lrab6a.mpg
1582
+ lip/GRID/s30/swaz3n.mpg
1583
+ lip/GRID/s30/pris6s.mpg
1584
+ lip/GRID/s30/lwbp3p.mpg
1585
+ lip/GRID/s30/lgwd6a.mpg
1586
+ lip/GRID/s30/swwm5p.mpg
1587
+ lip/GRID/s30/brax2s.mpg
1588
+ lip/GRID/s30/prim1n.mpg
1589
+ lip/GRID/s30/lbbh5n.mpg
1590
+ lip/GRID/s30/lwwc8s.mpg
1591
+ lip/GRID/s30/sgbg4a.mpg
1592
+ lip/GRID/s30/sral2a.mpg
1593
+ lip/GRID/s30/sgimza.mpg
1594
+ lip/GRID/s30/prba3p.mpg
1595
+ lip/GRID/s30/lgbj5p.mpg
1596
+ lip/GRID/s30/srwf6a.mpg
1597
+ lip/GRID/s30/swiy9n.mpg
1598
+ lip/GRID/s30/pgbu5n.mpg
1599
+ lip/GRID/s30/lribzs.mpg
1600
+ lip/GRID/s30/swbs6a.mpg
1601
+ lip/GRID/s30/lwiu9p.mpg
1602
+ lip/GRID/s30/bgwf2a.mpg
1603
+ lip/GRID/s30/pbwnza.mpg
1604
+ lip/GRID/s30/pbbm5p.mpg
1605
+ lip/GRID/s30/sbwr7p.mpg
1606
+ lip/GRID/s30/sgbm6s.mpg
1607
+ lip/GRID/s30/swaf1n.mpg
1608
+ lip/GRID/s30/bgwz2s.mpg
1609
+ lip/GRID/s30/bwwy6s.mpg
1610
+ lip/GRID/s30/bwbq8s.mpg
1611
+ lip/GRID/s30/sgwt5p.mpg
1612
+ lip/GRID/s30/srazza.mpg
1613
+ lip/GRID/s30/swie9p.mpg
1614
+ lip/GRID/s30/pgau3p.mpg
1615
+ lip/GRID/s30/sgbaza.mpg
1616
+ lip/GRID/s30/brij1p.mpg
1617
+ lip/GRID/s30/srak9n.mpg
1618
+ lip/GRID/s30/swil4a.mpg
1619
+ lip/GRID/s30/bwiq2a.mpg
1620
+ lip/GRID/s30/sgas5n.mpg
1621
+ lip/GRID/s30/pgbo3p.mpg
1622
+ lip/GRID/s30/lgbj6a.mpg
1623
+ lip/GRID/s30/lbig9p.mpg
1624
+ lip/GRID/s30/bwwr2s.mpg
1625
+ lip/GRID/s30/bgwr9p.mpg
1626
+ lip/GRID/s30/brbd4s.mpg
1627
+ lip/GRID/s30/lrwp1p.mpg
1628
+ lip/GRID/s30/brwq8a.mpg
1629
+ lip/GRID/s30/lriu4a.mpg
1630
+ lip/GRID/s30/lbbo1p.mpg
1631
+ lip/GRID/s30/bwwy7p.mpg
1632
+ lip/GRID/s30/sgwn2a.mpg
1633
+ lip/GRID/s30/pgbh9p.mpg
1634
+ lip/GRID/s30/pwag7n.mpg
1635
+ lip/GRID/s30/pgih1p.mpg
1636
+ lip/GRID/s30/lrwi7p.mpg
1637
+ lip/GRID/s30/swbs3n.mpg
1638
+ lip/GRID/s30/lgip2a.mpg
1639
+ lip/GRID/s30/pgbb6a.mpg
1640
+ lip/GRID/s30/pwan1n.mpg
1641
+ lip/GRID/s30/pwbh4a.mpg
1642
+ lip/GRID/s30/prim3p.mpg
1643
+ lip/GRID/s30/pwbh2s.mpg
1644
+ lip/GRID/s30/brwd8s.mpg
1645
+ lip/GRID/s30/bbac4s.mpg
1646
+ lip/GRID/s30/lrab3n.mpg
1647
+ lip/GRID/s30/sbae2a.mpg
1648
+ lip/GRID/s30/pbwg6a.mpg
1649
+ lip/GRID/s30/swaszs.mpg
1650
+ lip/GRID/s30/lrwi8a.mpg
1651
+ lip/GRID/s30/bgiq7p.mpg
1652
+ lip/GRID/s30/pgit7n.mpg
1653
+ lip/GRID/s30/pwat7p.mpg
1654
+ lip/GRID/s30/bwad6s.mpg
1655
+ lip/GRID/s30/pgwi1n.mpg
1656
+ lip/GRID/s30/brwy1p.mpg
1657
+ lip/GRID/s30/lwbp4a.mpg
1658
+ lip/GRID/s30/brwq6s.mpg
1659
+ lip/GRID/s30/lrwv6a.mpg
1660
+ lip/GRID/s30/brip6a.mpg
1661
+ lip/GRID/s30/swifza.mpg
1662
+ lip/GRID/s30/lwwdza.mpg
1663
+ lip/GRID/s30/sbij9n.mpg
1664
+ lip/GRID/s30/sbix7n.mpg
1665
+ lip/GRID/s30/bwid3p.mpg
1666
+ lip/GRID/s30/brbd3n.mpg
1667
+ lip/GRID/s30/lwwj4a.mpg
1668
+ lip/GRID/s30/bgik4a.mpg
1669
+ lip/GRID/s30/swbz8s.mpg
1670
+ lip/GRID/s30/sbik1p.mpg
1671
+ lip/GRID/s30/sgil8s.mpg
1672
+ lip/GRID/s30/pram6s.mpg
1673
+ lip/GRID/s30/lbig8s.mpg
1674
+ lip/GRID/s30/brbx6s.mpg
1675
+ lip/GRID/s30/pbbg2a.mpg
1676
+ lip/GRID/s30/prwuza.mpg
1677
+ lip/GRID/s30/swil2s.mpg
1678
+ lip/GRID/s30/lban7p.mpg
1679
+ lip/GRID/s30/lgii8a.mpg
1680
+ lip/GRID/s30/swaz6a.mpg
1681
+ lip/GRID/s30/pbbs8s.mpg
1682
+ lip/GRID/s30/bgae4a.mpg
1683
+ lip/GRID/s30/prif9p.mpg
1684
+ lip/GRID/s30/lgaj2a.mpg
1685
+ lip/GRID/s30/bwiq1p.mpg
1686
+ lip/GRID/s30/pwwh7p.mpg
1687
+ lip/GRID/s30/lbaa8s.mpg
1688
+ lip/GRID/s30/brwq5n.mpg
1689
+ lip/GRID/s30/lrbi1n.mpg
1690
+ lip/GRID/s30/lrwv5p.mpg
1691
+ lip/GRID/s30/lbaa9p.mpg
1692
+ lip/GRID/s30/bgak5n.mpg
1693
+ lip/GRID/s30/lbbh7p.mpg
1694
+ lip/GRID/s30/lrab4s.mpg
1695
+ lip/GRID/s30/lrbb8s.mpg
1696
+ lip/GRID/s30/pbil6s.mpg
1697
+ lip/GRID/s30/pbbs7n.mpg
1698
+ lip/GRID/s30/pgbb5p.mpg
1699
+ lip/GRID/s30/srar4s.mpg
1700
+ lip/GRID/s30/bgiq8a.mpg
1701
+ lip/GRID/s30/pbbtza.mpg
1702
+ lip/GRID/s30/lwio6a.mpg
1703
+ lip/GRID/s30/briv9p.mpg
1704
+ lip/GRID/s30/srar5p.mpg
1705
+ lip/GRID/s30/lbit7p.mpg
1706
+ lip/GRID/s30/lrin8s.mpg
1707
+ lip/GRID/s30/swbs5p.mpg
1708
+ lip/GRID/s30/pbas4s.mpg
1709
+ lip/GRID/s30/sbwy9n.mpg
1710
+ lip/GRID/s30/prigza.mpg
1711
+ lip/GRID/s30/lbwb5n.mpg
1712
+ lip/GRID/s30/sgis4a.mpg
1713
+ lip/GRID/s30/brwd9p.mpg
1714
+ lip/GRID/s30/sgif6a.mpg
1715
+ lip/GRID/s30/lrib1p.mpg
1716
+ lip/GRID/s30/prwt8s.mpg
1717
+ lip/GRID/s30/lbwi2a.mpg
1718
+ lip/GRID/s30/prbg7p.mpg
1719
+ lip/GRID/s30/lrbv1p.mpg
1720
+ lip/GRID/s30/sgbt1p.mpg
1721
+ lip/GRID/s30/bbbc8s.mpg
1722
+ lip/GRID/s30/bradzs.mpg
1723
+ lip/GRID/s30/bgiq5n.mpg
1724
+ lip/GRID/s30/brad1p.mpg
1725
+ lip/GRID/s30/pwwh8a.mpg
1726
+ lip/GRID/s30/brax1n.mpg
1727
+ lip/GRID/s30/brip5p.mpg
1728
+ lip/GRID/s30/lgiv3n.mpg
1729
+ lip/GRID/s30/sbwl4a.mpg
1730
+ lip/GRID/s30/sbwe9p.mpg
1731
+ lip/GRID/s30/brwk2s.mpg
1732
+ lip/GRID/s30/swws7n.mpg
1733
+ lip/GRID/s30/bwad7p.mpg
1734
+ lip/GRID/s30/pgbh7n.mpg
1735
+ lip/GRID/s30/pgiuza.mpg
1736
+ lip/GRID/s30/lwav4a.mpg
1737
+ lip/GRID/s30/lbwvza.mpg
1738
+ lip/GRID/s30/pgah5p.mpg
1739
+ lip/GRID/s30/lbig7n.mpg
1740
+ lip/GRID/s30/lbin2s.mpg
1741
+ lip/GRID/s30/swie7n.mpg
1742
+ lip/GRID/s30/brax3p.mpg
1743
+ lip/GRID/s30/srwl7n.mpg
1744
+ lip/GRID/s30/sgwa4a.mpg
1745
+ lip/GRID/s30/lgbqza.mpg
1746
+ lip/GRID/s30/sgbm8a.mpg
1747
+ lip/GRID/s30/sriq9n.mpg
1748
+ lip/GRID/s30/sgaf7n.mpg
1749
+ lip/GRID/s30/pwwu5p.mpg
1750
+ lip/GRID/s30/lbia4s.mpg
1751
+ lip/GRID/s30/bbii3n.mpg
1752
+ lip/GRID/s30/brbj7n.mpg
1753
+ lip/GRID/s30/pris5n.mpg
1754
+ lip/GRID/s30/pgan7n.mpg
1755
+ lip/GRID/s30/pbas6a.mpg
1756
+ lip/GRID/s30/bbii4s.mpg
1757
+ lip/GRID/s30/lbbozs.mpg
1758
+ lip/GRID/s30/lriu2s.mpg
1759
+ lip/GRID/s30/bgwe9n.mpg
1760
+ lip/GRID/s30/srie3p.mpg
1761
+ lip/GRID/s30/pbaf5n.mpg
1762
+ lip/GRID/s30/pwit4a.mpg
1763
+ lip/GRID/s30/lrioza.mpg
1764
+ lip/GRID/s30/pgia7p.mpg
1765
+ lip/GRID/s30/sbwr8a.mpg
1766
+ lip/GRID/s30/bwbezs.mpg
1767
+ lip/GRID/s30/lrbi2s.mpg
1768
+ lip/GRID/s30/lgiv6a.mpg
1769
+ lip/GRID/s30/sbbe3n.mpg
1770
+ lip/GRID/s30/bwwe5p.mpg
1771
+ lip/GRID/s30/lgii5n.mpg
1772
+ lip/GRID/s30/srirzs.mpg
1773
+ lip/GRID/s30/sbwz1p.mpg
1774
+ lip/GRID/s30/lrwpzs.mpg
1775
+ lip/GRID/s30/lgwx5n.mpg
1776
+ lip/GRID/s30/bgby8s.mpg
1777
+ lip/GRID/s30/bbic2a.mpg
1778
+ lip/GRID/s30/sgil9p.mpg
1779
+ lip/GRID/s30/bbwj7p.mpg
1780
+ lip/GRID/s30/bgbe5n.mpg
1781
+ lip/GRID/s30/bbbp7p.mpg
1782
+ lip/GRID/s30/bgwz1n.mpg
1783
+ lip/GRID/s30/pgau1n.mpg
1784
+ lip/GRID/s30/swar9n.mpg
1785
+ lip/GRID/s30/bbwx5p.mpg
1786
+ lip/GRID/s34/lgwdzs.mpg
1787
+ lip/GRID/s34/lbim9p.mpg
1788
+ lip/GRID/s34/lbinza.mpg
1789
+ lip/GRID/s34/sbbezs.mpg
1790
+ lip/GRID/s34/brbj6a.mpg
1791
+ lip/GRID/s34/bwwrza.mpg
1792
+ lip/GRID/s34/lwavza.mpg
1793
+ lip/GRID/s34/sbaq5p.mpg
1794
+ lip/GRID/s34/prwt6a.mpg
1795
+ lip/GRID/s34/sbij8a.mpg
1796
+ lip/GRID/s34/lrbo2s.mpg
1797
+ lip/GRID/s34/pbbl9n.mpg
1798
+ lip/GRID/s34/srarzs.mpg
1799
+ lip/GRID/s34/sbwk7n.mpg
1800
+ lip/GRID/s34/lgbc6s.mpg
1801
+ lip/GRID/s34/pwat3p.mpg
1802
+ lip/GRID/s34/prwa1n.mpg
1803
+ lip/GRID/s34/pgaa7p.mpg
1804
+ lip/GRID/s34/lgbv7n.mpg
1805
+ lip/GRID/s34/bgayzs.mpg
1806
+ lip/GRID/s34/bwad1n.mpg
1807
+ lip/GRID/s34/swazzs.mpg
1808
+ lip/GRID/s34/bgaeza.mpg
1809
+ lip/GRID/s34/praz9n.mpg
1810
+ lip/GRID/s34/swbl8a.mpg
1811
+ lip/GRID/s34/swiy8a.mpg
1812
+ lip/GRID/s34/prwg7p.mpg
1813
+ lip/GRID/s34/sgws9n.mpg
1814
+ lip/GRID/s34/pbifza.mpg
1815
+ lip/GRID/s34/pbal5n.mpg
1816
+ lip/GRID/s34/pris2s.mpg
1817
+ lip/GRID/s34/sgaf6a.mpg
1818
+ lip/GRID/s34/bric3p.mpg
1819
+ lip/GRID/s34/lrig9n.mpg
1820
+ lip/GRID/s34/swir4a.mpg
1821
+ lip/GRID/s34/pgig6s.mpg
1822
+ lip/GRID/s34/sbiq1p.mpg
1823
+ lip/GRID/s34/srbe6s.mpg
1824
+ lip/GRID/s34/lgio5n.mpg
1825
+ lip/GRID/s34/braj1p.mpg
1826
+ lip/GRID/s34/lbbu1p.mpg
1827
+ lip/GRID/s34/srik1n.mpg
1828
+ lip/GRID/s34/lwwv7p.mpg
1829
+ lip/GRID/s34/bbao9p.mpg
1830
+ lip/GRID/s34/pwbg8s.mpg
1831
+ lip/GRID/s34/brwd3n.mpg
1832
+ lip/GRID/s34/pbir7p.mpg
1833
+ lip/GRID/s34/pwwh1n.mpg
1834
+ lip/GRID/s34/swie4s.mpg
1835
+ lip/GRID/s34/bbac1p.mpg
1836
+ lip/GRID/s34/lria8a.mpg
1837
+ lip/GRID/s34/lbit3p.mpg
1838
+ lip/GRID/s34/sbbk5p.mpg
1839
+ lip/GRID/s34/pwaa2a.mpg
1840
+ lip/GRID/s34/bwwq9p.mpg
1841
+ lip/GRID/s34/pgwb3n.mpg
1842
+ lip/GRID/s34/bbivza.mpg
1843
+ lip/GRID/s34/lgac3p.mpg
1844
+ lip/GRID/s34/bwwe2a.mpg
1845
+ lip/GRID/s34/swws6a.mpg
1846
+ lip/GRID/s34/lrin3n.mpg
1847
+ lip/GRID/s34/lrbo4a.mpg
1848
+ lip/GRID/s34/pgwu6s.mpg
1849
+ lip/GRID/s34/swws5p.mpg
1850
+ lip/GRID/s34/pwbt6s.mpg
1851
+ lip/GRID/s34/bwad2s.mpg
1852
+ lip/GRID/s34/swbl5n.mpg
1853
+ lip/GRID/s34/bbbc6a.mpg
1854
+ lip/GRID/s34/lrit8s.mpg
1855
+ lip/GRID/s34/swar8a.mpg
1856
+ lip/GRID/s34/pris3p.mpg
1857
+ lip/GRID/s34/bric4a.mpg
1858
+ lip/GRID/s34/bbai3n.mpg
1859
+ lip/GRID/s34/bgiq3p.mpg
1860
+ lip/GRID/s34/srby8s.mpg
1861
+ lip/GRID/s34/pwba6a.mpg
1862
+ lip/GRID/s34/sbwe6a.mpg
1863
+ lip/GRID/s34/sgisza.mpg
1864
+ lip/GRID/s34/lbaa6a.mpg
1865
+ lip/GRID/s34/lgwx2s.mpg
1866
+ lip/GRID/s34/pwam7n.mpg
1867
+ lip/GRID/s34/bwbx8s.mpg
1868
+ lip/GRID/s34/bbbp3p.mpg
1869
+ lip/GRID/s34/pbaz4s.mpg
1870
+ lip/GRID/s34/lbia2a.mpg
1871
+ lip/GRID/s34/swbl7p.mpg
1872
+ lip/GRID/s34/brbdzs.mpg
1873
+ lip/GRID/s34/prbg3p.mpg
1874
+ lip/GRID/s34/pwim3n.mpg
1875
+ lip/GRID/s34/lwao4s.mpg
1876
+ lip/GRID/s34/swiy6s.mpg
1877
+ lip/GRID/s34/sgiz4a.mpg
1878
+ lip/GRID/s34/bbwx1p.mpg
1879
+ lip/GRID/s34/pwim4s.mpg
1880
+ lip/GRID/s34/sgbm1n.mpg
1881
+ lip/GRID/s34/lgiv2a.mpg
1882
+ lip/GRID/s34/sbbd9n.mpg
1883
+ lip/GRID/s34/lbat7p.mpg
1884
+ lip/GRID/s34/swws4s.mpg
1885
+ lip/GRID/s34/lbbn5n.mpg
1886
+ lip/GRID/s34/lban4a.mpg
1887
+ lip/GRID/s34/bgij8s.mpg
1888
+ lip/GRID/s34/lran9p.mpg
1889
+ lip/GRID/s34/swwz8s.mpg
1890
+ lip/GRID/s34/srwfzs.mpg
1891
+ lip/GRID/s34/bwip8a.mpg
1892
+ lip/GRID/s34/lgbp4s.mpg
1893
+ lip/GRID/s34/bbbv6s.mpg
1894
+ lip/GRID/s34/sgwaza.mpg
1895
+ lip/GRID/s34/lrwv1p.mpg
1896
+ lip/GRID/s34/bgwr6a.mpg
1897
+ lip/GRID/s34/lgii2s.mpg
1898
+ lip/GRID/s34/lwwp1n.mpg
1899
+ lip/GRID/s34/prwn1p.mpg
1900
+ lip/GRID/s34/lbwb3p.mpg
1901
+ lip/GRID/s34/pwbn1n.mpg
1902
+ lip/GRID/s34/lwib3p.mpg
1903
+ lip/GRID/s34/bgid4s.mpg
1904
+ lip/GRID/s34/sbiqzs.mpg
1905
+ lip/GRID/s34/pbaf3p.mpg
1906
+ lip/GRID/s34/sgbs5n.mpg
1907
+ lip/GRID/s34/pbbs5p.mpg
1908
+ lip/GRID/s34/sgaz7p.mpg
1909
+ lip/GRID/s34/sgaf4s.mpg
1910
+ lip/GRID/s34/sbayza.mpg
1911
+ lip/GRID/s34/sbix6a.mpg
1912
+ lip/GRID/s34/bgwr5p.mpg
1913
+ lip/GRID/s34/bbwc8s.mpg
1914
+ lip/GRID/s34/bbav3p.mpg
1915
+ lip/GRID/s34/bwbd8a.mpg
1916
+ lip/GRID/s34/lrihzs.mpg
1917
+ lip/GRID/s34/sbid4a.mpg
1918
+ lip/GRID/s34/pgia2s.mpg
1919
+ lip/GRID/s34/bbib8a.mpg
1920
+ lip/GRID/s34/brajzs.mpg
1921
+ lip/GRID/s34/bgix7p.mpg
1922
+ lip/GRID/s34/bgwy8s.mpg
1923
+ lip/GRID/s34/pbwm5p.mpg
1924
+ lip/GRID/s34/prwnzs.mpg
1925
+ lip/GRID/s34/pbar9n.mpg
1926
+ lip/GRID/s34/pbaf2s.mpg
1927
+ lip/GRID/s34/pbal7p.mpg
1928
+ lip/GRID/s34/pgat8s.mpg
1929
+ lip/GRID/s34/prwa2s.mpg
1930
+ lip/GRID/s34/sgwm5n.mpg
1931
+ lip/GRID/s34/lria6s.mpg
1932
+ lip/GRID/s34/lrwb9p.mpg
1933
+ lip/GRID/s34/pgit3n.mpg
1934
+ lip/GRID/s34/pram3p.mpg
1935
+ lip/GRID/s34/pgig5n.mpg
1936
+ lip/GRID/s34/bbwc9p.mpg
1937
+ lip/GRID/s34/pgwu8a.mpg
1938
+ lip/GRID/s34/sgifzs.mpg
1939
+ lip/GRID/s34/swae9p.mpg
1940
+ lip/GRID/s34/bbwj1n.mpg
1941
+ lip/GRID/s34/sbbq8s.mpg
1942
+ lip/GRID/s34/pbbs3n.mpg
1943
+ lip/GRID/s34/pwba4s.mpg
1944
+ lip/GRID/s34/sbak2a.mpg
1945
+ lip/GRID/s34/swwf8a.mpg
1946
+ lip/GRID/s34/lbbuzs.mpg
1947
+ lip/GRID/s34/pgbu3p.mpg
1948
+ lip/GRID/s34/pbiz1p.mpg
1949
+ lip/GRID/s34/pbws9p.mpg
1950
+ lip/GRID/s34/lgwd1p.mpg
1951
+ lip/GRID/s34/sbiq2a.mpg
1952
+ lip/GRID/s34/bgbk8a.mpg
1953
+ lip/GRID/s34/sgaz6s.mpg
1954
+ lip/GRID/s34/bgwe8a.mpg
1955
+ lip/GRID/s34/bgwy7n.mpg
1956
+ lip/GRID/s34/bwbj9n.mpg
1957
+ lip/GRID/s34/lbwozs.mpg
1958
+ lip/GRID/s34/lbig5p.mpg
1959
+ lip/GRID/s34/swar7p.mpg
1960
+ lip/GRID/s34/brbj4s.mpg
1961
+ lip/GRID/s34/srid7n.mpg
1962
+ lip/GRID/s34/pwwh3p.mpg
1963
+ lip/GRID/s34/bwbq4s.mpg
1964
+ lip/GRID/s34/lran8s.mpg
1965
+ lip/GRID/s34/lwwp4a.mpg
1966
+ lip/GRID/s34/pbil3p.mpg
1967
+ lip/GRID/s34/pgbh5p.mpg
1968
+ lip/GRID/s34/pbie9p.mpg
1969
+ lip/GRID/s34/prbg2s.mpg
1970
+ lip/GRID/s34/lbwn9n.mpg
1971
+ lip/GRID/s34/bbib7p.mpg
1972
+ lip/GRID/s34/bbbc4s.mpg
1973
+ lip/GRID/s34/lwwi9p.mpg
1974
+ lip/GRID/s34/pram2s.mpg
1975
+ lip/GRID/s34/bwwk5p.mpg
1976
+ lip/GRID/s34/swae7n.mpg
1977
+ lip/GRID/s34/bgiq1n.mpg
1978
+ lip/GRID/s34/lwwv5n.mpg
1979
+ lip/GRID/s34/pras6s.mpg
1980
+ lip/GRID/s34/pgaa5n.mpg
1981
+ lip/GRID/s34/pras5n.mpg
1982
+ lip/GRID/s34/pgwb4s.mpg
1983
+ lip/GRID/s34/prbaza.mpg
1984
+ lip/GRID/s34/sgwg1n.mpg
1985
+ lip/GRID/s34/bbib5n.mpg
1986
+ lip/GRID/s34/brbc9n.mpg
1987
+ lip/GRID/s34/primza.mpg
1988
+ lip/GRID/s34/pbwm6a.mpg
1989
+ lip/GRID/s34/lrbo1n.mpg
1990
+ lip/GRID/s34/prbtzs.mpg
1991
+ lip/GRID/s34/sbbe2a.mpg
1992
+ lip/GRID/s34/srwsza.mpg
1993
+ lip/GRID/s34/pbie7n.mpg
1994
+ lip/GRID/s34/lwih7p.mpg
1995
+ lip/GRID/s34/lwau9p.mpg
1996
+ lip/GRID/s34/pgwo4a.mpg
1997
+ lip/GRID/s34/bgaq8a.mpg
1998
+ lip/GRID/s34/lgii3p.mpg
1999
+ lip/GRID/s34/lwai1p.mpg
2000
+ lip/GRID/s34/pgwh8s.mpg
2001
+ lip/GRID/s34/bwbq3n.mpg
2002
+ lip/GRID/s34/lgicza.mpg
2003
+ lip/GRID/s34/pwanza.mpg
2004
+ lip/GRID/s34/pgit4s.mpg
2005
+ lip/GRID/s34/srbr6a.mpg
2006
+ lip/GRID/s34/lgav5p.mpg
2007
+ lip/GRID/s34/lgbj2a.mpg
2008
+ lip/GRID/s34/swwm1p.mpg
2009
+ lip/GRID/s34/srby7n.mpg
2010
+ lip/GRID/s34/swal3p.mpg
2011
+ lip/GRID/s34/briv3n.mpg
2012
+ lip/GRID/s34/bgwr3n.mpg
2013
+ lip/GRID/s34/swar5n.mpg
2014
+ lip/GRID/s34/lbwu6a.mpg
2015
+ lip/GRID/s34/lwbv1n.mpg
2016
+ lip/GRID/s34/bwij4a.mpg
2017
+ lip/GRID/s34/lwbi3n.mpg
2018
+ lip/GRID/s34/bbbc3n.mpg
2019
+ lip/GRID/s34/sriy2a.mpg
2020
+ lip/GRID/s34/lrah6a.mpg
2021
+ lip/GRID/s34/brac7p.mpg
2022
+ lip/GRID/s34/lwaizs.mpg
2023
+ lip/GRID/s34/bbiu7n.mpg
2024
+ lip/GRID/s34/bgwr4s.mpg
2025
+ lip/GRID/s34/pgwiza.mpg
2026
+ lip/GRID/s34/sgif1p.mpg
2027
+ lip/GRID/s34/bbai6a.mpg
2028
+ lip/GRID/s34/swws3n.mpg
2029
+ lip/GRID/s34/bbai4s.mpg
2030
+ lip/GRID/s34/bbwp6s.mpg
2031
+ lip/GRID/s34/sgbgza.mpg
2032
+ lip/GRID/s34/lgai6s.mpg
2033
+ lip/GRID/s34/lbig4s.mpg
2034
+ lip/GRID/s34/bgax9n.mpg
2035
+ lip/GRID/s34/brwq1n.mpg
2036
+ lip/GRID/s34/bgwy9p.mpg
2037
+ lip/GRID/s34/pbaf4a.mpg
2038
+ lip/GRID/s34/bgiq2s.mpg
2039
+ lip/GRID/s34/pbie8s.mpg
2040
+ lip/GRID/s34/lrbb4s.mpg
2041
+ lip/GRID/s25/lrib7a.mpg
2042
+ lip/GRID/s25/lgax5a.mpg
2043
+ lip/GRID/s25/lgbx9a.mpg
2044
+ lip/GRID/s25/pwwb7s.mpg
2045
+ lip/GRID/s25/pwbh8p.mpg
2046
+ lip/GRID/s25/bbbj8p.mpg
2047
+ lip/GRID/s25/brwy5s.mpg
2048
+ lip/GRID/s25/lgij2p.mpg
2049
+ lip/GRID/s25/sgat1s.mpg
2050
+ lip/GRID/s25/lgbq4p.mpg
2051
+ lip/GRID/s25/bgir3a.mpg
2052
+ lip/GRID/s25/sgis8p.mpg
2053
+ lip/GRID/s25/pgwc3s.mpg
2054
+ lip/GRID/s25/bgay9s.mpg
2055
+ lip/GRID/s25/lwav9a.mpg
2056
+ lip/GRID/s25/braq4p.mpg
2057
+ lip/GRID/s25/bgbl6p.mpg
2058
+ lip/GRID/s25/sbws2p.mpg
2059
+ lip/GRID/s25/pwbb2n.mpg
2060
+ lip/GRID/s25/lwai9s.mpg
2061
+ lip/GRID/s25/sril3a.mpg
2062
+ lip/GRID/s25/bgwz7s.mpg
2063
+ lip/GRID/s25/sgat3a.mpg
2064
+ lip/GRID/s25/pwau3a.mpg
2065
+ lip/GRID/s25/sbwl7s.mpg
2066
+ lip/GRID/s25/sbie2p.mpg
2067
+ lip/GRID/s25/pgao5a.mpg
2068
+ lip/GRID/s25/srir7a.mpg
2069
+ lip/GRID/s25/lwiv2n.mpg
2070
+ lip/GRID/s25/pgbi3s.mpg
2071
+ lip/GRID/s25/praa2n.mpg
2072
+ lip/GRID/s25/lrih9s.mpg
2073
+ lip/GRID/s25/sgbg9a.mpg
2074
+ lip/GRID/s25/srbl8n.mpg
2075
+ lip/GRID/s25/bgwmzp.mpg
2076
+ lip/GRID/s25/lgiv9s.mpg
2077
+ lip/GRID/s25/bwwzzn.mpg
2078
+ lip/GRID/s25/sbws3a.mpg
2079
+ lip/GRID/s25/lwbj2n.mpg
2080
+ lip/GRID/s25/brak1a.mpg
2081
+ lip/GRID/s25/lbia9s.mpg
2082
+ lip/GRID/s25/lwwd5a.mpg
2083
+ lip/GRID/s25/lrwp6p.mpg
2084
+ lip/GRID/s25/pbis7a.mpg
2085
+ lip/GRID/s25/lwiv5a.mpg
2086
+ lip/GRID/s25/sbwz5s.mpg
2087
+ lip/GRID/s25/bgwf6p.mpg
2088
+ lip/GRID/s25/srilzn.mpg
2089
+ lip/GRID/s25/bbbj9a.mpg
2090
+ lip/GRID/s25/pgwv6p.mpg
2091
+ lip/GRID/s25/bbad1a.mpg
2092
+ lip/GRID/s25/pgbv1s.mpg
2093
+ lip/GRID/s25/lbih2n.mpg
2094
+ lip/GRID/s25/swbm5s.mpg
2095
+ lip/GRID/s25/pgab5s.mpg
2096
+ lip/GRID/s25/bbap7s.mpg
2097
+ lip/GRID/s25/srie7s.mpg
2098
+ lip/GRID/s25/sbwl8p.mpg
2099
+ lip/GRID/s25/lbib1a.mpg
2100
+ lip/GRID/s25/lwbp6n.mpg
2101
+ lip/GRID/s25/lbbo7a.mpg
2102
+ lip/GRID/s25/lwwx6p.mpg
2103
+ lip/GRID/s25/pgbv3a.mpg
2104
+ lip/GRID/s25/pbim1s.mpg
2105
+ lip/GRID/s25/lrwc8p.mpg
2106
+ lip/GRID/s25/sgag2n.mpg
2107
+ lip/GRID/s25/pgwi8p.mpg
2108
+ lip/GRID/s25/bbbq2p.mpg
2109
+ lip/GRID/s25/lrwx1a.mpg
2110
+ lip/GRID/s25/sgis7s.mpg
2111
+ lip/GRID/s25/bway5a.mpg
2112
+ lip/GRID/s25/bgwm1a.mpg
2113
+ lip/GRID/s25/pbwt9a.mpg
2114
+ lip/GRID/s25/prbh1s.mpg
2115
+ lip/GRID/s25/pbbt3s.mpg
2116
+ lip/GRID/s25/swiszn.mpg
2117
+ lip/GRID/s25/prba8p.mpg
2118
+ lip/GRID/s25/lbwpzp.mpg
2119
+ lip/GRID/s25/sbbr8p.mpg
2120
+ lip/GRID/s25/bwwr9a.mpg
2121
+ lip/GRID/s25/srbf7a.mpg
2122
+ lip/GRID/s25/sbie3a.mpg
2123
+ lip/GRID/s25/bwaezn.mpg
2124
+ lip/GRID/s25/sgba5a.mpg
2125
+ lip/GRID/s25/bwaq9s.mpg
2126
+ lip/GRID/s25/pwit7s.mpg
2127
+ lip/GRID/s25/lgij3a.mpg
2128
+ lip/GRID/s25/pgio1a.mpg
2129
+ lip/GRID/s25/brij6p.mpg
2130
+ lip/GRID/s25/bbij1a.mpg
2131
+ lip/GRID/s25/srbm1a.mpg
2132
+ lip/GRID/s25/pgwv7a.mpg
2133
+ lip/GRID/s25/lrio3s.mpg
2134
+ lip/GRID/s25/swbgzn.mpg
2135
+ lip/GRID/s25/lravzn.mpg
2136
+ lip/GRID/s25/swiz4n.mpg
2137
+ lip/GRID/s25/swaz9s.mpg
2138
+ lip/GRID/s25/lbwo9s.mpg
2139
+ lip/GRID/s25/prwo1a.mpg
2140
+ lip/GRID/s25/bbwd9a.mpg
2141
+ lip/GRID/s25/sriz1a.mpg
2142
+ lip/GRID/s25/prbn4n.mpg
2143
+ lip/GRID/s25/srbl9s.mpg
2144
+ lip/GRID/s25/lgbx8p.mpg
2145
+ lip/GRID/s25/lrbi9a.mpg
2146
+ lip/GRID/s25/bgie3s.mpg
2147
+ lip/GRID/s25/prwu3s.mpg
2148
+ lip/GRID/s25/pwwi1s.mpg
2149
+ lip/GRID/s25/lwbc8n.mpg
2150
+ lip/GRID/s25/sbwf3s.mpg
2151
+ lip/GRID/s25/pwbh6n.mpg
2152
+ lip/GRID/s25/sgam9a.mpg
2153
+ lip/GRID/s25/sbik5s.mpg
2154
+ lip/GRID/s25/swbm6p.mpg
2155
+ lip/GRID/s25/lwbx2p.mpg
2156
+ lip/GRID/s25/pwin4p.mpg
2157
+ lip/GRID/s25/bbwq4n.mpg
2158
+ lip/GRID/s25/bbii8n.mpg
2159
+ lip/GRID/s25/sraf2p.mpg
2160
+ lip/GRID/s25/bbadzp.mpg
2161
+ lip/GRID/s25/bbwx8n.mpg
2162
+ lip/GRID/s25/sbiq9s.mpg
2163
+ lip/GRID/s25/swiz6p.mpg
2164
+ lip/GRID/s25/lbwv5a.mpg
2165
+ lip/GRID/s25/sral6p.mpg
2166
+ lip/GRID/s25/lriu7s.mpg
2167
+ lip/GRID/s25/lwac5s.mpg
2168
+ lip/GRID/s25/pranzn.mpg
2169
+ lip/GRID/s25/pwwb6n.mpg
2170
+ lip/GRID/s25/sbwz4n.mpg
2171
+ lip/GRID/s25/lrai4p.mpg
2172
+ lip/GRID/s25/pgwi6n.mpg
2173
+ lip/GRID/s25/bridzn.mpg
2174
+ lip/GRID/s25/lwwx5s.mpg
2175
+ lip/GRID/s25/bgbz4p.mpg
2176
+ lip/GRID/s25/pwwu9s.mpg
2177
+ lip/GRID/s25/lgic8p.mpg
2178
+ lip/GRID/s25/bbbd3s.mpg
2179
+ lip/GRID/s25/pwbu6p.mpg
2180
+ lip/GRID/s25/bgar4n.mpg
2181
+ lip/GRID/s25/swil8p.mpg
2182
+ lip/GRID/s25/sbiezn.mpg
2183
+ lip/GRID/s25/srwf9s.mpg
2184
+ lip/GRID/s25/sbbf1a.mpg
2185
+ lip/GRID/s25/bgirzn.mpg
2186
+ lip/GRID/s25/srir5s.mpg
2187
+ lip/GRID/s25/prwb2p.mpg
2188
+ lip/GRID/s25/pwbu7a.mpg
2189
+ lip/GRID/s25/lbwi5s.mpg
2190
+ lip/GRID/s25/lbbb9a.mpg
2191
+ lip/GRID/s25/brbk5a.mpg
2192
+ lip/GRID/s25/lwbj4p.mpg
2193
+ lip/GRID/s25/bwwz1s.mpg
2194
+ lip/GRID/s25/pbwhzp.mpg
2195
+ lip/GRID/s25/bgbl5s.mpg
2196
+ lip/GRID/s25/brix4p.mpg
2197
+ lip/GRID/s25/swwg5s.mpg
2198
+ lip/GRID/s25/lbin6n.mpg
2199
+ lip/GRID/s25/lwap4p.mpg
2200
+ lip/GRID/s25/lrwp4n.mpg
2201
+ lip/GRID/s25/brbk3s.mpg
2202
+ lip/GRID/s25/prwbzn.mpg
2203
+ lip/GRID/s25/sgba2n.mpg
2204
+ lip/GRID/s25/pbbnzp.mpg
2205
+ lip/GRID/s25/sgbt7a.mpg
2206
+ lip/GRID/s25/lbbv1a.mpg
2207
+ lip/GRID/s25/bgbfzn.mpg
2208
+ lip/GRID/s25/lwbx3a.mpg
2209
+ lip/GRID/s25/bgaz1a.mpg
2210
+ lip/GRID/s25/sgam8p.mpg
2211
+ lip/GRID/s25/bwwl3s.mpg
2212
+ lip/GRID/s25/lbbi1s.mpg
2213
+ lip/GRID/s25/sgbt6p.mpg
2214
+ lip/GRID/s25/swwt5a.mpg
2215
+ lip/GRID/s25/sras1a.mpg
2216
+ lip/GRID/s25/srwf8n.mpg
2217
+ lip/GRID/s25/bwik3a.mpg
2218
+ lip/GRID/s25/sriy9s.mpg
2219
+ lip/GRID/s25/lbin8p.mpg
2220
+ lip/GRID/s25/swis2p.mpg
2221
+ lip/GRID/s25/sgwh3a.mpg
2222
+ lip/GRID/s25/pbag1s.mpg
2223
+ lip/GRID/s25/srwg1a.mpg
2224
+ lip/GRID/s25/bbap9a.mpg
2225
+ lip/GRID/s25/pgah9s.mpg
2226
+ lip/GRID/s25/pwwv1a.mpg
2227
+ lip/GRID/s25/brwe2n.mpg
2228
+ lip/GRID/s25/lriu9a.mpg
2229
+ lip/GRID/s25/sgba4p.mpg
2230
+ lip/GRID/s25/sraz3s.mpg
2231
+ lip/GRID/s25/sbak9s.mpg
2232
+ lip/GRID/s25/bgik6n.mpg
2233
+ lip/GRID/s25/sgis6n.mpg
2234
+ lip/GRID/s25/lrbv4n.mpg
2235
+ lip/GRID/s25/lwwj6n.mpg
2236
+ lip/GRID/s25/brbq8p.mpg
2237
+ lip/GRID/s25/brax7s.mpg
2238
+ lip/GRID/s25/pbagzn.mpg
2239
+ lip/GRID/s25/praa4p.mpg
2240
+ lip/GRID/s25/lbab4p.mpg
2241
+ lip/GRID/s25/srbs2n.mpg
2242
+ lip/GRID/s25/lbwi4n.mpg
2243
+ lip/GRID/s25/sgwh1s.mpg
2244
+ lip/GRID/s25/sgbg7s.mpg
2245
+ lip/GRID/s25/prag7s.mpg
2246
+ lip/GRID/s25/pwit8p.mpg
2247
+ lip/GRID/s25/sgwn6p.mpg
2248
+ lip/GRID/s25/swwm9s.mpg
2249
+ lip/GRID/s25/pbiz8n.mpg
2250
+ lip/GRID/s25/pbif6n.mpg
2251
+ lip/GRID/s25/pbif9a.mpg
2252
+ lip/GRID/s25/lbwc1s.mpg
2253
+ lip/GRID/s25/briqzp.mpg
2254
+ lip/GRID/s25/lwwd3s.mpg
2255
+ lip/GRID/s25/pbwn4p.mpg
2256
+ lip/GRID/s25/sgbt4n.mpg
2257
+ lip/GRID/s25/swif3s.mpg
2258
+ lip/GRID/s25/bbwx9s.mpg
2259
+ lip/GRID/s25/bwak5s.mpg
2260
+ lip/GRID/s25/pbag2p.mpg
2261
+ lip/GRID/s25/pwin3s.mpg
2262
+ lip/GRID/s25/bgiy5s.mpg
2263
+ lip/GRID/s25/swbtzp.mpg
2264
+ lip/GRID/s25/swam3a.mpg
2265
+ lip/GRID/s25/srir4n.mpg
2266
+ lip/GRID/s25/lbau5s.mpg
2267
+ lip/GRID/s25/lbau6p.mpg
2268
+ lip/GRID/s25/bwarzp.mpg
2269
+ lip/GRID/s25/sgwu1a.mpg
2270
+ lip/GRID/s25/bwiyzp.mpg
2271
+ lip/GRID/s25/lgap8n.mpg
2272
+ lip/GRID/s25/lgwq9a.mpg
2273
+ lip/GRID/s25/swil7s.mpg
2274
+ lip/GRID/s25/swbg3a.mpg
2275
+ lip/GRID/s25/lrbv6p.mpg
2276
+ lip/GRID/s25/brid2p.mpg
2277
+ lip/GRID/s25/lgwq8p.mpg
2278
+ lip/GRID/s25/brad7a.mpg
2279
+ lip/GRID/s25/srwm3s.mpg
2280
+ lip/GRID/s25/pbim3a.mpg
2281
+ lip/GRID/s25/lbih3s.mpg
2282
+ lip/GRID/s25/sbwf2n.mpg
2283
+ lip/GRID/s25/pgbczp.mpg
2284
+ lip/GRID/s25/swwg6p.mpg
2285
+ lip/GRID/s25/lrwxzp.mpg
2286
+ lip/GRID/s25/swiz7a.mpg
2287
+ lip/GRID/s25/sbbr9a.mpg
2288
+ lip/GRID/s25/prbn5s.mpg
2289
+ lip/GRID/s25/pbis4n.mpg
2290
+ lip/GRID/s25/swif2n.mpg
2291
+ lip/GRID/s25/lbbb6n.mpg
2292
+ lip/GRID/s25/bbip5a.mpg
2293
+ lip/GRID/s25/brwk6n.mpg
2294
+ lip/GRID/s25/lwaj1a.mpg
2295
+ lip/GRID/s25/prwozp.mpg
2296
+ lip/GRID/s24/bbiv9p.mpg
2297
+ lip/GRID/s24/sgwuzs.mpg
2298
+ lip/GRID/s24/lbbvzs.mpg
2299
+ lip/GRID/s24/bbap9p.mpg
2300
+ lip/GRID/s24/bgbs1p.mpg
2301
+ lip/GRID/s24/lgiv9n.mpg
2302
+ lip/GRID/s24/lgic8s.mpg
2303
+ lip/GRID/s24/lwac6s.mpg
2304
+ lip/GRID/s24/sbwmza.mpg
2305
+ lip/GRID/s24/bwiq6s.mpg
2306
+ lip/GRID/s24/bgiy7p.mpg
2307
+ lip/GRID/s24/lbbb7n.mpg
2308
+ lip/GRID/s24/sbbr9p.mpg
2309
+ lip/GRID/s24/sgbn3p.mpg
2310
+ lip/GRID/s24/pgwc3n.mpg
2311
+ lip/GRID/s24/lraczs.mpg
2312
+ lip/GRID/s24/pwin3n.mpg
2313
+ lip/GRID/s24/lwap6a.mpg
2314
+ lip/GRID/s24/lbih4s.mpg
2315
+ lip/GRID/s24/lrbp2s.mpg
2316
+ lip/GRID/s24/bbwq5n.mpg
2317
+ lip/GRID/s24/brad7p.mpg
2318
+ lip/GRID/s24/lbin9p.mpg
2319
+ lip/GRID/s24/sgitza.mpg
2320
+ lip/GRID/s24/bwieza.mpg
2321
+ lip/GRID/s24/lwiv5p.mpg
2322
+ lip/GRID/s24/bbwyzs.mpg
2323
+ lip/GRID/s24/brbrza.mpg
2324
+ lip/GRID/s24/pbam5n.mpg
2325
+ lip/GRID/s24/pgah9n.mpg
2326
+ lip/GRID/s24/lbah9p.mpg
2327
+ lip/GRID/s24/sbbr8s.mpg
2328
+ lip/GRID/s24/lbbb9p.mpg
2329
+ lip/GRID/s24/pwit7n.mpg
2330
+ lip/GRID/s24/sbazza.mpg
2331
+ lip/GRID/s24/bwwe9n.mpg
2332
+ lip/GRID/s24/sgwu1p.mpg
2333
+ lip/GRID/s24/brid2s.mpg
2334
+ lip/GRID/s24/bwbk9n.mpg
2335
+ lip/GRID/s24/srbm1p.mpg
2336
+ lip/GRID/s24/pwbh8s.mpg
2337
+ lip/GRID/s24/lgbq3n.mpg
2338
+ lip/GRID/s24/brwr3p.mpg
2339
+ lip/GRID/s24/bbbq1n.mpg
2340
+ lip/GRID/s24/pbag1n.mpg
2341
+ lip/GRID/s24/pgbv3p.mpg
2342
+ lip/GRID/s24/lrib6s.mpg
2343
+ lip/GRID/s24/lgbx8s.mpg
2344
+ lip/GRID/s24/brix4s.mpg
2345
+ lip/GRID/s24/brid4a.mpg
2346
+ lip/GRID/s24/lrao8s.mpg
2347
+ lip/GRID/s24/sgbt6s.mpg
2348
+ lip/GRID/s24/lgwy3p.mpg
2349
+ lip/GRID/s24/sbik7p.mpg
2350
+ lip/GRID/s24/lgbx7n.mpg
2351
+ lip/GRID/s24/sbar3n.mpg
2352
+ lip/GRID/s24/sbae5n.mpg
2353
+ lip/GRID/s24/pwiuza.mpg
2354
+ lip/GRID/s24/sriy9n.mpg
2355
+ lip/GRID/s24/pgib4a.mpg
2356
+ lip/GRID/s24/lwii8a.mpg
2357
+ lip/GRID/s24/swam4a.mpg
2358
+ lip/GRID/s24/brwy6s.mpg
2359
+ lip/GRID/s24/sbwz6s.mpg
2360
+ lip/GRID/s24/lbao4a.mpg
2361
+ lip/GRID/s24/bwwz3p.mpg
2362
+ lip/GRID/s24/lrab9n.mpg
2363
+ lip/GRID/s24/sbbl6a.mpg
2364
+ lip/GRID/s24/bbwk1n.mpg
2365
+ lip/GRID/s24/brwr1n.mpg
2366
+ lip/GRID/s24/bgbszs.mpg
2367
+ lip/GRID/s24/bgwf5n.mpg
2368
+ lip/GRID/s24/swis4a.mpg
2369
+ lip/GRID/s24/lgwy2s.mpg
2370
+ lip/GRID/s24/pbim1n.mpg
2371
+ lip/GRID/s24/lbwv4s.mpg
2372
+ lip/GRID/s24/srbs6a.mpg
2373
+ lip/GRID/s24/srir7p.mpg
2374
+ lip/GRID/s24/pbbt4s.mpg
2375
+ lip/GRID/s24/bwwsza.mpg
2376
+ lip/GRID/s24/prwo2a.mpg
2377
+ lip/GRID/s24/lgip6s.mpg
2378
+ lip/GRID/s24/lbiu3p.mpg
2379
+ lip/GRID/s24/lwbj6a.mpg
2380
+ lip/GRID/s24/sbbz4a.mpg
2381
+ lip/GRID/s24/prag7n.mpg
2382
+ lip/GRID/s24/bwae1n.mpg
2383
+ lip/GRID/s24/brad8a.mpg
2384
+ lip/GRID/s24/lgixzs.mpg
2385
+ lip/GRID/s24/lbibzs.mpg
2386
+ lip/GRID/s24/sriz1p.mpg
2387
+ lip/GRID/s24/bwid9p.mpg
2388
+ lip/GRID/s24/lrio6a.mpg
2389
+ lip/GRID/s24/lbwc3p.mpg
2390
+ lip/GRID/s24/bgir2s.mpg
2391
+ lip/GRID/s24/sbar5p.mpg
2392
+ lip/GRID/s24/srwm5p.mpg
2393
+ lip/GRID/s24/lrbc6a.mpg
2394
+ lip/GRID/s24/lwii5n.mpg
2395
+ lip/GRID/s24/pwah4s.mpg
2396
+ lip/GRID/s24/bgik7n.mpg
2397
+ lip/GRID/s24/bgwm1p.mpg
2398
+ lip/GRID/s24/bbbj9p.mpg
2399
+ lip/GRID/s24/lrwp5n.mpg
2400
+ lip/GRID/s24/lbib2a.mpg
2401
+ lip/GRID/s24/pbas9n.mpg
2402
+ lip/GRID/s24/pwwv1p.mpg
2403
+ lip/GRID/s24/pgin9n.mpg
2404
+ lip/GRID/s24/pwwi4a.mpg
2405
+ lip/GRID/s24/prbh4a.mpg
2406
+ lip/GRID/s24/bbip5p.mpg
2407
+ lip/GRID/s24/brbezs.mpg
2408
+ lip/GRID/s24/prat6s.mpg
2409
+ lip/GRID/s24/pbbg8a.mpg
2410
+ lip/GRID/s24/bbbd4s.mpg
2411
+ lip/GRID/s24/prwh6s.mpg
2412
+ lip/GRID/s24/sgam8s.mpg
2413
+ lip/GRID/s24/bwiq7p.mpg
2414
+ lip/GRID/s24/lwipzs.mpg
2415
+ lip/GRID/s24/lrib5n.mpg
2416
+ lip/GRID/s24/lgad3p.mpg
2417
+ lip/GRID/s24/bgae9p.mpg
2418
+ lip/GRID/s24/lrwx1p.mpg
2419
+ lip/GRID/s24/lgwq7n.mpg
2420
+ lip/GRID/s24/bbax4a.mpg
2421
+ lip/GRID/s24/pbis7p.mpg
2422
+ lip/GRID/s24/lrbi7n.mpg
2423
+ lip/GRID/s24/bwbr6a.mpg
2424
+ lip/GRID/s24/sbbz2s.mpg
2425
+ lip/GRID/s24/sbae6s.mpg
2426
+ lip/GRID/s24/srbz8s.mpg
2427
+ lip/GRID/s24/lwav8s.mpg
2428
+ lip/GRID/s24/sbie3p.mpg
2429
+ lip/GRID/s24/bway6a.mpg
2430
+ lip/GRID/s24/prwh7p.mpg
2431
+ lip/GRID/s24/lgwq9p.mpg
2432
+ lip/GRID/s24/pbim4a.mpg
2433
+ lip/GRID/s24/lwiv3n.mpg
2434
+ lip/GRID/s24/lwbx2s.mpg
2435
+ lip/GRID/s24/lrwj4a.mpg
2436
+ lip/GRID/s24/bgie4s.mpg
2437
+ lip/GRID/s24/lrivza.mpg
2438
+ lip/GRID/s24/bwbe7p.mpg
2439
+ lip/GRID/s24/swwn1p.mpg
2440
+ lip/GRID/s24/pbbnzs.mpg
2441
+ lip/GRID/s24/sgim6a.mpg
2442
+ lip/GRID/s24/pwig9n.mpg
2443
+ lip/GRID/s24/sbak9n.mpg
2444
+ lip/GRID/s24/swwa2s.mpg
2445
+ lip/GRID/s24/pwwo6s.mpg
2446
+ lip/GRID/s24/lbin8s.mpg
2447
+ lip/GRID/s24/srbs3n.mpg
2448
+ lip/GRID/s24/lrwc9p.mpg
2449
+ lip/GRID/s24/sbik8a.mpg
2450
+ lip/GRID/s24/bbaj5p.mpg
2451
+ lip/GRID/s24/pbwt7n.mpg
2452
+ lip/GRID/s24/bgie6a.mpg
2453
+ lip/GRID/s24/lbwi5n.mpg
2454
+ lip/GRID/s24/lgaj6s.mpg
2455
+ lip/GRID/s24/sral7p.mpg
2456
+ lip/GRID/s24/lrwdza.mpg
2457
+ lip/GRID/s24/sbae8a.mpg
2458
+ lip/GRID/s24/swbm7p.mpg
2459
+ lip/GRID/s24/brad6s.mpg
2460
+ lip/GRID/s24/bgiy8a.mpg
2461
+ lip/GRID/s24/swis2s.mpg
2462
+ lip/GRID/s24/pgau8s.mpg
2463
+ lip/GRID/s24/pgbc2a.mpg
2464
+ lip/GRID/s24/lwbx1n.mpg
2465
+ lip/GRID/s24/lrwp8a.mpg
2466
+ lip/GRID/s24/pgbo8s.mpg
2467
+ lip/GRID/s24/lbau8a.mpg
2468
+ lip/GRID/s24/pgib2s.mpg
2469
+ lip/GRID/s24/pria2a.mpg
2470
+ lip/GRID/s24/lrbi9p.mpg
2471
+ lip/GRID/s24/pbwg9n.mpg
2472
+ lip/GRID/s24/sbbl4s.mpg
2473
+ lip/GRID/s24/bwbl1p.mpg
2474
+ lip/GRID/s24/lwip1p.mpg
2475
+ lip/GRID/s24/lrwp6s.mpg
2476
+ lip/GRID/s24/srifza.mpg
2477
+ lip/GRID/s24/sgwn7p.mpg
2478
+ lip/GRID/s24/lwwd3n.mpg
2479
+ lip/GRID/s24/brak2a.mpg
2480
+ lip/GRID/s24/priazs.mpg
2481
+ lip/GRID/s24/prwh5n.mpg
2482
+ lip/GRID/s24/swam2s.mpg
2483
+ lip/GRID/s24/brwk9p.mpg
2484
+ lip/GRID/s24/bgiy5n.mpg
2485
+ lip/GRID/s24/bbad2a.mpg
2486
+ lip/GRID/s24/srir8a.mpg
2487
+ lip/GRID/s24/lgij3p.mpg
2488
+ lip/GRID/s24/bbax2s.mpg
2489
+ lip/GRID/s24/bgbl5n.mpg
2490
+ lip/GRID/s24/pbba2s.mpg
2491
+ lip/GRID/s24/bbic7p.mpg
2492
+ lip/GRID/s24/lbbu9n.mpg
2493
+ lip/GRID/s24/pgih8a.mpg
2494
+ lip/GRID/s24/lbin7n.mpg
2495
+ lip/GRID/s24/swil8s.mpg
2496
+ lip/GRID/s24/pwwcza.mpg
2497
+ lip/GRID/s24/sbik6s.mpg
2498
+ lip/GRID/s24/pwaa9n.mpg
2499
+ lip/GRID/s24/brax7n.mpg
2500
+ lip/GRID/s24/sgwt9n.mpg
2501
+ lip/GRID/s24/sgag3n.mpg
2502
+ lip/GRID/s24/lgwq8s.mpg
2503
+ lip/GRID/s24/bwwl6a.mpg
2504
+ lip/GRID/s24/sbbl3n.mpg
2505
+ lip/GRID/s24/praa4s.mpg
2506
+ lip/GRID/s24/srbf6s.mpg
2507
+ lip/GRID/s24/prim7n.mpg
2508
+ lip/GRID/s24/brix6a.mpg
2509
+ lip/GRID/s24/sganza.mpg
2510
+ lip/GRID/s24/swiz5n.mpg
2511
+ lip/GRID/s24/bgwz8s.mpg
2512
+ lip/GRID/s24/lbwv6a.mpg
2513
+ lip/GRID/s24/prit3p.mpg
2514
+ lip/GRID/s24/srizzs.mpg
2515
+ lip/GRID/s24/sgwh3p.mpg
2516
+ lip/GRID/s24/pwau3p.mpg
2517
+ lip/GRID/s24/srwgzs.mpg
2518
+ lip/GRID/s24/prinza.mpg
2519
+ lip/GRID/s24/sraz6a.mpg
2520
+ lip/GRID/s24/bway5p.mpg
2521
+ lip/GRID/s24/lgwezs.mpg
2522
+ lip/GRID/s24/sril2s.mpg
2523
+ lip/GRID/s24/lgix2a.mpg
2524
+ lip/GRID/s24/pbwa7p.mpg
2525
+ lip/GRID/s24/pbwa8a.mpg
2526
+ lip/GRID/s24/pbat1p.mpg
2527
+ lip/GRID/s24/sbiy6a.mpg
2528
+ lip/GRID/s24/lgbd8a.mpg
2529
+ lip/GRID/s24/pgih5n.mpg
2530
+ lip/GRID/s24/lriu7n.mpg
2531
+ lip/GRID/s24/pwwo5n.mpg
2532
+ lip/GRID/s24/brbq7n.mpg
2533
+ lip/GRID/s24/prbn6s.mpg
2534
+ lip/GRID/s24/bgbf4a.mpg
2535
+ lip/GRID/s24/srbl9n.mpg
2536
+ lip/GRID/s24/sraz4s.mpg
2537
+ lip/GRID/s24/lbwi6s.mpg
2538
+ lip/GRID/s24/bwak5n.mpg
2539
+ lip/GRID/s24/pria1p.mpg
2540
+ lip/GRID/s24/swwg7p.mpg
2541
+ lip/GRID/s24/pgiu5p.mpg
2542
+ lip/GRID/s24/lwaj2a.mpg
2543
+ lip/GRID/s24/sgwu2a.mpg
2544
+ lip/GRID/s24/sgwa8s.mpg
2545
+ lip/GRID/s24/prwh8a.mpg
2546
+ lip/GRID/s24/pbis6s.mpg
2547
+ lip/GRID/s24/lgbj9n.mpg
2548
+ lip/GRID/s24/swif4s.mpg
2549
+ lip/GRID/s24/lbbo8a.mpg
2550
+ lip/GRID/s24/bbbd6a.mpg
2551
+ lip/GRID/s16/srif8a.mpg
2552
+ lip/GRID/s16/lgbe4s.mpg
2553
+ lip/GRID/s16/swag8a.mpg
2554
+ lip/GRID/s16/prwv3p.mpg
2555
+ lip/GRID/s16/swag7p.mpg
2556
+ lip/GRID/s16/lgay4a.mpg
2557
+ lip/GRID/s16/lwbeza.mpg
2558
+ lip/GRID/s16/lgwl2s.mpg
2559
+ lip/GRID/s16/sgwo6a.mpg
2560
+ lip/GRID/s16/bbad8s.mpg
2561
+ lip/GRID/s16/bbij9p.mpg
2562
+ lip/GRID/s16/lbao9n.mpg
2563
+ lip/GRID/s16/lwby2a.mpg
2564
+ lip/GRID/s16/lgak4s.mpg
2565
+ lip/GRID/s16/lbwd1p.mpg
2566
+ lip/GRID/s16/lgaq7n.mpg
2567
+ lip/GRID/s16/sgbo1p.mpg
2568
+ lip/GRID/s16/bgaz8s.mpg
2569
+ lip/GRID/s16/srbm8s.mpg
2570
+ lip/GRID/s16/bwiy7n.mpg
2571
+ lip/GRID/s16/pgwd2s.mpg
2572
+ lip/GRID/s16/lrav9n.mpg
2573
+ lip/GRID/s16/bgwt3p.mpg
2574
+ lip/GRID/s16/bwbz7p.mpg
2575
+ lip/GRID/s16/sras9p.mpg
2576
+ lip/GRID/s16/srwt5n.mpg
2577
+ lip/GRID/s16/lwwk5n.mpg
2578
+ lip/GRID/s16/bray6s.mpg
2579
+ lip/GRID/s16/bwbf3n.mpg
2580
+ lip/GRID/s16/lrwj9n.mpg
2581
+ lip/GRID/s16/srwn2s.mpg
2582
+ lip/GRID/s16/bgbg1p.mpg
2583
+ lip/GRID/s16/lgwr7p.mpg
2584
+ lip/GRID/s16/bwwm3p.mpg
2585
+ lip/GRID/s16/pria7n.mpg
2586
+ lip/GRID/s16/bgbs9p.mpg
2587
+ lip/GRID/s16/sbil5p.mpg
2588
+ lip/GRID/s16/bgam1p.mpg
2589
+ lip/GRID/s16/prih1n.mpg
2590
+ lip/GRID/s16/lbbj2a.mpg
2591
+ lip/GRID/s16/bbbk6s.mpg
2592
+ lip/GRID/s16/swaa4a.mpg
2593
+ lip/GRID/s16/prbb7p.mpg
2594
+ lip/GRID/s16/lrwq5p.mpg
2595
+ lip/GRID/s16/bbikza.mpg
2596
+ lip/GRID/s16/pbbu1n.mpg
2597
+ lip/GRID/s16/sbir8s.mpg
2598
+ lip/GRID/s16/brwz5p.mpg
2599
+ lip/GRID/s16/bgbs7n.mpg
2600
+ lip/GRID/s16/bwaz1n.mpg
2601
+ lip/GRID/s16/sgin2s.mpg
2602
+ lip/GRID/s16/swwb1p.mpg
2603
+ lip/GRID/s16/pgio9p.mpg
2604
+ lip/GRID/s16/pbbb1p.mpg
2605
+ lip/GRID/s16/lrac7n.mpg
2606
+ lip/GRID/s16/lgwl3p.mpg
2607
+ lip/GRID/s16/pwbv3n.mpg
2608
+ lip/GRID/s16/lrwx9p.mpg
2609
+ lip/GRID/s16/brwz6a.mpg
2610
+ lip/GRID/s16/swwh3n.mpg
2611
+ lip/GRID/s16/bwaf2a.mpg
2612
+ lip/GRID/s16/pbbh5p.mpg
2613
+ lip/GRID/s16/pwwv8s.mpg
2614
+ lip/GRID/s16/lgix9p.mpg
2615
+ lip/GRID/s16/bwie8a.mpg
2616
+ lip/GRID/s16/lraj2s.mpg
2617
+ lip/GRID/s16/bgiszs.mpg
2618
+ lip/GRID/s16/sgwh9n.mpg
2619
+ lip/GRID/s16/bbwy9p.mpg
2620
+ lip/GRID/s16/lgiq5p.mpg
2621
+ lip/GRID/s16/prbvza.mpg
2622
+ lip/GRID/s16/lrwx8s.mpg
2623
+ lip/GRID/s16/bgwm7n.mpg
2624
+ lip/GRID/s16/lbai7p.mpg
2625
+ lip/GRID/s16/lgaq9p.mpg
2626
+ lip/GRID/s16/swwh6a.mpg
2627
+ lip/GRID/s16/lbwd2a.mpg
2628
+ lip/GRID/s16/lraj3p.mpg
2629
+ lip/GRID/s16/lbbxza.mpg
2630
+ lip/GRID/s16/bbbrzs.mpg
2631
+ lip/GRID/s16/lrbq1p.mpg
2632
+ lip/GRID/s16/lgak6a.mpg
2633
+ lip/GRID/s16/bbid3n.mpg
2634
+ lip/GRID/s16/lbai6s.mpg
2635
+ lip/GRID/s16/pwwj2a.mpg
2636
+ lip/GRID/s16/sgit6s.mpg
2637
+ lip/GRID/s16/lwwe1n.mpg
2638
+ lip/GRID/s16/bgaf7p.mpg
2639
+ lip/GRID/s16/prao2a.mpg
2640
+ lip/GRID/s16/sris4s.mpg
2641
+ lip/GRID/s16/lgid6s.mpg
2642
+ lip/GRID/s16/pwwi9n.mpg
2643
+ lip/GRID/s16/lgbe3n.mpg
2644
+ lip/GRID/s16/swwu3p.mpg
2645
+ lip/GRID/s16/lrax1p.mpg
2646
+ lip/GRID/s16/srbm9p.mpg
2647
+ lip/GRID/s16/pwbi5n.mpg
2648
+ lip/GRID/s16/pbwu8a.mpg
2649
+ lip/GRID/s16/pwio1n.mpg
2650
+ lip/GRID/s16/lric3n.mpg
2651
+ lip/GRID/s16/pgbp7p.mpg
2652
+ lip/GRID/s16/sbwm7p.mpg
2653
+ lip/GRID/s16/pbwu5n.mpg
2654
+ lip/GRID/s16/prbo3n.mpg
2655
+ lip/GRID/s16/sgabza.mpg
2656
+ lip/GRID/s16/lwwq9n.mpg
2657
+ lip/GRID/s16/sgbu5p.mpg
2658
+ lip/GRID/s16/bbiq3p.mpg
2659
+ lip/GRID/s16/swat5p.mpg
2660
+ lip/GRID/s16/lwbyzs.mpg
2661
+ lip/GRID/s16/bbwr4s.mpg
2662
+ lip/GRID/s16/lwij3n.mpg
2663
+ lip/GRID/s16/bbiq1n.mpg
2664
+ lip/GRID/s16/lbio8a.mpg
2665
+ lip/GRID/s16/sgbh7p.mpg
2666
+ lip/GRID/s16/pbbh6a.mpg
2667
+ lip/GRID/s16/brbl4a.mpg
2668
+ lip/GRID/s16/lbbc8a.mpg
2669
+ lip/GRID/s16/bwwf7n.mpg
2670
+ lip/GRID/s16/bgas3n.mpg
2671
+ lip/GRID/s16/pgbj3p.mpg
2672
+ lip/GRID/s16/pbbb2a.mpg
2673
+ lip/GRID/s16/sgit8a.mpg
2674
+ lip/GRID/s16/brar1n.mpg
2675
+ lip/GRID/s16/sris5p.mpg
2676
+ lip/GRID/s16/bgwt1n.mpg
2677
+ lip/GRID/s16/sgan7p.mpg
2678
+ lip/GRID/s16/srbg3n.mpg
2679
+ lip/GRID/s16/lgbe6a.mpg
2680
+ lip/GRID/s16/lwwk7p.mpg
2681
+ lip/GRID/s16/lgbk8s.mpg
2682
+ lip/GRID/s16/pwai3p.mpg
2683
+ lip/GRID/s16/pbwh8s.mpg
2684
+ lip/GRID/s16/lgwe7n.mpg
2685
+ lip/GRID/s16/sgwu9p.mpg
2686
+ lip/GRID/s16/bbiq4a.mpg
2687
+ lip/GRID/s16/srwg8s.mpg
2688
+ lip/GRID/s16/prbo4s.mpg
2689
+ lip/GRID/s16/lbwc9n.mpg
2690
+ lip/GRID/s16/pgii5p.mpg
2691
+ lip/GRID/s16/sbir7n.mpg
2692
+ lip/GRID/s16/pbwh7n.mpg
2693
+ lip/GRID/s16/briy4a.mpg
2694
+ lip/GRID/s16/sbas3p.mpg
2695
+ lip/GRID/s16/pwao6s.mpg
2696
+ lip/GRID/s16/swag5n.mpg
2697
+ lip/GRID/s16/lwid1p.mpg
2698
+ lip/GRID/s16/pgii3n.mpg
2699
+ lip/GRID/s16/pwwc8a.mpg
2700
+ lip/GRID/s16/lgbk9p.mpg
2701
+ lip/GRID/s16/brae5p.mpg
2702
+ lip/GRID/s16/srbt3p.mpg
2703
+ lip/GRID/s16/bgbf9n.mpg
2704
+ lip/GRID/s16/bgbg2a.mpg
2705
+ lip/GRID/s16/bbaq6s.mpg
2706
+ lip/GRID/s16/pwai2s.mpg
2707
+ lip/GRID/s16/bgwa1p.mpg
2708
+ lip/GRID/s16/sgihza.mpg
2709
+ lip/GRID/s16/srimzs.mpg
2710
+ lip/GRID/s16/bwil1p.mpg
2711
+ lip/GRID/s16/pwio3p.mpg
2712
+ lip/GRID/s16/srwn4a.mpg
2713
+ lip/GRID/s16/lgiq3n.mpg
2714
+ lip/GRID/s16/bwwf8s.mpg
2715
+ lip/GRID/s16/bwaz4a.mpg
2716
+ lip/GRID/s16/sriz8s.mpg
2717
+ lip/GRID/s16/sgwb8a.mpg
2718
+ lip/GRID/s16/swwn7n.mpg
2719
+ lip/GRID/s16/lrwd6s.mpg
2720
+ lip/GRID/s16/lbio7p.mpg
2721
+ lip/GRID/s16/pgii6a.mpg
2722
+ lip/GRID/s16/lwwr1p.mpg
2723
+ lip/GRID/s16/bbad7n.mpg
2724
+ lip/GRID/s16/sbifzs.mpg
2725
+ lip/GRID/s16/lbbv7n.mpg
2726
+ lip/GRID/s16/lwwk8a.mpg
2727
+ lip/GRID/s16/pgiv2s.mpg
2728
+ lip/GRID/s16/lrap8a.mpg
2729
+ lip/GRID/s16/pbwb3n.mpg
2730
+ lip/GRID/s16/lrap7p.mpg
2731
+ lip/GRID/s16/priu2a.mpg
2732
+ lip/GRID/s16/bwal6a.mpg
2733
+ lip/GRID/s16/prin8a.mpg
2734
+ lip/GRID/s16/lgiyza.mpg
2735
+ lip/GRID/s16/bbbq9n.mpg
2736
+ lip/GRID/s16/pgwj6s.mpg
2737
+ lip/GRID/s16/srbg4s.mpg
2738
+ lip/GRID/s16/lric6a.mpg
2739
+ lip/GRID/s16/srim1p.mpg
2740
+ lip/GRID/s16/sriz9p.mpg
2741
+ lip/GRID/s16/lgbr2s.mpg
2742
+ lip/GRID/s16/brbe9p.mpg
2743
+ lip/GRID/s16/prbu9p.mpg
2744
+ lip/GRID/s16/bbbr2a.mpg
2745
+ lip/GRID/s16/bbby3n.mpg
2746
+ lip/GRID/s16/brar3p.mpg
2747
+ lip/GRID/s16/lbicza.mpg
2748
+ lip/GRID/s16/swbn5p.mpg
2749
+ lip/GRID/s16/sratza.mpg
2750
+ lip/GRID/s16/srbnza.mpg
2751
+ lip/GRID/s16/lbii1n.mpg
2752
+ lip/GRID/s16/priu1p.mpg
2753
+ lip/GRID/s16/lgwr6s.mpg
2754
+ lip/GRID/s16/sgin3p.mpg
2755
+ lip/GRID/s16/lbbv9p.mpg
2756
+ lip/GRID/s16/lwax8a.mpg
2757
+ lip/GRID/s16/bgwg3n.mpg
2758
+ lip/GRID/s16/praozs.mpg
2759
+ lip/GRID/s16/prwv4a.mpg
2760
+ lip/GRID/s16/brwl7p.mpg
2761
+ lip/GRID/s16/briezs.mpg
2762
+ lip/GRID/s16/pwbi6s.mpg
2763
+ lip/GRID/s16/bbbk8a.mpg
2764
+ lip/GRID/s16/swwh5p.mpg
2765
+ lip/GRID/s16/lwbd7n.mpg
2766
+ lip/GRID/s16/srbt2s.mpg
2767
+ lip/GRID/s16/lbib9p.mpg
2768
+ lip/GRID/s16/bbij8s.mpg
2769
+ lip/GRID/s16/sris6a.mpg
2770
+ lip/GRID/s16/briq7n.mpg
2771
+ lip/GRID/s16/pgwj8a.mpg
2772
+ lip/GRID/s16/sgwo4s.mpg
2773
+ lip/GRID/s16/bwal3n.mpg
2774
+ lip/GRID/s16/pran9n.mpg
2775
+ lip/GRID/s16/brar2s.mpg
2776
+ lip/GRID/s16/bbwy7n.mpg
2777
+ lip/GRID/s16/srbg5p.mpg
2778
+ lip/GRID/s16/brie1p.mpg
2779
+ lip/GRID/s16/lrwq3n.mpg
2780
+ lip/GRID/s16/pgai8s.mpg
2781
+ lip/GRID/s16/lwix3p.mpg
2782
+ lip/GRID/s16/lbwj6a.mpg
2783
+ lip/GRID/s16/lbwx2s.mpg
2784
+ lip/GRID/s16/prao1p.mpg
2785
+ lip/GRID/s16/sgauzs.mpg
2786
+ lip/GRID/s16/pbat7n.mpg
2787
+ lip/GRID/s16/swiaza.mpg
2788
+ lip/GRID/s16/bwbmza.mpg
2789
+ lip/GRID/s16/bbak1n.mpg
2790
+ lip/GRID/s16/prbo6a.mpg
2791
+ lip/GRID/s16/lbivzs.mpg
2792
+ lip/GRID/s16/prbu7n.mpg
2793
+ lip/GRID/s16/bgiz3n.mpg
2794
+ lip/GRID/s16/pgbj2s.mpg
2795
+ lip/GRID/s16/lrwyza.mpg
2796
+ lip/GRID/s16/bwws7p.mpg
2797
+ lip/GRID/s16/bgbm4s.mpg
2798
+ lip/GRID/s16/bwbz5n.mpg
2799
+ lip/GRID/s16/swwa9n.mpg
2800
+ lip/GRID/s16/sbwtzs.mpg
2801
+ lip/GRID/s16/pbwo3p.mpg
2802
+ lip/GRID/s16/bbwe8a.mpg
2803
+ lip/GRID/s16/lbwp9p.mpg
2804
+ lip/GRID/s16/lbwj3n.mpg
2805
+ lip/GRID/s16/pwih9p.mpg
2806
+ lip/GRID/s2/sria8a.mpg
2807
+ lip/GRID/s2/sgac1n.mpg
2808
+ lip/GRID/s2/swbv4a.mpg
2809
+ lip/GRID/s2/bbaz5p.mpg
2810
+ lip/GRID/s2/bbbs6a.mpg
2811
+ lip/GRID/s2/lgil5p.mpg
2812
+ lip/GRID/s2/lwaz1p.mpg
2813
+ lip/GRID/s2/lrwe9n.mpg
2814
+ lip/GRID/s2/pric1n.mpg
2815
+ lip/GRID/s2/lbaj9n.mpg
2816
+ lip/GRID/s2/swib2s.mpg
2817
+ lip/GRID/s2/lbid3p.mpg
2818
+ lip/GRID/s2/bris4a.mpg
2819
+ lip/GRID/s2/prav7n.mpg
2820
+ lip/GRID/s2/bgbu2s.mpg
2821
+ lip/GRID/s2/srwo7p.mpg
2822
+ lip/GRID/s2/sbba8s.mpg
2823
+ lip/GRID/s2/bwitza.mpg
2824
+ lip/GRID/s2/sbbn5n.mpg
2825
+ lip/GRID/s2/sbaa6a.mpg
2826
+ lip/GRID/s2/pwwy4a.mpg
2827
+ lip/GRID/s2/bgia3p.mpg
2828
+ lip/GRID/s2/lwbl6s.mpg
2829
+ lip/GRID/s2/bgwb4s.mpg
2830
+ lip/GRID/s2/bgwu5n.mpg
2831
+ lip/GRID/s2/bgit4s.mpg
2832
+ lip/GRID/s2/lbix3n.mpg
2833
+ lip/GRID/s2/sbwozs.mpg
2834
+ lip/GRID/s2/bwba5p.mpg
2835
+ lip/GRID/s2/lrbr3n.mpg
2836
+ lip/GRID/s2/lrwz1n.mpg
2837
+ lip/GRID/s2/srab1p.mpg
2838
+ lip/GRID/s2/srihzs.mpg
2839
+ lip/GRID/s2/bwwu1p.mpg
2840
+ lip/GRID/s2/lbak2a.mpg
2841
+ lip/GRID/s2/pgbe3p.mpg
2842
+ lip/GRID/s2/lrae2s.mpg
2843
+ lip/GRID/s2/sgbi9n.mpg
2844
+ lip/GRID/s2/lrwl4s.mpg
2845
+ lip/GRID/s2/swbv2s.mpg
2846
+ lip/GRID/s2/bwam9p.mpg
2847
+ lip/GRID/s2/pwiv9n.mpg
2848
+ lip/GRID/s2/srin4s.mpg
2849
+ lip/GRID/s2/pbac1p.mpg
2850
+ lip/GRID/s2/prwkza.mpg
2851
+ lip/GRID/s2/prii7p.mpg
2852
+ lip/GRID/s2/lwws5p.mpg
2853
+ lip/GRID/s2/swwi8s.mpg
2854
+ lip/GRID/s2/swio1p.mpg
2855
+ lip/GRID/s2/pwaj5n.mpg
2856
+ lip/GRID/s2/sgwj5p.mpg
2857
+ lip/GRID/s2/pwwy2s.mpg
2858
+ lip/GRID/s2/pbii2a.mpg
2859
+ lip/GRID/s2/pgaeza.mpg
2860
+ lip/GRID/s2/srwb9p.mpg
2861
+ lip/GRID/s2/sgbj1p.mpg
2862
+ lip/GRID/s2/bwwh2s.mpg
2863
+ lip/GRID/s2/lrby7n.mpg
2864
+ lip/GRID/s2/braz9n.mpg
2865
+ lip/GRID/s2/lbwr2s.mpg
2866
+ lip/GRID/s2/brwt4s.mpg
2867
+ lip/GRID/s2/pbwx2a.mpg
2868
+ lip/GRID/s2/pric3p.mpg
2869
+ lip/GRID/s2/lbaq3n.mpg
2870
+ lip/GRID/s2/lgil6a.mpg
2871
+ lip/GRID/s2/lgbz9n.mpg
2872
+ lip/GRID/s2/sgib9p.mpg
2873
+ lip/GRID/s2/bgin2a.mpg
2874
+ lip/GRID/s2/pwad4a.mpg
2875
+ lip/GRID/s2/pgbk6s.mpg
2876
+ lip/GRID/s2/bgit6a.mpg
2877
+ lip/GRID/s2/pbiizs.mpg
2878
+ lip/GRID/s2/lrae1n.mpg
2879
+ lip/GRID/s2/bwim6a.mpg
2880
+ lip/GRID/s2/lrik2s.mpg
2881
+ lip/GRID/s2/swao5p.mpg
2882
+ lip/GRID/s2/pgwl1p.mpg
2883
+ lip/GRID/s2/srwi4a.mpg
2884
+ lip/GRID/s2/brwa4a.mpg
2885
+ lip/GRID/s2/pbbp1n.mpg
2886
+ lip/GRID/s2/sria5n.mpg
2887
+ lip/GRID/s2/bgbb2a.mpg
2888
+ lip/GRID/s2/bbaz6a.mpg
2889
+ lip/GRID/s2/lrbe7p.mpg
2890
+ lip/GRID/s2/bbal6s.mpg
2891
+ lip/GRID/s2/swbi3n.mpg
2892
+ lip/GRID/s2/sraoza.mpg
2893
+ lip/GRID/s2/bbaz4s.mpg
2894
+ lip/GRID/s2/pbbp3p.mpg
2895
+ lip/GRID/s2/sria7p.mpg
2896
+ lip/GRID/s2/pwbq6a.mpg
2897
+ lip/GRID/s2/sbig6a.mpg
2898
+ lip/GRID/s2/pgayzs.mpg
2899
+ lip/GRID/s2/lrak5n.mpg
2900
+ lip/GRID/s2/srau2s.mpg
2901
+ lip/GRID/s2/sgap1p.mpg
2902
+ lip/GRID/s2/pbbc6a.mpg
2903
+ lip/GRID/s2/bgia4a.mpg
2904
+ lip/GRID/s2/pgbe4a.mpg
2905
+ lip/GRID/s2/bgag9n.mpg
2906
+ lip/GRID/s2/pbwc9p.mpg
2907
+ lip/GRID/s2/bgbh3n.mpg
2908
+ lip/GRID/s2/lwal1n.mpg
2909
+ lip/GRID/s2/sbbh2s.mpg
2910
+ lip/GRID/s2/lbij8a.mpg
2911
+ lip/GRID/s2/prbd2a.mpg
2912
+ lip/GRID/s2/srwb8s.mpg
2913
+ lip/GRID/s2/lrbr4s.mpg
2914
+ lip/GRID/s2/brbaza.mpg
2915
+ lip/GRID/s2/lbij6s.mpg
2916
+ lip/GRID/s2/pbwp6s.mpg
2917
+ lip/GRID/s2/pbai6a.mpg
2918
+ lip/GRID/s2/prwx7p.mpg
2919
+ lip/GRID/s2/sgbv9p.mpg
2920
+ lip/GRID/s2/bbiz2a.mpg
2921
+ lip/GRID/s2/lrik3p.mpg
2922
+ lip/GRID/s2/bwwh4a.mpg
2923
+ lip/GRID/s2/brwg5n.mpg
2924
+ lip/GRID/s2/pwip6s.mpg
2925
+ lip/GRID/s2/srin6a.mpg
2926
+ lip/GRID/s2/swai2a.mpg
2927
+ lip/GRID/s2/sban3p.mpg
2928
+ lip/GRID/s2/sbig3n.mpg
2929
+ lip/GRID/s2/lbax9p.mpg
2930
+ lip/GRID/s2/prap4s.mpg
2931
+ lip/GRID/s2/swaizs.mpg
2932
+ lip/GRID/s2/lwbz4s.mpg
2933
+ lip/GRID/s2/lgbs5n.mpg
2934
+ lip/GRID/s2/brbm6s.mpg
2935
+ lip/GRID/s2/srih1p.mpg
2936
+ lip/GRID/s2/prii5n.mpg
2937
+ lip/GRID/s2/lgir7n.mpg
2938
+ lip/GRID/s2/lwazzs.mpg
2939
+ lip/GRID/s2/pwbyza.mpg
2940
+ lip/GRID/s2/bbws8s.mpg
2941
+ lip/GRID/s2/bras5n.mpg
2942
+ lip/GRID/s2/srbo2s.mpg
2943
+ lip/GRID/s2/bwag6a.mpg
2944
+ lip/GRID/s2/swbc2a.mpg
2945
+ lip/GRID/s2/pgbe2s.mpg
2946
+ lip/GRID/s2/bbwg2a.mpg
2947
+ lip/GRID/s2/lbid4a.mpg
2948
+ lip/GRID/s2/lbby2s.mpg
2949
+ lip/GRID/s2/briz8a.mpg
2950
+ lip/GRID/s2/bwis9p.mpg
2951
+ lip/GRID/s2/bgahzs.mpg
2952
+ lip/GRID/s2/prwq2s.mpg
2953
+ lip/GRID/s2/sgbc8a.mpg
2954
+ lip/GRID/s2/lgaz5n.mpg
2955
+ lip/GRID/s2/prii6s.mpg
2956
+ lip/GRID/s2/bgah1p.mpg
2957
+ lip/GRID/s2/pwwk6a.mpg
2958
+ lip/GRID/s2/lbij5n.mpg
2959
+ lip/GRID/s2/pgaq5n.mpg
2960
+ lip/GRID/s2/pgby5p.mpg
2961
+ lip/GRID/s2/bgia1n.mpg
2962
+ lip/GRID/s2/bwag3n.mpg
2963
+ lip/GRID/s2/swao4s.mpg
2964
+ lip/GRID/s2/pgiq4a.mpg
2965
+ lip/GRID/s2/brwa2s.mpg
2966
+ lip/GRID/s2/pgwe8a.mpg
2967
+ lip/GRID/s2/bbal5n.mpg
2968
+ lip/GRID/s2/lrik1n.mpg
2969
+ lip/GRID/s2/lgws9n.mpg
2970
+ lip/GRID/s2/pwidza.mpg
2971
+ lip/GRID/s2/lwal3p.mpg
2972
+ lip/GRID/s2/brbm7p.mpg
2973
+ lip/GRID/s2/pwaq1p.mpg
2974
+ lip/GRID/s2/brbg2s.mpg
2975
+ lip/GRID/s2/sran8s.mpg
2976
+ lip/GRID/s2/lgbf9p.mpg
2977
+ lip/GRID/s2/lwir3p.mpg
2978
+ lip/GRID/s2/pbwx1p.mpg
2979
+ lip/GRID/s2/pbbi8s.mpg
2980
+ lip/GRID/s2/bwba3n.mpg
2981
+ lip/GRID/s2/swau8s.mpg
2982
+ lip/GRID/s2/pbaczs.mpg
2983
+ lip/GRID/s2/pbao8s.mpg
2984
+ lip/GRID/s2/lrwf2a.mpg
2985
+ lip/GRID/s2/sgai6s.mpg
2986
+ lip/GRID/s2/pgbr1p.mpg
2987
+ lip/GRID/s2/lbby1n.mpg
2988
+ lip/GRID/s2/swwv8a.mpg
2989
+ lip/GRID/s2/praxza.mpg
2990
+ lip/GRID/s2/sgai5n.mpg
2991
+ lip/GRID/s2/srig9n.mpg
2992
+ lip/GRID/s2/lrae4a.mpg
2993
+ lip/GRID/s2/pwwk4s.mpg
2994
+ lip/GRID/s2/lwbz6a.mpg
2995
+ lip/GRID/s2/pgak2s.mpg
2996
+ lip/GRID/s2/bbizzs.mpg
2997
+ lip/GRID/s2/pwij1n.mpg
2998
+ lip/GRID/s2/pbio4s.mpg
2999
+ lip/GRID/s2/swih5n.mpg
3000
+ lip/GRID/s2/bgaa5n.mpg
3001
+ lip/GRID/s2/bgat8s.mpg
3002
+ lip/GRID/s2/pgikza.mpg
3003
+ lip/GRID/s2/bwwn7p.mpg
3004
+ lip/GRID/s2/sgicza.mpg
3005
+ lip/GRID/s2/pwix1p.mpg
3006
+ lip/GRID/s2/srbb6a.mpg
3007
+ lip/GRID/s2/lwwl9n.mpg
3008
+ lip/GRID/s2/swib3p.mpg
3009
+ lip/GRID/s2/sgiv1p.mpg
3010
+ lip/GRID/s2/srbb3n.mpg
3011
+ lip/GRID/s2/lgwm6s.mpg
3012
+ lip/GRID/s2/bwbg7n.mpg
3013
+ lip/GRID/s2/pgwr6a.mpg
3014
+ lip/GRID/s2/bbbz7n.mpg
3015
+ lip/GRID/s2/sgac4a.mpg
3016
+ lip/GRID/s2/sgwqza.mpg
3017
+ lip/GRID/s2/prbd1p.mpg
3018
+ lip/GRID/s2/lgwm7p.mpg
3019
+ lip/GRID/s2/pbio6a.mpg
3020
+ lip/GRID/s2/lwbszs.mpg
3021
+ lip/GRID/s2/lwik9p.mpg
3022
+ lip/GRID/s2/sbwb3p.mpg
3023
+ lip/GRID/s2/lrwl3n.mpg
3024
+ lip/GRID/s2/sbat5n.mpg
3025
+ lip/GRID/s2/bwbn4a.mpg
3026
+ lip/GRID/s2/lriyzs.mpg
3027
+ lip/GRID/s2/pgak3p.mpg
3028
+ lip/GRID/s2/bbbf8a.mpg
3029
+ lip/GRID/s2/bbaz3n.mpg
3030
+ lip/GRID/s2/srit8s.mpg
3031
+ lip/GRID/s2/pwbq4s.mpg
3032
+ lip/GRID/s2/bril8s.mpg
3033
+ lip/GRID/s2/lbwe4s.mpg
3034
+ lip/GRID/s2/sgwx3p.mpg
3035
+ lip/GRID/s2/swwp1n.mpg
3036
+ lip/GRID/s2/bgan4s.mpg
3037
+ lip/GRID/s2/lwar8a.mpg
3038
+ lip/GRID/s2/prac8a.mpg
3039
+ lip/GRID/s2/sgbj2a.mpg
3040
+ lip/GRID/s2/pgwy7n.mpg
3041
+ lip/GRID/s2/swbi4s.mpg
3042
+ lip/GRID/s2/pgwy9p.mpg
3043
+ lip/GRID/s2/swwp4a.mpg
3044
+ lip/GRID/s2/pgwe6s.mpg
3045
+ lip/GRID/s2/bgat9p.mpg
3046
+ lip/GRID/s2/lwae8s.mpg
3047
+ lip/GRID/s2/lbaq4s.mpg
3048
+ lip/GRID/s2/braf8s.mpg
3049
+ lip/GRID/s2/bragza.mpg
3050
+ lip/GRID/s2/lrblzs.mpg
3051
+ lip/GRID/s2/sbia1p.mpg
3052
+ lip/GRID/s2/bbar9n.mpg
3053
+ lip/GRID/s2/prwd3n.mpg
3054
+ lip/GRID/s2/sraa9n.mpg
3055
+ lip/GRID/s2/pbbv5n.mpg
3056
+ lip/GRID/s2/lgwt2a.mpg
3057
+ lip/GRID/s2/lrwl6a.mpg
3058
+ lip/GRID/s2/lgiz4a.mpg
3059
+ lip/GRID/s2/brbt1p.mpg
3060
+ lip/GRID/s2/lwbf4a.mpg
3061
+ lip/GRID/s7/swbh9s.mpg
3062
+ lip/GRID/s7/lwwl7a.mpg
3063
+ lip/GRID/s7/lgwz8n.mpg
3064
+ lip/GRID/s7/lrbe1s.mpg
3065
+ lip/GRID/s7/lwbr5s.mpg
3066
+ lip/GRID/s7/pwbx3s.mpg
3067
+ lip/GRID/s7/pgad4p.mpg
3068
+ lip/GRID/s7/lrwy8p.mpg
3069
+ lip/GRID/s7/bwbm6n.mpg
3070
+ lip/GRID/s7/bwbt1s.mpg
3071
+ lip/GRID/s7/sgbc3a.mpg
3072
+ lip/GRID/s7/sgwv9a.mpg
3073
+ lip/GRID/s7/pwwd5s.mpg
3074
+ lip/GRID/s7/srwu6p.mpg
3075
+ lip/GRID/s7/lrix4n.mpg
3076
+ lip/GRID/s7/bbbr9s.mpg
3077
+ lip/GRID/s7/bwif7a.mpg
3078
+ lip/GRID/s7/lwwf1s.mpg
3079
+ lip/GRID/s7/lbbq5a.mpg
3080
+ lip/GRID/s7/sran2n.mpg
3081
+ lip/GRID/s7/sbam9a.mpg
3082
+ lip/GRID/s7/pgix3a.mpg
3083
+ lip/GRID/s7/bwiz6n.mpg
3084
+ lip/GRID/s7/pgij5a.mpg
3085
+ lip/GRID/s7/srbn9a.mpg
3086
+ lip/GRID/s7/lrix6p.mpg
3087
+ lip/GRID/s7/lbwd8n.mpg
3088
+ lip/GRID/s7/bbbl4n.mpg
3089
+ lip/GRID/s7/sgwp2n.mpg
3090
+ lip/GRID/s7/bgaa3a.mpg
3091
+ lip/GRID/s7/sgab9a.mpg
3092
+ lip/GRID/s7/sgwv8p.mpg
3093
+ lip/GRID/s7/sbam6n.mpg
3094
+ lip/GRID/s7/lrby2n.mpg
3095
+ lip/GRID/s7/prbv8p.mpg
3096
+ lip/GRID/s7/lrwr3s.mpg
3097
+ lip/GRID/s7/lgiy8p.mpg
3098
+ lip/GRID/s7/bgim4n.mpg
3099
+ lip/GRID/s7/lrwr5a.mpg
3100
+ lip/GRID/s7/lbip6p.mpg
3101
+ lip/GRID/s7/bgig2p.mpg
3102
+ lip/GRID/s7/lwwz2n.mpg
3103
+ lip/GRID/s7/pbaizp.mpg
3104
+ lip/GRID/s7/bwis2n.mpg
3105
+ lip/GRID/s7/sgih7s.mpg
3106
+ lip/GRID/s7/swwi2n.mpg
3107
+ lip/GRID/s7/lrij7s.mpg
3108
+ lip/GRID/s7/lrbk5s.mpg
3109
+ lip/GRID/s7/lwae3s.mpg
3110
+ lip/GRID/s7/pbao2n.mpg
3111
+ lip/GRID/s7/lrax8n.mpg
3112
+ lip/GRID/s7/sgwjzp.mpg
3113
+ lip/GRID/s7/lwwz4p.mpg
3114
+ lip/GRID/s7/pwwx6n.mpg
3115
+ lip/GRID/s7/lwiy2p.mpg
3116
+ lip/GRID/s7/swin7a.mpg
3117
+ lip/GRID/s7/sgai1s.mpg
3118
+ lip/GRID/s7/bbik9a.mpg
3119
+ lip/GRID/s7/srbh5a.mpg
3120
+ lip/GRID/s7/lway6p.mpg
3121
+ lip/GRID/s7/lgbz5s.mpg
3122
+ lip/GRID/s7/pbwc2n.mpg
3123
+ lip/GRID/s7/bgig3a.mpg
3124
+ lip/GRID/s7/prwx1s.mpg
3125
+ lip/GRID/s7/pbwv4n.mpg
3126
+ lip/GRID/s7/lgwf6n.mpg
3127
+ lip/GRID/s7/sgwp5a.mpg
3128
+ lip/GRID/s7/sbat1s.mpg
3129
+ lip/GRID/s7/bgwb1a.mpg
3130
+ lip/GRID/s7/sgiu6p.mpg
3131
+ lip/GRID/s7/lgal4p.mpg
3132
+ lip/GRID/s7/srat7s.mpg
3133
+ lip/GRID/s7/prai6p.mpg
3134
+ lip/GRID/s7/lwwl4n.mpg
3135
+ lip/GRID/s7/lbbx6n.mpg
3136
+ lip/GRID/s7/pgbq5s.mpg
3137
+ lip/GRID/s7/lrbezn.mpg
3138
+ lip/GRID/s7/bwas6n.mpg
3139
+ lip/GRID/s7/prbp4p.mpg
3140
+ lip/GRID/s7/lwwl6p.mpg
3141
+ lip/GRID/s7/pwwd4n.mpg
3142
+ lip/GRID/s7/bwas8p.mpg
3143
+ lip/GRID/s7/sgao6p.mpg
3144
+ lip/GRID/s7/pbbi4p.mpg
3145
+ lip/GRID/s7/pbbo6n.mpg
3146
+ lip/GRID/s7/braf3s.mpg
3147
+ lip/GRID/s7/lbbd7a.mpg
3148
+ lip/GRID/s7/sbag5a.mpg
3149
+ lip/GRID/s7/sbbg7s.mpg
3150
+ lip/GRID/s7/bbwz8p.mpg
3151
+ lip/GRID/s7/bgba5s.mpg
3152
+ lip/GRID/s7/pbwc5a.mpg
3153
+ lip/GRID/s7/lrwe4n.mpg
3154
+ lip/GRID/s7/pbih4n.mpg
3155
+ lip/GRID/s7/srwu5s.mpg
3156
+ lip/GRID/s7/pbib3a.mpg
3157
+ lip/GRID/s7/srit2n.mpg
3158
+ lip/GRID/s7/lwiyzn.mpg
3159
+ lip/GRID/s7/lwby8n.mpg
3160
+ lip/GRID/s7/pgbd9a.mpg
3161
+ lip/GRID/s7/lgbf3s.mpg
3162
+ lip/GRID/s7/braf4p.mpg
3163
+ lip/GRID/s7/bbwz7s.mpg
3164
+ lip/GRID/s7/swwv2p.mpg
3165
+ lip/GRID/s7/bwim1a.mpg
3166
+ lip/GRID/s7/lgbl8p.mpg
3167
+ lip/GRID/s7/lriq2p.mpg
3168
+ lip/GRID/s7/bgwn9a.mpg
3169
+ lip/GRID/s7/sgiu5s.mpg
3170
+ lip/GRID/s7/lwwr8n.mpg
3171
+ lip/GRID/s7/prwx2p.mpg
3172
+ lip/GRID/s7/sbbg8p.mpg
3173
+ lip/GRID/s7/bbie3s.mpg
3174
+ lip/GRID/s7/sgib3s.mpg
3175
+ lip/GRID/s7/lbip4n.mpg
3176
+ lip/GRID/s7/pbbb8n.mpg
3177
+ lip/GRID/s7/bbbszp.mpg
3178
+ lip/GRID/s7/lrbr1a.mpg
3179
+ lip/GRID/s7/swbb4n.mpg
3180
+ lip/GRID/s7/pbbczp.mpg
3181
+ lip/GRID/s7/sbwa7s.mpg
3182
+ lip/GRID/s7/srbn7s.mpg
3183
+ lip/GRID/s7/pgbd8p.mpg
3184
+ lip/GRID/s7/bbar5s.mpg
3185
+ lip/GRID/s7/lbip7a.mpg
3186
+ lip/GRID/s7/pgad5a.mpg
3187
+ lip/GRID/s7/lrbrzp.mpg
3188
+ lip/GRID/s7/srahzp.mpg
3189
+ lip/GRID/s7/pwbj6p.mpg
3190
+ lip/GRID/s7/sbwa6n.mpg
3191
+ lip/GRID/s7/pbib1s.mpg
3192
+ lip/GRID/s7/pbau7s.mpg
3193
+ lip/GRID/s7/pgwy4p.mpg
3194
+ lip/GRID/s7/brir6n.mpg
3195
+ lip/GRID/s7/bbwm1a.mpg
3196
+ lip/GRID/s7/lrby4p.mpg
3197
+ lip/GRID/s7/sran5a.mpg
3198
+ lip/GRID/s7/bgba4n.mpg
3199
+ lip/GRID/s7/bgat4p.mpg
3200
+ lip/GRID/s7/sgwc6p.mpg
3201
+ lip/GRID/s7/lriqzn.mpg
3202
+ lip/GRID/s7/sbat2p.mpg
3203
+ lip/GRID/s7/sgwi9s.mpg
3204
+ lip/GRID/s7/bwbg5a.mpg
3205
+ lip/GRID/s7/bbik7s.mpg
3206
+ lip/GRID/s7/bwam4p.mpg
3207
+ lip/GRID/s7/sbag3s.mpg
3208
+ lip/GRID/s7/pbiu4p.mpg
3209
+ lip/GRID/s7/swih1s.mpg
3210
+ lip/GRID/s7/srba8n.mpg
3211
+ lip/GRID/s7/bwwt5s.mpg
3212
+ lip/GRID/s7/pbwc3s.mpg
3213
+ lip/GRID/s7/lray1a.mpg
3214
+ lip/GRID/s7/lwbe9a.mpg
3215
+ lip/GRID/s7/sgaizn.mpg
3216
+ lip/GRID/s7/lbbx7s.mpg
3217
+ lip/GRID/s7/prwc9s.mpg
3218
+ lip/GRID/s7/pgic8n.mpg
3219
+ lip/GRID/s7/lbwe1a.mpg
3220
+ lip/GRID/s7/pbwv5s.mpg
3221
+ lip/GRID/s7/prai5s.mpg
3222
+ lip/GRID/s7/sbim2n.mpg
3223
+ lip/GRID/s7/bwbm7s.mpg
3224
+ lip/GRID/s7/bbwf7a.mpg
3225
+ lip/GRID/s7/priizn.mpg
3226
+ lip/GRID/s7/prwj3s.mpg
3227
+ lip/GRID/s7/sria2p.mpg
3228
+ lip/GRID/s7/swbu8p.mpg
3229
+ lip/GRID/s7/lgar7s.mpg
3230
+ lip/GRID/s7/pgax7a.mpg
3231
+ lip/GRID/s7/sgbczn.mpg
3232
+ lip/GRID/s7/pgwrzp.mpg
3233
+ lip/GRID/s7/pbbi2n.mpg
3234
+ lip/GRID/s7/bwag1a.mpg
3235
+ lip/GRID/s7/lrwk9s.mpg
3236
+ lip/GRID/s7/sbwn7a.mpg
3237
+ lip/GRID/s7/lbic6n.mpg
3238
+ lip/GRID/s7/sgbpzp.mpg
3239
+ lip/GRID/s7/bgwa8n.mpg
3240
+ lip/GRID/s7/lbixzp.mpg
3241
+ lip/GRID/s7/brizzn.mpg
3242
+ lip/GRID/s7/lwak6n.mpg
3243
+ lip/GRID/s7/srwh6n.mpg
3244
+ lip/GRID/s7/bwwa4p.mpg
3245
+ lip/GRID/s7/lwae5a.mpg
3246
+ lip/GRID/s7/briz3a.mpg
3247
+ lip/GRID/s7/pwiv7a.mpg
3248
+ lip/GRID/s7/pbah8n.mpg
3249
+ lip/GRID/s7/sraa7a.mpg
3250
+ lip/GRID/s7/prwp7s.mpg
3251
+ lip/GRID/s7/pgip6n.mpg
3252
+ lip/GRID/s7/bgba6p.mpg
3253
+ lip/GRID/s7/lbwy1s.mpg
3254
+ lip/GRID/s7/sgbc2p.mpg
3255
+ lip/GRID/s7/srim9s.mpg
3256
+ lip/GRID/s7/bgwh5a.mpg
3257
+ lip/GRID/s7/swwi5a.mpg
3258
+ lip/GRID/s7/swiuzp.mpg
3259
+ lip/GRID/s7/lwiq6n.mpg
3260
+ lip/GRID/s7/brwm6p.mpg
3261
+ lip/GRID/s7/srag8n.mpg
3262
+ lip/GRID/s7/pgwe3a.mpg
3263
+ lip/GRID/s7/bbws2n.mpg
3264
+ lip/GRID/s7/pbbvzn.mpg
3265
+ lip/GRID/s7/srat9a.mpg
3266
+ lip/GRID/s7/sgwc7a.mpg
3267
+ lip/GRID/s7/pbiozp.mpg
3268
+ lip/GRID/s7/sbwh2p.mpg
3269
+ lip/GRID/s7/bbay8n.mpg
3270
+ lip/GRID/s7/pwwq2n.mpg
3271
+ lip/GRID/s7/lbad3a.mpg
3272
+ lip/GRID/s7/brbf9a.mpg
3273
+ lip/GRID/s7/prio7a.mpg
3274
+ lip/GRID/s7/prii2p.mpg
3275
+ lip/GRID/s7/sgau8n.mpg
3276
+ lip/GRID/s7/pbao3s.mpg
3277
+ lip/GRID/s7/lwwf3a.mpg
3278
+ lip/GRID/s7/brir7s.mpg
3279
+ lip/GRID/s7/pbbv1s.mpg
3280
+ lip/GRID/s7/pgid1a.mpg
3281
+ lip/GRID/s7/lwwfzn.mpg
3282
+ lip/GRID/s7/lgir4p.mpg
3283
+ lip/GRID/s7/lbbx8p.mpg
3284
+ lip/GRID/s7/sbbg6n.mpg
3285
+ lip/GRID/s7/bwil8n.mpg
3286
+ lip/GRID/s7/lgwm1s.mpg
3287
+ lip/GRID/s7/brbz9s.mpg
3288
+ lip/GRID/s7/sbbt7a.mpg
3289
+ lip/GRID/s7/bwis5a.mpg
3290
+ lip/GRID/s7/lrij6n.mpg
3291
+ lip/GRID/s7/sriazn.mpg
3292
+ lip/GRID/s7/bgigzn.mpg
3293
+ lip/GRID/s7/bbae9a.mpg
3294
+ lip/GRID/s7/pbiu3s.mpg
3295
+ lip/GRID/s7/bwas7s.mpg
3296
+ lip/GRID/s7/bbwf5s.mpg
3297
+ lip/GRID/s7/bgbt7s.mpg
3298
+ lip/GRID/s7/pwap4n.mpg
3299
+ lip/GRID/s7/lrbe2p.mpg
3300
+ lip/GRID/s7/brbs6p.mpg
3301
+ lip/GRID/s7/pgaj7s.mpg
3302
+ lip/GRID/s7/pbih7a.mpg
3303
+ lip/GRID/s7/bwwt7a.mpg
3304
+ lip/GRID/s7/pbib2p.mpg
3305
+ lip/GRID/s7/sbwh3a.mpg
3306
+ lip/GRID/s7/sgbo8n.mpg
3307
+ lip/GRID/s7/pwbp9s.mpg
3308
+ lip/GRID/s7/lgbf2n.mpg
3309
+ lip/GRID/s7/briz2p.mpg
3310
+ lip/GRID/s7/prao8n.mpg
3311
+ lip/GRID/s7/lwwr9s.mpg
3312
+ lip/GRID/s7/srwu4n.mpg
3313
+ lip/GRID/s7/pwbj4n.mpg
3314
+ lip/GRID/s7/lrbk7a.mpg
3315
+ lip/GRID/s7/swia9a.mpg
3316
+ lip/GRID/s31/bgwr6n.mpg
3317
+ lip/GRID/s31/bwwk7s.mpg
3318
+ lip/GRID/s31/lgwj9a.mpg
3319
+ lip/GRID/s31/pbbf9s.mpg
3320
+ lip/GRID/s31/sgiz7a.mpg
3321
+ lip/GRID/s31/lgbp9a.mpg
3322
+ lip/GRID/s31/swwf9s.mpg
3323
+ lip/GRID/s31/brij1a.mpg
3324
+ lip/GRID/s31/bbbp7a.mpg
3325
+ lip/GRID/s31/sgif4p.mpg
3326
+ lip/GRID/s31/pwwb1s.mpg
3327
+ lip/GRID/s31/lrwo8n.mpg
3328
+ lip/GRID/s31/pbwazp.mpg
3329
+ lip/GRID/s31/srirzp.mpg
3330
+ lip/GRID/s31/bwwy5s.mpg
3331
+ lip/GRID/s31/bbbxzp.mpg
3332
+ lip/GRID/s31/brbx6p.mpg
3333
+ lip/GRID/s31/sgbs9s.mpg
3334
+ lip/GRID/s31/bgwz2p.mpg
3335
+ lip/GRID/s31/pwag7s.mpg
3336
+ lip/GRID/s31/pgit7s.mpg
3337
+ lip/GRID/s31/prwt8p.mpg
3338
+ lip/GRID/s31/bwakzp.mpg
3339
+ lip/GRID/s31/sgbg3a.mpg
3340
+ lip/GRID/s31/lbin3a.mpg
3341
+ lip/GRID/s31/bbwdzn.mpg
3342
+ lip/GRID/s31/sbwy9s.mpg
3343
+ lip/GRID/s31/lbia3s.mpg
3344
+ lip/GRID/s31/lbbb2p.mpg
3345
+ lip/GRID/s31/lgwx6p.mpg
3346
+ lip/GRID/s31/pgig8n.mpg
3347
+ lip/GRID/s31/swws7s.mpg
3348
+ lip/GRID/s31/pgwb6n.mpg
3349
+ lip/GRID/s31/lbia2n.mpg
3350
+ lip/GRID/s31/pbam1a.mpg
3351
+ lip/GRID/s31/lgwj8p.mpg
3352
+ lip/GRID/s31/lrbi2p.mpg
3353
+ lip/GRID/s31/sbid7a.mpg
3354
+ lip/GRID/s31/pwbn5s.mpg
3355
+ lip/GRID/s31/lgbj2n.mpg
3356
+ lip/GRID/s31/sbay2p.mpg
3357
+ lip/GRID/s31/pgbh6n.mpg
3358
+ lip/GRID/s31/bgik1s.mpg
3359
+ lip/GRID/s31/prba1s.mpg
3360
+ lip/GRID/s31/sbix6n.mpg
3361
+ lip/GRID/s31/sgwn1a.mpg
3362
+ lip/GRID/s31/pgia4n.mpg
3363
+ lip/GRID/s31/lbwo3s.mpg
3364
+ lip/GRID/s31/bwbezp.mpg
3365
+ lip/GRID/s31/sbwr4n.mpg
3366
+ lip/GRID/s31/pbas5a.mpg
3367
+ lip/GRID/s31/lwwc8p.mpg
3368
+ lip/GRID/s31/sgam1s.mpg
3369
+ lip/GRID/s31/sray8p.mpg
3370
+ lip/GRID/s31/pbwg4p.mpg
3371
+ lip/GRID/s31/lrwp1a.mpg
3372
+ lip/GRID/s31/brijzp.mpg
3373
+ lip/GRID/s31/lgwqzn.mpg
3374
+ lip/GRID/s31/lrah7s.mpg
3375
+ lip/GRID/s31/pgab1a.mpg
3376
+ lip/GRID/s31/lbbo1a.mpg
3377
+ lip/GRID/s31/srar2n.mpg
3378
+ lip/GRID/s31/pwbt8n.mpg
3379
+ lip/GRID/s31/pbal9s.mpg
3380
+ lip/GRID/s31/bbbc9a.mpg
3381
+ lip/GRID/s31/bbbj1s.mpg
3382
+ lip/GRID/s31/sbiq2n.mpg
3383
+ lip/GRID/s31/lgwd4p.mpg
3384
+ lip/GRID/s31/srbr7s.mpg
3385
+ lip/GRID/s31/lrih5a.mpg
3386
+ lip/GRID/s31/pwwn8n.mpg
3387
+ lip/GRID/s31/pgwb8p.mpg
3388
+ lip/GRID/s31/bric7a.mpg
3389
+ lip/GRID/s31/lgai8n.mpg
3390
+ lip/GRID/s31/sgas4n.mpg
3391
+ lip/GRID/s31/pbwm8p.mpg
3392
+ lip/GRID/s31/brii9s.mpg
3393
+ lip/GRID/s31/pwwu5a.mpg
3394
+ lip/GRID/s31/lwbc5a.mpg
3395
+ lip/GRID/s31/bgak6p.mpg
3396
+ lip/GRID/s31/sbad8n.mpg
3397
+ lip/GRID/s31/bradzp.mpg
3398
+ lip/GRID/s31/lgbd1a.mpg
3399
+ lip/GRID/s31/prif9a.mpg
3400
+ lip/GRID/s31/lbwb7a.mpg
3401
+ lip/GRID/s31/lbig9a.mpg
3402
+ lip/GRID/s31/lgaj1a.mpg
3403
+ lip/GRID/s31/pwwo1a.mpg
3404
+ lip/GRID/s31/bwbq9a.mpg
3405
+ lip/GRID/s31/pgin2n.mpg
3406
+ lip/GRID/s31/bbac3s.mpg
3407
+ lip/GRID/s31/sgas6p.mpg
3408
+ lip/GRID/s31/braj4p.mpg
3409
+ lip/GRID/s31/lwbp1s.mpg
3410
+ lip/GRID/s31/lgiv3s.mpg
3411
+ lip/GRID/s31/bbbp5s.mpg
3412
+ lip/GRID/s31/lgap5a.mpg
3413
+ lip/GRID/s31/pbbm3s.mpg
3414
+ lip/GRID/s31/lwbi7s.mpg
3415
+ lip/GRID/s31/sbaq9a.mpg
3416
+ lip/GRID/s31/lgii7a.mpg
3417
+ lip/GRID/s31/prbm8n.mpg
3418
+ lip/GRID/s31/pbiz5a.mpg
3419
+ lip/GRID/s31/bgbr3s.mpg
3420
+ lip/GRID/s31/pbbm4p.mpg
3421
+ lip/GRID/s31/lriuzn.mpg
3422
+ lip/GRID/s31/swaz2n.mpg
3423
+ lip/GRID/s31/lwio2n.mpg
3424
+ lip/GRID/s31/bwwy7a.mpg
3425
+ lip/GRID/s31/pbbs9a.mpg
3426
+ lip/GRID/s31/lwwj3a.mpg
3427
+ lip/GRID/s31/sgwnzp.mpg
3428
+ lip/GRID/s31/srbfzp.mpg
3429
+ lip/GRID/s31/pwat5s.mpg
3430
+ lip/GRID/s31/sbby6p.mpg
3431
+ lip/GRID/s31/lwab8n.mpg
3432
+ lip/GRID/s31/pwim8p.mpg
3433
+ lip/GRID/s31/bgid9a.mpg
3434
+ lip/GRID/s31/lwwp6p.mpg
3435
+ lip/GRID/s31/srbf1a.mpg
3436
+ lip/GRID/s31/bgik2p.mpg
3437
+ lip/GRID/s31/lwib4n.mpg
3438
+ lip/GRID/s31/lbbh6p.mpg
3439
+ lip/GRID/s31/sgwt4p.mpg
3440
+ lip/GRID/s31/swbz8p.mpg
3441
+ lip/GRID/s31/prwg8n.mpg
3442
+ lip/GRID/s31/prwt6n.mpg
3443
+ lip/GRID/s31/bbwd2p.mpg
3444
+ lip/GRID/s31/pgabzp.mpg
3445
+ lip/GRID/s31/pwbn7a.mpg
3446
+ lip/GRID/s31/lbig7s.mpg
3447
+ lip/GRID/s31/prat1a.mpg
3448
+ lip/GRID/s31/pgbu5s.mpg
3449
+ lip/GRID/s31/bbbj3a.mpg
3450
+ lip/GRID/s31/srwl8p.mpg
3451
+ lip/GRID/s31/lgipzp.mpg
3452
+ lip/GRID/s31/lrab4p.mpg
3453
+ lip/GRID/s31/sbiq3s.mpg
3454
+ lip/GRID/s31/bbii4p.mpg
3455
+ lip/GRID/s31/pbir8n.mpg
3456
+ lip/GRID/s31/lbin1s.mpg
3457
+ lip/GRID/s31/brbd3s.mpg
3458
+ lip/GRID/s31/bwwr2p.mpg
3459
+ lip/GRID/s31/prwa5s.mpg
3460
+ lip/GRID/s31/sbiq5a.mpg
3461
+ lip/GRID/s31/lgbp8p.mpg
3462
+ lip/GRID/s31/srae4n.mpg
3463
+ lip/GRID/s31/lriu2p.mpg
3464
+ lip/GRID/s31/sgwg7a.mpg
3465
+ lip/GRID/s31/lgap3s.mpg
3466
+ lip/GRID/s31/bbbc6n.mpg
3467
+ lip/GRID/s31/brwy1a.mpg
3468
+ lip/GRID/s31/pgan8p.mpg
3469
+ lip/GRID/s31/lwbc4p.mpg
3470
+ lip/GRID/s31/pgah5a.mpg
3471
+ lip/GRID/s31/srir1a.mpg
3472
+ lip/GRID/s31/primzn.mpg
3473
+ lip/GRID/s31/lgbj4p.mpg
3474
+ lip/GRID/s31/bbwj4n.mpg
3475
+ lip/GRID/s31/bgay4p.mpg
3476
+ lip/GRID/s31/sbid5s.mpg
3477
+ lip/GRID/s31/sbwr6p.mpg
3478
+ lip/GRID/s31/srbl5a.mpg
3479
+ lip/GRID/s31/srik4n.mpg
3480
+ lip/GRID/s31/lwiu8p.mpg
3481
+ lip/GRID/s31/sray6n.mpg
3482
+ lip/GRID/s31/sgbm6p.mpg
3483
+ lip/GRID/s31/bwbq6n.mpg
3484
+ lip/GRID/s31/lgio9s.mpg
3485
+ lip/GRID/s31/brwd9a.mpg
3486
+ lip/GRID/s31/bbav6p.mpg
3487
+ lip/GRID/s31/sbik1a.mpg
3488
+ lip/GRID/s31/sriq8n.mpg
3489
+ lip/GRID/s31/pgihzp.mpg
3490
+ lip/GRID/s31/lwwc6n.mpg
3491
+ lip/GRID/s31/bwax6n.mpg
3492
+ lip/GRID/s31/lwwx1a.mpg
3493
+ lip/GRID/s31/pwwu3s.mpg
3494
+ lip/GRID/s31/sbix7s.mpg
3495
+ lip/GRID/s31/lrwv5a.mpg
3496
+ lip/GRID/s31/lbbh4n.mpg
3497
+ lip/GRID/s31/bgwz3a.mpg
3498
+ lip/GRID/s31/pgah3s.mpg
3499
+ lip/GRID/s31/lbit7a.mpg
3500
+ lip/GRID/s31/bwix3s.mpg
3501
+ lip/GRID/s31/pgbh7s.mpg
3502
+ lip/GRID/s31/sgaf7s.mpg
3503
+ lip/GRID/s31/brbj8p.mpg
3504
+ lip/GRID/s31/bbiv2p.mpg
3505
+ lip/GRID/s31/srwz6p.mpg
3506
+ lip/GRID/s31/bbii5a.mpg
3507
+ lip/GRID/s31/lwii1a.mpg
3508
+ lip/GRID/s31/pbwg5a.mpg
3509
+ lip/GRID/s31/lwwp4n.mpg
3510
+ lip/GRID/s31/lwiu9a.mpg
3511
+ lip/GRID/s31/bwip8n.mpg
3512
+ lip/GRID/s31/sbwl1s.mpg
3513
+ lip/GRID/s31/pwbh1s.mpg
3514
+ lip/GRID/s31/brbq3a.mpg
3515
+ lip/GRID/s31/pwia1a.mpg
3516
+ lip/GRID/s31/lrwc3a.mpg
3517
+ lip/GRID/s31/bbac5a.mpg
3518
+ lip/GRID/s31/sbbr1s.mpg
3519
+ lip/GRID/s31/sbwe7s.mpg
3520
+ lip/GRID/s31/bgix8n.mpg
3521
+ lip/GRID/s31/sgil7s.mpg
3522
+ lip/GRID/s31/bbio7s.mpg
3523
+ lip/GRID/s31/sbwy8n.mpg
3524
+ lip/GRID/s31/brwx9s.mpg
3525
+ lip/GRID/s31/lgbdzp.mpg
3526
+ lip/GRID/s31/sgis3a.mpg
3527
+ lip/GRID/s31/brip3s.mpg
3528
+ lip/GRID/s31/lwbv7a.mpg
3529
+ lip/GRID/s31/lwao6n.mpg
3530
+ lip/GRID/s31/swbs4p.mpg
3531
+ lip/GRID/s31/lriu1s.mpg
3532
+ lip/GRID/s31/lgii4n.mpg
3533
+ lip/GRID/s31/brbj9a.mpg
3534
+ lip/GRID/s31/swbz9a.mpg
3535
+ lip/GRID/s31/sbbrzn.mpg
3536
+ lip/GRID/s31/lribzp.mpg
3537
+ lip/GRID/s31/sbby7a.mpg
3538
+ lip/GRID/s31/lgbc9s.mpg
3539
+ lip/GRID/s31/lwwv9s.mpg
3540
+ lip/GRID/s31/lwwjzn.mpg
3541
+ lip/GRID/s31/srwl7s.mpg
3542
+ lip/GRID/s31/bbwj5s.mpg
3543
+ lip/GRID/s31/lgiczn.mpg
3544
+ lip/GRID/s31/sgbm5s.mpg
3545
+ lip/GRID/s31/pwanzn.mpg
3546
+ lip/GRID/s31/brac8n.mpg
3547
+ lip/GRID/s31/sgiz5s.mpg
3548
+ lip/GRID/s31/swal6p.mpg
3549
+ lip/GRID/s31/pwwn9s.mpg
3550
+ lip/GRID/s31/sgil8p.mpg
3551
+ lip/GRID/s31/srae7a.mpg
3552
+ lip/GRID/s31/pgwu8n.mpg
3553
+ lip/GRID/s31/bbwx5a.mpg
3554
+ lip/GRID/s31/pgia6p.mpg
3555
+ lip/GRID/s31/prbg4n.mpg
3556
+ lip/GRID/s31/swbf7a.mpg
3557
+ lip/GRID/s31/pgauzn.mpg
3558
+ lip/GRID/s31/lrau7a.mpg
3559
+ lip/GRID/s31/lriu3a.mpg
3560
+ lip/GRID/s31/pwba9a.mpg
3561
+ lip/GRID/s31/lrbi1s.mpg
3562
+ lip/GRID/s31/lgic2p.mpg
3563
+ lip/GRID/s31/lbauzp.mpg
3564
+ lip/GRID/s31/bgbr2n.mpg
3565
+ lip/GRID/s31/lbah1s.mpg
3566
+ lip/GRID/s31/bbai7s.mpg
3567
+ lip/GRID/s31/briv7s.mpg
3568
+ lip/GRID/s31/bgarzp.mpg
3569
+ lip/GRID/s31/bwak1a.mpg
3570
+ lip/GRID/s31/brap8p.mpg
data/phonemes_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/phonemes_val.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/unseen_train.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/unseen_val.txt ADDED
@@ -0,0 +1,2593 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ lip/GRID/s1/bbaf2n.mpg
2
+ lip/GRID/s1/bbaf3s.mpg
3
+ lip/GRID/s1/bbaf4p.mpg
4
+ lip/GRID/s1/bbas1s.mpg
5
+ lip/GRID/s1/bbaz4n.mpg
6
+ lip/GRID/s1/bbaz7a.mpg
7
+ lip/GRID/s1/bbbf7s.mpg
8
+ lip/GRID/s1/bbbf8p.mpg
9
+ lip/GRID/s1/bbbm1s.mpg
10
+ lip/GRID/s1/bbbs6p.mpg
11
+ lip/GRID/s1/bbbz9s.mpg
12
+ lip/GRID/s1/bbil4p.mpg
13
+ lip/GRID/s1/bbil5a.mpg
14
+ lip/GRID/s1/bbwg1s.mpg
15
+ lip/GRID/s1/bbwg3a.mpg
16
+ lip/GRID/s1/bbwm7a.mpg
17
+ lip/GRID/s1/bbws8n.mpg
18
+ lip/GRID/s1/bgaa8p.mpg
19
+ lip/GRID/s1/bgah2p.mpg
20
+ lip/GRID/s1/bgbh6p.mpg
21
+ lip/GRID/s1/bgbn8n.mpg
22
+ lip/GRID/s1/bgia2n.mpg
23
+ lip/GRID/s1/bgia3s.mpg
24
+ lip/GRID/s1/bgin3a.mpg
25
+ lip/GRID/s1/bgit4n.mpg
26
+ lip/GRID/s1/bgit5s.mpg
27
+ lip/GRID/s1/bgit6p.mpg
28
+ lip/GRID/s1/bgwo3s.mpg
29
+ lip/GRID/s1/bgwu6n.mpg
30
+ lip/GRID/s1/bgwu9a.mpg
31
+ lip/GRID/s1/bram2n.mpg
32
+ lip/GRID/s1/bram4p.mpg
33
+ lip/GRID/s1/bras9a.mpg
34
+ lip/GRID/s1/brbg3s.mpg
35
+ lip/GRID/s1/brbm6n.mpg
36
+ lip/GRID/s1/brbm9a.mpg
37
+ lip/GRID/s1/brif6p.mpg
38
+ lip/GRID/s1/bris5a.mpg
39
+ lip/GRID/s1/briz7s.mpg
40
+ lip/GRID/s1/brwa5a.mpg
41
+ lip/GRID/s1/brwn1s.mpg
42
+ lip/GRID/s1/brwt4n.mpg
43
+ lip/GRID/s1/brwt6p.mpg
44
+ lip/GRID/s1/bwag6p.mpg
45
+ lip/GRID/s1/bwat4p.mpg
46
+ lip/GRID/s1/bwbg8n.mpg
47
+ lip/GRID/s1/bwbhzp.mpg
48
+ lip/GRID/s1/bwigzn.mpg
49
+ lip/GRID/s1/bwit1a.mpg
50
+ lip/GRID/s1/bwwa9s.mpg
51
+ lip/GRID/s1/bwwh2n.mpg
52
+ lip/GRID/s1/bwwh3s.mpg
53
+ lip/GRID/s1/bwwu1s.mpg
54
+ lip/GRID/s1/bwwu2p.mpg
55
+ lip/GRID/s1/bwwu3a.mpg
56
+ lip/GRID/s1/lbax8n.mpg
57
+ lip/GRID/s1/lbay1a.mpg
58
+ lip/GRID/s1/lbbr1a.mpg
59
+ lip/GRID/s1/lbij7s.mpg
60
+ lip/GRID/s1/lbij9a.mpg
61
+ lip/GRID/s1/lbiq2p.mpg
62
+ lip/GRID/s1/lbiq3a.mpg
63
+ lip/GRID/s1/lbwe7a.mpg
64
+ lip/GRID/s1/lbwr2n.mpg
65
+ lip/GRID/s1/lgaf5s.mpg
66
+ lip/GRID/s1/lgas3s.mpg
67
+ lip/GRID/s1/lgas5a.mpg
68
+ lip/GRID/s1/lgaz6n.mpg
69
+ lip/GRID/s1/lgbf9s.mpg
70
+ lip/GRID/s1/lgbm3s.mpg
71
+ lip/GRID/s1/lgbm5a.mpg
72
+ lip/GRID/s1/lgil7a.mpg
73
+ lip/GRID/s1/lgis1a.mpg
74
+ lip/GRID/s1/lgwm7s.mpg
75
+ lip/GRID/s1/lgwm8p.mpg
76
+ lip/GRID/s1/lrae4p.mpg
77
+ lip/GRID/s1/lrae5a.mpg
78
+ lip/GRID/s1/lrak6n.mpg
79
+ lip/GRID/s1/lrak7s.mpg
80
+ lip/GRID/s1/lrak9a.mpg
81
+ lip/GRID/s1/lray5s.mpg
82
+ lip/GRID/s1/lray6p.mpg
83
+ lip/GRID/s1/lrbr7a.mpg
84
+ lip/GRID/s1/lrby8n.mpg
85
+ lip/GRID/s1/lriezp.mpg
86
+ lip/GRID/s1/lriq7s.mpg
87
+ lip/GRID/s1/lrwf1s.mpg
88
+ lip/GRID/s1/lrwl4n.mpg
89
+ lip/GRID/s1/lrwl7a.mpg
90
+ lip/GRID/s1/lrws1a.mpg
91
+ lip/GRID/s1/lrwz2n.mpg
92
+ lip/GRID/s1/lrwz5a.mpg
93
+ lip/GRID/s1/lwal3s.mpg
94
+ lip/GRID/s1/lwaz2p.mpg
95
+ lip/GRID/s1/lwbl6n.mpg
96
+ lip/GRID/s1/lwbz6p.mpg
97
+ lip/GRID/s1/lwiy6n.mpg
98
+ lip/GRID/s1/lwwm2p.mpg
99
+ lip/GRID/s1/lwwz8n.mpg
100
+ lip/GRID/s1/pbao8n.mpg
101
+ lip/GRID/s1/pbib8p.mpg
102
+ lip/GRID/s1/pbio6p.mpg
103
+ lip/GRID/s1/pbiv1a.mpg
104
+ lip/GRID/s1/pbwc8n.mpg
105
+ lip/GRID/s1/pbwj4p.mpg
106
+ lip/GRID/s1/pbwp8p.mpg
107
+ lip/GRID/s1/pgad9s.mpg
108
+ lip/GRID/s1/pgak2n.mpg
109
+ lip/GRID/s1/pgay1s.mpg
110
+ lip/GRID/s1/pgbrzn.mpg
111
+ lip/GRID/s1/pgiq3s.mpg
112
+ lip/GRID/s1/pgix6n.mpg
113
+ lip/GRID/s1/pgix9a.mpg
114
+ lip/GRID/s1/pgwe9a.mpg
115
+ lip/GRID/s1/pgwl3a.mpg
116
+ lip/GRID/s1/pgwy8n.mpg
117
+ lip/GRID/s1/prac8p.mpg
118
+ lip/GRID/s1/prap6p.mpg
119
+ lip/GRID/s1/prav8n.mpg
120
+ lip/GRID/s1/prav9s.mpg
121
+ lip/GRID/s1/praxzp.mpg
122
+ lip/GRID/s1/prbd1s.mpg
123
+ lip/GRID/s1/prbj7a.mpg
124
+ lip/GRID/s1/prbp9s.mpg
125
+ lip/GRID/s1/pric2n.mpg
126
+ lip/GRID/s1/pric5a.mpg
127
+ lip/GRID/s1/prii6n.mpg
128
+ lip/GRID/s1/pripzn.mpg
129
+ lip/GRID/s1/prwd4n.mpg
130
+ lip/GRID/s1/prwd5s.mpg
131
+ lip/GRID/s1/prwd7a.mpg
132
+ lip/GRID/s1/prwx6n.mpg
133
+ lip/GRID/s1/prwx8p.mpg
134
+ lip/GRID/s1/pwad2n.mpg
135
+ lip/GRID/s1/pwaq2p.mpg
136
+ lip/GRID/s1/pwaqzn.mpg
137
+ lip/GRID/s1/pwax5s.mpg
138
+ lip/GRID/s1/pwbd7s.mpg
139
+ lip/GRID/s1/pwbkzn.mpg
140
+ lip/GRID/s1/pwbq4n.mpg
141
+ lip/GRID/s1/pwbq6p.mpg
142
+ lip/GRID/s1/pwic8n.mpg
143
+ lip/GRID/s1/pwic9s.mpg
144
+ lip/GRID/s1/pwip7s.mpg
145
+ lip/GRID/s1/pwix2p.mpg
146
+ lip/GRID/s1/pwix3a.mpg
147
+ lip/GRID/s1/pwwe3a.mpg
148
+ lip/GRID/s1/pwwk5s.mpg
149
+ lip/GRID/s1/sbaa4n.mpg
150
+ lip/GRID/s1/sbaa6p.mpg
151
+ lip/GRID/s1/sbag8n.mpg
152
+ lip/GRID/s1/sbahzp.mpg
153
+ lip/GRID/s1/sban2n.mpg
154
+ lip/GRID/s1/sban3s.mpg
155
+ lip/GRID/s1/sbba9s.mpg
156
+ lip/GRID/s1/sbbh2n.mpg
157
+ lip/GRID/s1/sbbh3s.mpg
158
+ lip/GRID/s1/sbbn9a.mpg
159
+ lip/GRID/s1/sbbuzn.mpg
160
+ lip/GRID/s1/sbig5s.mpg
161
+ lip/GRID/s1/sbit3s.mpg
162
+ lip/GRID/s1/sbit4p.mpg
163
+ lip/GRID/s1/sbwb2n.mpg
164
+ lip/GRID/s1/sbwh6n.mpg
165
+ lip/GRID/s1/sbwo1s.mpg
166
+ lip/GRID/s1/sbwo3a.mpg
167
+ lip/GRID/s1/sbwozn.mpg
168
+ lip/GRID/s1/sgai6n.mpg
169
+ lip/GRID/s1/sgai9a.mpg
170
+ lip/GRID/s1/sgap1s.mpg
171
+ lip/GRID/s1/sgap3a.mpg
172
+ lip/GRID/s1/sgav4n.mpg
173
+ lip/GRID/s1/sgav6p.mpg
174
+ lip/GRID/s1/sgbc7s.mpg
175
+ lip/GRID/s1/sgbj3a.mpg
176
+ lip/GRID/s1/sgbjzn.mpg
177
+ lip/GRID/s1/sgbxzp.mpg
178
+ lip/GRID/s1/sgib8n.mpg
179
+ lip/GRID/s1/sgiv2p.mpg
180
+ lip/GRID/s1/sgiv3a.mpg
181
+ lip/GRID/s1/sgwd1s.mpg
182
+ lip/GRID/s1/sgwj6p.mpg
183
+ lip/GRID/s1/sgwp9s.mpg
184
+ lip/GRID/s1/sgwx2n.mpg
185
+ lip/GRID/s1/sgwx4p.mpg
186
+ lip/GRID/s1/srah5s.mpg
187
+ lip/GRID/s1/srbb6p.mpg
188
+ lip/GRID/s1/sria9a.mpg
189
+ lip/GRID/s1/srwc1a.mpg
190
+ lip/GRID/s1/srwi2n.mpg
191
+ lip/GRID/s1/srwi5a.mpg
192
+ lip/GRID/s1/srwo7s.mpg
193
+ lip/GRID/s1/srwv3a.mpg
194
+ lip/GRID/s1/swao4n.mpg
195
+ lip/GRID/s1/swao6p.mpg
196
+ lip/GRID/s1/swavzp.mpg
197
+ lip/GRID/s1/swbv5a.mpg
198
+ lip/GRID/s1/swib2n.mpg
199
+ lip/GRID/s1/swiu4n.mpg
200
+ lip/GRID/s1/swiu6p.mpg
201
+ lip/GRID/s1/swwi9s.mpg
202
+ lip/GRID/s1/swwp3s.mpg
203
+ lip/GRID/s1/swwv6n.mpg
204
+ lip/GRID/s16/bbak1n.mpg
205
+ lip/GRID/s16/bbak2s.mpg
206
+ lip/GRID/s16/bbbe2s.mpg
207
+ lip/GRID/s16/bbbk5n.mpg
208
+ lip/GRID/s16/bbbk8a.mpg
209
+ lip/GRID/s16/bbbr2a.mpg
210
+ lip/GRID/s16/bbby3n.mpg
211
+ lip/GRID/s16/bbij8s.mpg
212
+ lip/GRID/s16/bbiq1n.mpg
213
+ lip/GRID/s16/bbiq4a.mpg
214
+ lip/GRID/s16/bbix5n.mpg
215
+ lip/GRID/s16/bbwe8a.mpg
216
+ lip/GRID/s16/bbwr5p.mpg
217
+ lip/GRID/s16/bgaf5n.mpg
218
+ lip/GRID/s16/bgamzs.mpg
219
+ lip/GRID/s16/bgas5p.mpg
220
+ lip/GRID/s16/bgaz8s.mpg
221
+ lip/GRID/s16/bgaz9p.mpg
222
+ lip/GRID/s16/bgbf9n.mpg
223
+ lip/GRID/s16/bgbs7n.mpg
224
+ lip/GRID/s16/bgbtza.mpg
225
+ lip/GRID/s16/bgif2s.mpg
226
+ lip/GRID/s16/bgil5n.mpg
227
+ lip/GRID/s16/bgil6s.mpg
228
+ lip/GRID/s16/bgwazs.mpg
229
+ lip/GRID/s16/bgwg4s.mpg
230
+ lip/GRID/s16/bgwt1n.mpg
231
+ lip/GRID/s16/bgwt4a.mpg
232
+ lip/GRID/s16/brak7n.mpg
233
+ lip/GRID/s16/brar1n.mpg
234
+ lip/GRID/s16/brbl2s.mpg
235
+ lip/GRID/s16/brbl4a.mpg
236
+ lip/GRID/s16/brbr5n.mpg
237
+ lip/GRID/s16/brbr8a.mpg
238
+ lip/GRID/s16/brby9n.mpg
239
+ lip/GRID/s16/brbz1p.mpg
240
+ lip/GRID/s16/brik3n.mpg
241
+ lip/GRID/s16/brik5p.mpg
242
+ lip/GRID/s16/briq7n.mpg
243
+ lip/GRID/s16/briy3p.mpg
244
+ lip/GRID/s16/brwl6s.mpg
245
+ lip/GRID/s16/brwl8a.mpg
246
+ lip/GRID/s16/brwz4s.mpg
247
+ lip/GRID/s16/brwz5p.mpg
248
+ lip/GRID/s16/bwafzs.mpg
249
+ lip/GRID/s16/bwaz2s.mpg
250
+ lip/GRID/s16/bwaz4a.mpg
251
+ lip/GRID/s16/bwbf5p.mpg
252
+ lip/GRID/s16/bwbs1n.mpg
253
+ lip/GRID/s16/bwbz7p.mpg
254
+ lip/GRID/s16/bwie7p.mpg
255
+ lip/GRID/s16/bwil2a.mpg
256
+ lip/GRID/s16/bwilzs.mpg
257
+ lip/GRID/s16/bwwf7n.mpg
258
+ lip/GRID/s16/bwws7p.mpg
259
+ lip/GRID/s16/lbac2s.mpg
260
+ lip/GRID/s16/lbap1p.mpg
261
+ lip/GRID/s16/lbbc6s.mpg
262
+ lip/GRID/s16/lbbi9n.mpg
263
+ lip/GRID/s16/lbbjzs.mpg
264
+ lip/GRID/s16/lbbxza.mpg
265
+ lip/GRID/s16/lbicza.mpg
266
+ lip/GRID/s16/lbii1n.mpg
267
+ lip/GRID/s16/lbivzs.mpg
268
+ lip/GRID/s16/lbwp7n.mpg
269
+ lip/GRID/s16/lgak4s.mpg
270
+ lip/GRID/s16/lgaq8s.mpg
271
+ lip/GRID/s16/lgbe6a.mpg
272
+ lip/GRID/s16/lgbr4a.mpg
273
+ lip/GRID/s16/lgby7p.mpg
274
+ lip/GRID/s16/lgby8a.mpg
275
+ lip/GRID/s16/lgid8a.mpg
276
+ lip/GRID/s16/lgij9n.mpg
277
+ lip/GRID/s16/lgik2a.mpg
278
+ lip/GRID/s16/lgix7n.mpg
279
+ lip/GRID/s16/lgwl3p.mpg
280
+ lip/GRID/s16/lgwr5n.mpg
281
+ lip/GRID/s16/lgwr8a.mpg
282
+ lip/GRID/s16/lrac7n.mpg
283
+ lip/GRID/s16/lraj4a.mpg
284
+ lip/GRID/s16/lrap6s.mpg
285
+ lip/GRID/s16/lrap8a.mpg
286
+ lip/GRID/s16/lrbd3p.mpg
287
+ lip/GRID/s16/lrbx4s.mpg
288
+ lip/GRID/s16/lric3n.mpg
289
+ lip/GRID/s16/lrip1n.mpg
290
+ lip/GRID/s16/lrip4a.mpg
291
+ lip/GRID/s16/lrwd6s.mpg
292
+ lip/GRID/s16/lrwq5p.mpg
293
+ lip/GRID/s16/lrwq6a.mpg
294
+ lip/GRID/s16/lwakza.mpg
295
+ lip/GRID/s16/lwaq4a.mpg
296
+ lip/GRID/s16/lwax7p.mpg
297
+ lip/GRID/s16/lwbq6s.mpg
298
+ lip/GRID/s16/lwbq7p.mpg
299
+ lip/GRID/s16/lwic9n.mpg
300
+ lip/GRID/s16/lwwe3p.mpg
301
+ lip/GRID/s16/lwwy6a.mpg
302
+ lip/GRID/s16/pbaa8a.mpg
303
+ lip/GRID/s16/pban6a.mpg
304
+ lip/GRID/s16/pbat9p.mpg
305
+ lip/GRID/s16/pbbh3n.mpg
306
+ lip/GRID/s16/pbbn8s.mpg
307
+ lip/GRID/s16/pbit3n.mpg
308
+ lip/GRID/s16/pbwb5p.mpg
309
+ lip/GRID/s16/pbwh7n.mpg
310
+ lip/GRID/s16/pbwh8s.mpg
311
+ lip/GRID/s16/pbwo1n.mpg
312
+ lip/GRID/s16/pbwu6s.mpg
313
+ lip/GRID/s16/pgbp8a.mpg
314
+ lip/GRID/s16/pgbx1p.mpg
315
+ lip/GRID/s16/pgbxzs.mpg
316
+ lip/GRID/s16/pgii6a.mpg
317
+ lip/GRID/s16/pgwd2s.mpg
318
+ lip/GRID/s16/pgwj6s.mpg
319
+ lip/GRID/s16/prab1n.mpg
320
+ lip/GRID/s16/prah6s.mpg
321
+ lip/GRID/s16/prah7p.mpg
322
+ lip/GRID/s16/pran9n.mpg
323
+ lip/GRID/s16/prau3n.mpg
324
+ lip/GRID/s16/prbh9n.mpg
325
+ lip/GRID/s16/prih3p.mpg
326
+ lip/GRID/s16/prih4a.mpg
327
+ lip/GRID/s16/prin8a.mpg
328
+ lip/GRID/s16/priu2a.mpg
329
+ lip/GRID/s16/prwczs.mpg
330
+ lip/GRID/s16/prwo8s.mpg
331
+ lip/GRID/s16/prwv3p.mpg
332
+ lip/GRID/s16/pwacza.mpg
333
+ lip/GRID/s16/pwao6s.mpg
334
+ lip/GRID/s16/pwav1p.mpg
335
+ lip/GRID/s16/pwbc2s.mpg
336
+ lip/GRID/s16/pwbc3p.mpg
337
+ lip/GRID/s16/pwbi5n.mpg
338
+ lip/GRID/s16/pwbv3n.mpg
339
+ lip/GRID/s16/pwih7n.mpg
340
+ lip/GRID/s16/pwiu6s.mpg
341
+ lip/GRID/s16/pwwc7p.mpg
342
+ lip/GRID/s16/pwwj2a.mpg
343
+ lip/GRID/s16/pwwxza.mpg
344
+ lip/GRID/s16/sbaf5p.mpg
345
+ lip/GRID/s16/sbamza.mpg
346
+ lip/GRID/s16/sbas1n.mpg
347
+ lip/GRID/s16/sbaz5n.mpg
348
+ lip/GRID/s16/sbaz6s.mpg
349
+ lip/GRID/s16/sbbf8s.mpg
350
+ lip/GRID/s16/sbbm2s.mpg
351
+ lip/GRID/s16/sbbs6s.mpg
352
+ lip/GRID/s16/sbbs7p.mpg
353
+ lip/GRID/s16/sbil6a.mpg
354
+ lip/GRID/s16/sbiz2s.mpg
355
+ lip/GRID/s16/sbiz4a.mpg
356
+ lip/GRID/s16/sbwg1n.mpg
357
+ lip/GRID/s16/sbwg4a.mpg
358
+ lip/GRID/s16/sbwtzs.mpg
359
+ lip/GRID/s16/sgah2s.mpg
360
+ lip/GRID/s16/sgau1p.mpg
361
+ lip/GRID/s16/sgbb1n.mpg
362
+ lip/GRID/s16/sgbo1p.mpg
363
+ lip/GRID/s16/sgia4s.mpg
364
+ lip/GRID/s16/sgig8s.mpg
365
+ lip/GRID/s16/sgihza.mpg
366
+ lip/GRID/s16/sgin1n.mpg
367
+ lip/GRID/s16/sgin2s.mpg
368
+ lip/GRID/s16/sgwo3n.mpg
369
+ lip/GRID/s16/sgwu7n.mpg
370
+ lip/GRID/s16/sram3n.mpg
371
+ lip/GRID/s16/srba1p.mpg
372
+ lip/GRID/s16/srbazs.mpg
373
+ lip/GRID/s16/srif8a.mpg
374
+ lip/GRID/s16/sris5p.mpg
375
+ lip/GRID/s16/sris6a.mpg
376
+ lip/GRID/s16/srwhza.mpg
377
+ lip/GRID/s16/srwn2s.mpg
378
+ lip/GRID/s16/srwn3p.mpg
379
+ lip/GRID/s16/srwn4a.mpg
380
+ lip/GRID/s16/srwt5n.mpg
381
+ lip/GRID/s16/srwt6s.mpg
382
+ lip/GRID/s16/srwt7p.mpg
383
+ lip/GRID/s16/srwt8a.mpg
384
+ lip/GRID/s16/swaa1n.mpg
385
+ lip/GRID/s16/swag8a.mpg
386
+ lip/GRID/s16/swan2a.mpg
387
+ lip/GRID/s16/swbhzs.mpg
388
+ lip/GRID/s16/swbn3n.mpg
389
+ lip/GRID/s16/swbn5p.mpg
390
+ lip/GRID/s16/swbn6a.mpg
391
+ lip/GRID/s16/swbt7n.mpg
392
+ lip/GRID/s16/swig1n.mpg
393
+ lip/GRID/s16/swwoza.mpg
394
+ lip/GRID/s16/swwu3p.mpg
395
+ lip/GRID/s17/bbak1s.mpg
396
+ lip/GRID/s17/bbak2p.mpg
397
+ lip/GRID/s17/bbayzp.mpg
398
+ lip/GRID/s17/bbbk4n.mpg
399
+ lip/GRID/s17/bbbr1a.mpg
400
+ lip/GRID/s17/bbid2n.mpg
401
+ lip/GRID/s17/bbid4p.mpg
402
+ lip/GRID/s17/bbiqzn.mpg
403
+ lip/GRID/s17/bbwr3s.mpg
404
+ lip/GRID/s17/bbwr4p.mpg
405
+ lip/GRID/s17/bbwr5a.mpg
406
+ lip/GRID/s17/bgaf6p.mpg
407
+ lip/GRID/s17/bgam1a.mpg
408
+ lip/GRID/s17/bgamzp.mpg
409
+ lip/GRID/s17/bgas2n.mpg
410
+ lip/GRID/s17/bgas3s.mpg
411
+ lip/GRID/s17/bgaz7s.mpg
412
+ lip/GRID/s17/bgaz8p.mpg
413
+ lip/GRID/s17/bgbm2n.mpg
414
+ lip/GRID/s17/bgbm3s.mpg
415
+ lip/GRID/s17/bgbm4p.mpg
416
+ lip/GRID/s17/bgbm5a.mpg
417
+ lip/GRID/s17/bgif2p.mpg
418
+ lip/GRID/s17/bgif3a.mpg
419
+ lip/GRID/s17/bgir9s.mpg
420
+ lip/GRID/s17/bgwm7s.mpg
421
+ lip/GRID/s17/bgwt1s.mpg
422
+ lip/GRID/s17/bgwt3a.mpg
423
+ lip/GRID/s17/brae2n.mpg
424
+ lip/GRID/s17/brae5a.mpg
425
+ lip/GRID/s17/brak7s.mpg
426
+ lip/GRID/s17/brarzn.mpg
427
+ lip/GRID/s17/bray4n.mpg
428
+ lip/GRID/s17/brbe7s.mpg
429
+ lip/GRID/s17/brid8n.mpg
430
+ lip/GRID/s17/brik3s.mpg
431
+ lip/GRID/s17/brwl7a.mpg
432
+ lip/GRID/s17/brwr9s.mpg
433
+ lip/GRID/s17/bwae9s.mpg
434
+ lip/GRID/s17/bwaz1s.mpg
435
+ lip/GRID/s17/bwaz2p.mpg
436
+ lip/GRID/s17/bwbf4p.mpg
437
+ lip/GRID/s17/bwbl8p.mpg
438
+ lip/GRID/s17/bwir4p.mpg
439
+ lip/GRID/s17/bwwm3a.mpg
440
+ lip/GRID/s17/bwws7a.mpg
441
+ lip/GRID/s17/lbao8n.mpg
442
+ lip/GRID/s17/lbao9s.mpg
443
+ lip/GRID/s17/lbapzp.mpg
444
+ lip/GRID/s17/lbav3s.mpg
445
+ lip/GRID/s17/lbbp3s.mpg
446
+ lip/GRID/s17/lbbv7s.mpg
447
+ lip/GRID/s17/lbbv8p.mpg
448
+ lip/GRID/s17/lbbv9a.mpg
449
+ lip/GRID/s17/lbii3a.mpg
450
+ lip/GRID/s17/lbio6p.mpg
451
+ lip/GRID/s17/lbio7a.mpg
452
+ lip/GRID/s17/lbwp6n.mpg
453
+ lip/GRID/s17/lbwxzn.mpg
454
+ lip/GRID/s17/lgaezp.mpg
455
+ lip/GRID/s17/lgaq8p.mpg
456
+ lip/GRID/s17/lgay1s.mpg
457
+ lip/GRID/s17/lgay2p.mpg
458
+ lip/GRID/s17/lgbe4p.mpg
459
+ lip/GRID/s17/lgbe5a.mpg
460
+ lip/GRID/s17/lgbk9a.mpg
461
+ lip/GRID/s17/lgikzp.mpg
462
+ lip/GRID/s17/lgiq5a.mpg
463
+ lip/GRID/s17/lgwe7s.mpg
464
+ lip/GRID/s17/lgwe8p.mpg
465
+ lip/GRID/s17/lgwr5s.mpg
466
+ lip/GRID/s17/lgwy8n.mpg
467
+ lip/GRID/s17/lgwy9s.mpg
468
+ lip/GRID/s17/lgwzzp.mpg
469
+ lip/GRID/s17/lrac6n.mpg
470
+ lip/GRID/s17/lrap5s.mpg
471
+ lip/GRID/s17/lrbd1s.mpg
472
+ lip/GRID/s17/lrbdzn.mpg
473
+ lip/GRID/s17/lrbx5a.mpg
474
+ lip/GRID/s17/lric2n.mpg
475
+ lip/GRID/s17/lric3s.mpg
476
+ lip/GRID/s17/lriv5s.mpg
477
+ lip/GRID/s17/lrwd5s.mpg
478
+ lip/GRID/s17/lrwj9s.mpg
479
+ lip/GRID/s17/lrwkzp.mpg
480
+ lip/GRID/s17/lwad2n.mpg
481
+ lip/GRID/s17/lwaj8p.mpg
482
+ lip/GRID/s17/lwaq3a.mpg
483
+ lip/GRID/s17/lwax4n.mpg
484
+ lip/GRID/s17/lwbd6n.mpg
485
+ lip/GRID/s17/lwbd9a.mpg
486
+ lip/GRID/s17/lwbkzn.mpg
487
+ lip/GRID/s17/lwbx8n.mpg
488
+ lip/GRID/s17/lwbyzp.mpg
489
+ lip/GRID/s17/lwic9s.mpg
490
+ lip/GRID/s17/lwij2n.mpg
491
+ lip/GRID/s17/lwip6n.mpg
492
+ lip/GRID/s17/lwip9a.mpg
493
+ lip/GRID/s17/lwix2p.mpg
494
+ lip/GRID/s17/lwwe2p.mpg
495
+ lip/GRID/s17/lwwe3a.mpg
496
+ lip/GRID/s17/lwwezn.mpg
497
+ lip/GRID/s17/lwwq9s.mpg
498
+ lip/GRID/s17/lwwy4p.mpg
499
+ lip/GRID/s17/pbaa4n.mpg
500
+ lip/GRID/s17/pbaa5s.mpg
501
+ lip/GRID/s17/pbaa6p.mpg
502
+ lip/GRID/s17/pbag8n.mpg
503
+ lip/GRID/s17/pbah1a.mpg
504
+ lip/GRID/s17/pbbh2n.mpg
505
+ lip/GRID/s17/pbbn6n.mpg
506
+ lip/GRID/s17/pbbn8p.mpg
507
+ lip/GRID/s17/pbia2p.mpg
508
+ lip/GRID/s17/pbig4n.mpg
509
+ lip/GRID/s17/pbit2n.mpg
510
+ lip/GRID/s17/pbwb2n.mpg
511
+ lip/GRID/s17/pbwozn.mpg
512
+ lip/GRID/s17/pgai6n.mpg
513
+ lip/GRID/s17/pgbc6n.mpg
514
+ lip/GRID/s17/pgbc9a.mpg
515
+ lip/GRID/s17/pgbj1s.mpg
516
+ lip/GRID/s17/pgiczp.mpg
517
+ lip/GRID/s17/pgii2n.mpg
518
+ lip/GRID/s17/pgii3s.mpg
519
+ lip/GRID/s17/pgwd1s.mpg
520
+ lip/GRID/s17/pgwj4n.mpg
521
+ lip/GRID/s17/pgwp8n.mpg
522
+ lip/GRID/s17/pgwx4p.mpg
523
+ lip/GRID/s17/pgwx5a.mpg
524
+ lip/GRID/s17/prab2p.mpg
525
+ lip/GRID/s17/prau5a.mpg
526
+ lip/GRID/s17/prbo5a.mpg
527
+ lip/GRID/s17/pria7s.mpg
528
+ lip/GRID/s17/pria9a.mpg
529
+ lip/GRID/s17/prin6p.mpg
530
+ lip/GRID/s17/prit8n.mpg
531
+ lip/GRID/s17/priuzp.mpg
532
+ lip/GRID/s17/pwab7s.mpg
533
+ lip/GRID/s17/pwab8p.mpg
534
+ lip/GRID/s17/pwao6p.mpg
535
+ lip/GRID/s17/pwau9s.mpg
536
+ lip/GRID/s17/pwbc1s.mpg
537
+ lip/GRID/s17/pwbc3a.mpg
538
+ lip/GRID/s17/pwbi4n.mpg
539
+ lip/GRID/s17/pwbi7a.mpg
540
+ lip/GRID/s17/pwbp1a.mpg
541
+ lip/GRID/s17/pwib3s.mpg
542
+ lip/GRID/s17/pwih6n.mpg
543
+ lip/GRID/s17/pwih9a.mpg
544
+ lip/GRID/s17/pwiu4n.mpg
545
+ lip/GRID/s17/pwiu6p.mpg
546
+ lip/GRID/s17/pwiu7a.mpg
547
+ lip/GRID/s17/pwwi8n.mpg
548
+ lip/GRID/s17/pwwv9a.mpg
549
+ lip/GRID/s17/sbaf3s.mpg
550
+ lip/GRID/s17/sbaf4p.mpg
551
+ lip/GRID/s17/sbas2p.mpg
552
+ lip/GRID/s17/sbas3a.mpg
553
+ lip/GRID/s17/sbaz4n.mpg
554
+ lip/GRID/s17/sbaz7a.mpg
555
+ lip/GRID/s17/sbbf9a.mpg
556
+ lip/GRID/s17/sbbm2p.mpg
557
+ lip/GRID/s17/sbbm3a.mpg
558
+ lip/GRID/s17/sbbmzn.mpg
559
+ lip/GRID/s17/sbbz9s.mpg
560
+ lip/GRID/s17/sbie8n.mpg
561
+ lip/GRID/s17/sbil2n.mpg
562
+ lip/GRID/s17/sbil3s.mpg
563
+ lip/GRID/s17/sbil4p.mpg
564
+ lip/GRID/s17/sbil5a.mpg
565
+ lip/GRID/s17/sbwg1s.mpg
566
+ lip/GRID/s17/sbwgzn.mpg
567
+ lip/GRID/s17/sbwm6p.mpg
568
+ lip/GRID/s17/sgah2p.mpg
569
+ lip/GRID/s17/sgan7a.mpg
570
+ lip/GRID/s17/sgat9s.mpg
571
+ lip/GRID/s17/sgau1a.mpg
572
+ lip/GRID/s17/sgbbzn.mpg
573
+ lip/GRID/s17/sgbh7a.mpg
574
+ lip/GRID/s17/sgbozp.mpg
575
+ lip/GRID/s17/sgbu3s.mpg
576
+ lip/GRID/s17/sgia2n.mpg
577
+ lip/GRID/s17/sgia5a.mpg
578
+ lip/GRID/s17/sgig6n.mpg
579
+ lip/GRID/s17/sgin1s.mpg
580
+ lip/GRID/s17/sgwb4n.mpg
581
+ lip/GRID/s17/sgwb6p.mpg
582
+ lip/GRID/s17/sgwi1a.mpg
583
+ lip/GRID/s17/sraf9s.mpg
584
+ lip/GRID/s17/sragzp.mpg
585
+ lip/GRID/s17/sram2n.mpg
586
+ lip/GRID/s17/sras7s.mpg
587
+ lip/GRID/s17/srba1a.mpg
588
+ lip/GRID/s17/srbg2n.mpg
589
+ lip/GRID/s17/srbm6n.mpg
590
+ lip/GRID/s17/sris2n.mpg
591
+ lip/GRID/s17/srwa3s.mpg
592
+ lip/GRID/s17/srwg8p.mpg
593
+ lip/GRID/s17/srwt5s.mpg
594
+ lip/GRID/s17/swaazn.mpg
595
+ lip/GRID/s17/swag7a.mpg
596
+ lip/GRID/s17/swat2n.mpg
597
+ lip/GRID/s17/swat4p.mpg
598
+ lip/GRID/s17/swbg8n.mpg
599
+ lip/GRID/s17/swbh1a.mpg
600
+ lip/GRID/s17/swbn4p.mpg
601
+ lip/GRID/s17/swbt7s.mpg
602
+ lip/GRID/s17/swbt9a.mpg
603
+ lip/GRID/s17/swigzn.mpg
604
+ lip/GRID/s17/swim4n.mpg
605
+ lip/GRID/s17/swim7a.mpg
606
+ lip/GRID/s17/swwa9s.mpg
607
+ lip/GRID/s17/swwu2p.mpg
608
+ lip/GRID/s2/bbaf2s.mpg
609
+ lip/GRID/s2/bbal5n.mpg
610
+ lip/GRID/s2/bbal6s.mpg
611
+ lip/GRID/s2/bbaszs.mpg
612
+ lip/GRID/s2/bbaz4s.mpg
613
+ lip/GRID/s2/bbbm2a.mpg
614
+ lip/GRID/s2/bbie9p.mpg
615
+ lip/GRID/s2/bbir6s.mpg
616
+ lip/GRID/s2/bbiz1p.mpg
617
+ lip/GRID/s2/bgaa5n.mpg
618
+ lip/GRID/s2/bgaa6s.mpg
619
+ lip/GRID/s2/bgat8s.mpg
620
+ lip/GRID/s2/bgat9p.mpg
621
+ lip/GRID/s2/bgbh3n.mpg
622
+ lip/GRID/s2/bgbh4s.mpg
623
+ lip/GRID/s2/bgbh6a.mpg
624
+ lip/GRID/s2/bgia2s.mpg
625
+ lip/GRID/s2/bgig7p.mpg
626
+ lip/GRID/s2/bgig8a.mpg
627
+ lip/GRID/s2/bgim9n.mpg
628
+ lip/GRID/s2/bgit5p.mpg
629
+ lip/GRID/s2/bgit6a.mpg
630
+ lip/GRID/s2/bgwh9p.mpg
631
+ lip/GRID/s2/bram1n.mpg
632
+ lip/GRID/s2/bras5n.mpg
633
+ lip/GRID/s2/bras6s.mpg
634
+ lip/GRID/s2/bras7p.mpg
635
+ lip/GRID/s2/brbs9n.mpg
636
+ lip/GRID/s2/brif6a.mpg
637
+ lip/GRID/s2/brwa4a.mpg
638
+ lip/GRID/s2/brwg6s.mpg
639
+ lip/GRID/s2/brwt4s.mpg
640
+ lip/GRID/s2/bwag4s.mpg
641
+ lip/GRID/s2/bwag6a.mpg
642
+ lip/GRID/s2/bwam7n.mpg
643
+ lip/GRID/s2/bwam9p.mpg
644
+ lip/GRID/s2/bwanza.mpg
645
+ lip/GRID/s2/bwat2s.mpg
646
+ lip/GRID/s2/bwba6a.mpg
647
+ lip/GRID/s2/bwim3n.mpg
648
+ lip/GRID/s2/bwim5p.mpg
649
+ lip/GRID/s2/bwis8s.mpg
650
+ lip/GRID/s2/bwwu1p.mpg
651
+ lip/GRID/s2/bwwu2a.mpg
652
+ lip/GRID/s2/lbad5n.mpg
653
+ lip/GRID/s2/lbad7p.mpg
654
+ lip/GRID/s2/lbaj9n.mpg
655
+ lip/GRID/s2/lbbezs.mpg
656
+ lip/GRID/s2/lbid1n.mpg
657
+ lip/GRID/s2/lbid2s.mpg
658
+ lip/GRID/s2/lbij8a.mpg
659
+ lip/GRID/s2/lbiq2a.mpg
660
+ lip/GRID/s2/lbiqzs.mpg
661
+ lip/GRID/s2/lbix5p.mpg
662
+ lip/GRID/s2/lbwe6a.mpg
663
+ lip/GRID/s2/lbwlza.mpg
664
+ lip/GRID/s2/lbwy6s.mpg
665
+ lip/GRID/s2/lbwy7p.mpg
666
+ lip/GRID/s2/lbwy8a.mpg
667
+ lip/GRID/s2/lgaz5n.mpg
668
+ lip/GRID/s2/lgbf7n.mpg
669
+ lip/GRID/s2/lgbf9p.mpg
670
+ lip/GRID/s2/lgbm2s.mpg
671
+ lip/GRID/s2/lgbs6s.mpg
672
+ lip/GRID/s2/lgif2a.mpg
673
+ lip/GRID/s2/lgisza.mpg
674
+ lip/GRID/s2/lgwt2a.mpg
675
+ lip/GRID/s2/lrae1n.mpg
676
+ lip/GRID/s2/lrae4a.mpg
677
+ lip/GRID/s2/lrak7p.mpg
678
+ lip/GRID/s2/lrbe5n.mpg
679
+ lip/GRID/s2/lrbr6a.mpg
680
+ lip/GRID/s2/lrby8s.mpg
681
+ lip/GRID/s2/lrieza.mpg
682
+ lip/GRID/s2/lriq7p.mpg
683
+ lip/GRID/s2/lrwe9n.mpg
684
+ lip/GRID/s2/lrwfzs.mpg
685
+ lip/GRID/s2/lrwl4s.mpg
686
+ lip/GRID/s2/lrwz2s.mpg
687
+ lip/GRID/s2/lrwz3p.mpg
688
+ lip/GRID/s2/lwae8s.mpg
689
+ lip/GRID/s2/lwae9p.mpg
690
+ lip/GRID/s2/lwafza.mpg
691
+ lip/GRID/s2/lwal1n.mpg
692
+ lip/GRID/s2/lwal4a.mpg
693
+ lip/GRID/s2/lwar5n.mpg
694
+ lip/GRID/s2/lwbl5n.mpg
695
+ lip/GRID/s2/lwbs2a.mpg
696
+ lip/GRID/s2/lwbz3n.mpg
697
+ lip/GRID/s2/lwie5p.mpg
698
+ lip/GRID/s2/lwik8s.mpg
699
+ lip/GRID/s2/lwir1n.mpg
700
+ lip/GRID/s2/lwir4a.mpg
701
+ lip/GRID/s2/lwiy8a.mpg
702
+ lip/GRID/s2/lwwz7n.mpg
703
+ lip/GRID/s2/lwwz8s.mpg
704
+ lip/GRID/s2/lwwz9p.mpg
705
+ lip/GRID/s2/pbai3n.mpg
706
+ lip/GRID/s2/pbao7n.mpg
707
+ lip/GRID/s2/pbao8s.mpg
708
+ lip/GRID/s2/pbav4a.mpg
709
+ lip/GRID/s2/pbib8a.mpg
710
+ lip/GRID/s2/pbiizs.mpg
711
+ lip/GRID/s2/pbio4s.mpg
712
+ lip/GRID/s2/pbiu9p.mpg
713
+ lip/GRID/s2/pbwj3p.mpg
714
+ lip/GRID/s2/pbwx1p.mpg
715
+ lip/GRID/s2/pgad8s.mpg
716
+ lip/GRID/s2/pgaq7p.mpg
717
+ lip/GRID/s2/pgax9n.mpg
718
+ lip/GRID/s2/pgayzs.mpg
719
+ lip/GRID/s2/pgbe4a.mpg
720
+ lip/GRID/s2/pgid4s.mpg
721
+ lip/GRID/s2/pgij7n.mpg
722
+ lip/GRID/s2/pgix6s.mpg
723
+ lip/GRID/s2/prac8a.mpg
724
+ lip/GRID/s2/prajzs.mpg
725
+ lip/GRID/s2/prav9p.mpg
726
+ lip/GRID/s2/prbdzs.mpg
727
+ lip/GRID/s2/prbj5p.mpg
728
+ lip/GRID/s2/prbp7n.mpg
729
+ lip/GRID/s2/prbx1n.mpg
730
+ lip/GRID/s2/prii6s.mpg
731
+ lip/GRID/s2/prii7p.mpg
732
+ lip/GRID/s2/prii8a.mpg
733
+ lip/GRID/s2/prip1p.mpg
734
+ lip/GRID/s2/priv6a.mpg
735
+ lip/GRID/s2/prwj9p.mpg
736
+ lip/GRID/s2/prwkza.mpg
737
+ lip/GRID/s2/prwq4a.mpg
738
+ lip/GRID/s2/pwaj8a.mpg
739
+ lip/GRID/s2/pwaq1p.mpg
740
+ lip/GRID/s2/pwax3n.mpg
741
+ lip/GRID/s2/pwax4s.mpg
742
+ lip/GRID/s2/pwax5p.mpg
743
+ lip/GRID/s2/pwax6a.mpg
744
+ lip/GRID/s2/pwbd7p.mpg
745
+ lip/GRID/s2/pwbkzs.mpg
746
+ lip/GRID/s2/pwbyza.mpg
747
+ lip/GRID/s2/pwic8s.mpg
748
+ lip/GRID/s2/pwij1n.mpg
749
+ lip/GRID/s2/pwip7p.mpg
750
+ lip/GRID/s2/pwip8a.mpg
751
+ lip/GRID/s2/pwixzs.mpg
752
+ lip/GRID/s2/sbaa5p.mpg
753
+ lip/GRID/s2/sbag8s.mpg
754
+ lip/GRID/s2/sban2s.mpg
755
+ lip/GRID/s2/sbba7n.mpg
756
+ lip/GRID/s2/sbba8s.mpg
757
+ lip/GRID/s2/sbbuzs.mpg
758
+ lip/GRID/s2/sbinza.mpg
759
+ lip/GRID/s2/sbwu3n.mpg
760
+ lip/GRID/s2/sgai8a.mpg
761
+ lip/GRID/s2/sgapzs.mpg
762
+ lip/GRID/s2/sgbp4s.mpg
763
+ lip/GRID/s2/sgib7n.mpg
764
+ lip/GRID/s2/sgii4a.mpg
765
+ lip/GRID/s2/sgio5n.mpg
766
+ lip/GRID/s2/sgio6s.mpg
767
+ lip/GRID/s2/sgivzs.mpg
768
+ lip/GRID/s2/sgwd2a.mpg
769
+ lip/GRID/s2/sgwj5p.mpg
770
+ lip/GRID/s2/sgwx3p.mpg
771
+ lip/GRID/s2/srah4s.mpg
772
+ lip/GRID/s2/srau3p.mpg
773
+ lip/GRID/s2/srbb3n.mpg
774
+ lip/GRID/s2/srbb4s.mpg
775
+ lip/GRID/s2/srbb6a.mpg
776
+ lip/GRID/s2/srbh7n.mpg
777
+ lip/GRID/s2/srbu6s.mpg
778
+ lip/GRID/s2/srbu7p.mpg
779
+ lip/GRID/s2/srih2a.mpg
780
+ lip/GRID/s2/srin3n.mpg
781
+ lip/GRID/s2/srin4s.mpg
782
+ lip/GRID/s2/srit8s.mpg
783
+ lip/GRID/s2/srit9p.mpg
784
+ lip/GRID/s2/srwi1n.mpg
785
+ lip/GRID/s2/srwi3p.mpg
786
+ lip/GRID/s2/srwv1p.mpg
787
+ lip/GRID/s2/swai1p.mpg
788
+ lip/GRID/s2/swao5p.mpg
789
+ lip/GRID/s2/swau9p.mpg
790
+ lip/GRID/s2/swbi4s.mpg
791
+ lip/GRID/s2/swbi5p.mpg
792
+ lip/GRID/s2/swib2s.mpg
793
+ lip/GRID/s2/swib3p.mpg
794
+ lip/GRID/s2/swib4a.mpg
795
+ lip/GRID/s2/swih5n.mpg
796
+ lip/GRID/s2/swih7p.mpg
797
+ lip/GRID/s2/swiu5p.mpg
798
+ lip/GRID/s2/swwc3n.mpg
799
+ lip/GRID/s2/swwc4s.mpg
800
+ lip/GRID/s2/swwc6a.mpg
801
+ lip/GRID/s2/swwi7n.mpg
802
+ lip/GRID/s2/swwi9p.mpg
803
+ lip/GRID/s2/swwv5n.mpg
804
+ lip/GRID/s2/swwv8a.mpg
805
+ lip/GRID/s24/bbac9n.mpg
806
+ lip/GRID/s24/bbap8s.mpg
807
+ lip/GRID/s24/bbax1n.mpg
808
+ lip/GRID/s24/bbax2s.mpg
809
+ lip/GRID/s24/bbax4a.mpg
810
+ lip/GRID/s24/bbbj8s.mpg
811
+ lip/GRID/s24/bbbq1n.mpg
812
+ lip/GRID/s24/bbbq2s.mpg
813
+ lip/GRID/s24/bbbx5n.mpg
814
+ lip/GRID/s24/bbbx6s.mpg
815
+ lip/GRID/s24/bbbx7p.mpg
816
+ lip/GRID/s24/bbij1p.mpg
817
+ lip/GRID/s24/bbip5p.mpg
818
+ lip/GRID/s24/bbweza.mpg
819
+ lip/GRID/s24/bbwq6s.mpg
820
+ lip/GRID/s24/bbwq7p.mpg
821
+ lip/GRID/s24/bbwx9n.mpg
822
+ lip/GRID/s24/bgar5n.mpg
823
+ lip/GRID/s24/bgie6a.mpg
824
+ lip/GRID/s24/bgik7n.mpg
825
+ lip/GRID/s24/bgir1n.mpg
826
+ lip/GRID/s24/bgiy5n.mpg
827
+ lip/GRID/s24/bgws6a.mpg
828
+ lip/GRID/s24/bgwz8s.mpg
829
+ lip/GRID/s24/brad5n.mpg
830
+ lip/GRID/s24/brad8a.mpg
831
+ lip/GRID/s24/brakzs.mpg
832
+ lip/GRID/s24/brayza.mpg
833
+ lip/GRID/s24/brbe1p.mpg
834
+ lip/GRID/s24/brbk5p.mpg
835
+ lip/GRID/s24/brbq8s.mpg
836
+ lip/GRID/s24/brip9n.mpg
837
+ lip/GRID/s24/brix4s.mpg
838
+ lip/GRID/s24/brix5p.mpg
839
+ lip/GRID/s24/brwe3n.mpg
840
+ lip/GRID/s24/brwk8s.mpg
841
+ lip/GRID/s24/brwr4a.mpg
842
+ lip/GRID/s24/bwae3p.mpg
843
+ lip/GRID/s24/bwae4a.mpg
844
+ lip/GRID/s24/bwak7p.mpg
845
+ lip/GRID/s24/bwblzs.mpg
846
+ lip/GRID/s24/bwby7n.mpg
847
+ lip/GRID/s24/bwid8s.mpg
848
+ lip/GRID/s24/bwiy1p.mpg
849
+ lip/GRID/s24/bwwe9n.mpg
850
+ lip/GRID/s24/bwwl6a.mpg
851
+ lip/GRID/s24/bwwz2s.mpg
852
+ lip/GRID/s24/bwwz3p.mpg
853
+ lip/GRID/s24/lbab5p.mpg
854
+ lip/GRID/s24/lbab6a.mpg
855
+ lip/GRID/s24/lbau7p.mpg
856
+ lip/GRID/s24/lbau8a.mpg
857
+ lip/GRID/s24/lbbb7n.mpg
858
+ lip/GRID/s24/lbbb9p.mpg
859
+ lip/GRID/s24/lbbcza.mpg
860
+ lip/GRID/s24/lbbi2s.mpg
861
+ lip/GRID/s24/lbbi4a.mpg
862
+ lip/GRID/s24/lbin9p.mpg
863
+ lip/GRID/s24/lbiu2s.mpg
864
+ lip/GRID/s24/lbiu4a.mpg
865
+ lip/GRID/s24/lbwc2s.mpg
866
+ lip/GRID/s24/lbwpzs.mpg
867
+ lip/GRID/s24/lbwv5p.mpg
868
+ lip/GRID/s24/lgaj5n.mpg
869
+ lip/GRID/s24/lgaj6s.mpg
870
+ lip/GRID/s24/lgax3n.mpg
871
+ lip/GRID/s24/lgax4s.mpg
872
+ lip/GRID/s24/lgbd5n.mpg
873
+ lip/GRID/s24/lgij1n.mpg
874
+ lip/GRID/s24/lgij2s.mpg
875
+ lip/GRID/s24/lgix1p.mpg
876
+ lip/GRID/s24/lgwq7n.mpg
877
+ lip/GRID/s24/lrac2a.mpg
878
+ lip/GRID/s24/lrapza.mpg
879
+ lip/GRID/s24/lrav1n.mpg
880
+ lip/GRID/s24/lrav2s.mpg
881
+ lip/GRID/s24/lrav4a.mpg
882
+ lip/GRID/s24/lrii2a.mpg
883
+ lip/GRID/s24/lriizs.mpg
884
+ lip/GRID/s24/lrio6a.mpg
885
+ lip/GRID/s24/lriu8s.mpg
886
+ lip/GRID/s24/lrwc9p.mpg
887
+ lip/GRID/s24/lrwj2s.mpg
888
+ lip/GRID/s24/lrwj4a.mpg
889
+ lip/GRID/s24/lwac7p.mpg
890
+ lip/GRID/s24/lwai9n.mpg
891
+ lip/GRID/s24/lwbp7n.mpg
892
+ lip/GRID/s24/lwic4a.mpg
893
+ lip/GRID/s24/lwii6s.mpg
894
+ lip/GRID/s24/lwwkza.mpg
895
+ lip/GRID/s24/pbag4a.mpg
896
+ lip/GRID/s24/pbatzs.mpg
897
+ lip/GRID/s24/pbba1n.mpg
898
+ lip/GRID/s24/pbbg7p.mpg
899
+ lip/GRID/s24/pbbn1p.mpg
900
+ lip/GRID/s24/pbif8s.mpg
901
+ lip/GRID/s24/pbigza.mpg
902
+ lip/GRID/s24/pbim4a.mpg
903
+ lip/GRID/s24/pbwa5n.mpg
904
+ lip/GRID/s24/pbwa6s.mpg
905
+ lip/GRID/s24/pbwt8s.mpg
906
+ lip/GRID/s24/pgab5n.mpg
907
+ lip/GRID/s24/pgao5p.mpg
908
+ lip/GRID/s24/pgbi4s.mpg
909
+ lip/GRID/s24/pgih6s.mpg
910
+ lip/GRID/s24/pgin9n.mpg
911
+ lip/GRID/s24/pgio1p.mpg
912
+ lip/GRID/s24/pgiu3n.mpg
913
+ lip/GRID/s24/pgiu5p.mpg
914
+ lip/GRID/s24/praa5p.mpg
915
+ lip/GRID/s24/pran3p.mpg
916
+ lip/GRID/s24/prbh4a.mpg
917
+ lip/GRID/s24/prbn6s.mpg
918
+ lip/GRID/s24/prbn7p.mpg
919
+ lip/GRID/s24/prbt9n.mpg
920
+ lip/GRID/s24/pria2a.mpg
921
+ lip/GRID/s24/priazs.mpg
922
+ lip/GRID/s24/prit1n.mpg
923
+ lip/GRID/s24/prit3p.mpg
924
+ lip/GRID/s24/prwn9n.mpg
925
+ lip/GRID/s24/prwo1p.mpg
926
+ lip/GRID/s24/pwan8s.mpg
927
+ lip/GRID/s24/pwau2s.mpg
928
+ lip/GRID/s24/pwau3p.mpg
929
+ lip/GRID/s24/pwbb3n.mpg
930
+ lip/GRID/s24/pwbb4s.mpg
931
+ lip/GRID/s24/pwbb6a.mpg
932
+ lip/GRID/s24/pwbh9p.mpg
933
+ lip/GRID/s24/pwbo1n.mpg
934
+ lip/GRID/s24/pwbo2s.mpg
935
+ lip/GRID/s24/pwia8a.mpg
936
+ lip/GRID/s24/pwig9n.mpg
937
+ lip/GRID/s24/pwiuza.mpg
938
+ lip/GRID/s24/pwwb9p.mpg
939
+ lip/GRID/s24/pwwcza.mpg
940
+ lip/GRID/s24/pwwi3p.mpg
941
+ lip/GRID/s24/pwwi4a.mpg
942
+ lip/GRID/s24/sbar6a.mpg
943
+ lip/GRID/s24/sbay7n.mpg
944
+ lip/GRID/s24/sbay8s.mpg
945
+ lip/GRID/s24/sbay9p.mpg
946
+ lip/GRID/s24/sbbf1p.mpg
947
+ lip/GRID/s24/sbbf2a.mpg
948
+ lip/GRID/s24/sbbl3n.mpg
949
+ lip/GRID/s24/sbbl4s.mpg
950
+ lip/GRID/s24/sbbr8s.mpg
951
+ lip/GRID/s24/sbbz4a.mpg
952
+ lip/GRID/s24/sbie3p.mpg
953
+ lip/GRID/s24/sbiq9n.mpg
954
+ lip/GRID/s24/sbirzs.mpg
955
+ lip/GRID/s24/sbwl7n.mpg
956
+ lip/GRID/s24/sbws3p.mpg
957
+ lip/GRID/s24/sbwz6s.mpg
958
+ lip/GRID/s24/sgaazs.mpg
959
+ lip/GRID/s24/sgat4a.mpg
960
+ lip/GRID/s24/sgbg7n.mpg
961
+ lip/GRID/s24/sgbn2s.mpg
962
+ lip/GRID/s24/sgim5p.mpg
963
+ lip/GRID/s24/sgwuzs.mpg
964
+ lip/GRID/s24/sraf4a.mpg
965
+ lip/GRID/s24/sral7p.mpg
966
+ lip/GRID/s24/sraz3n.mpg
967
+ lip/GRID/s24/srbm1p.mpg
968
+ lip/GRID/s24/srbmzs.mpg
969
+ lip/GRID/s24/srbz9p.mpg
970
+ lip/GRID/s24/srie9p.mpg
971
+ lip/GRID/s24/sriz1p.mpg
972
+ lip/GRID/s24/srwgzs.mpg
973
+ lip/GRID/s24/srwm6a.mpg
974
+ lip/GRID/s24/srws7n.mpg
975
+ lip/GRID/s24/swam4a.mpg
976
+ lip/GRID/s24/swas5n.mpg
977
+ lip/GRID/s24/swbm8a.mpg
978
+ lip/GRID/s24/swbs9n.mpg
979
+ lip/GRID/s24/swil7n.mpg
980
+ lip/GRID/s24/swil9p.mpg
981
+ lip/GRID/s24/swiz7p.mpg
982
+ lip/GRID/s24/swwm9n.mpg
983
+ lip/GRID/s24/swwn2a.mpg
984
+ lip/GRID/s24/swwnzs.mpg
985
+ lip/GRID/s24/swwt3n.mpg
986
+ lip/GRID/s25/bbaxzn.mpg
987
+ lip/GRID/s25/bbbd2n.mpg
988
+ lip/GRID/s25/bbip3s.mpg
989
+ lip/GRID/s25/bbwq6p.mpg
990
+ lip/GRID/s25/bbwy1a.mpg
991
+ lip/GRID/s25/bgae6n.mpg
992
+ lip/GRID/s25/bgar7a.mpg
993
+ lip/GRID/s25/bgay8n.mpg
994
+ lip/GRID/s25/bgbf2p.mpg
995
+ lip/GRID/s25/bgbfzn.mpg
996
+ lip/GRID/s25/bgbl6p.mpg
997
+ lip/GRID/s25/bgbr8n.mpg
998
+ lip/GRID/s25/bgiy4n.mpg
999
+ lip/GRID/s25/bgws3s.mpg
1000
+ lip/GRID/s25/bgwz7s.mpg
1001
+ lip/GRID/s25/bgwz9a.mpg
1002
+ lip/GRID/s25/brad5s.mpg
1003
+ lip/GRID/s25/brad6p.mpg
1004
+ lip/GRID/s25/braj8n.mpg
1005
+ lip/GRID/s25/brakzp.mpg
1006
+ lip/GRID/s25/braq5a.mpg
1007
+ lip/GRID/s25/brax6n.mpg
1008
+ lip/GRID/s25/brax8p.mpg
1009
+ lip/GRID/s25/brbezp.mpg
1010
+ lip/GRID/s25/brbq8p.mpg
1011
+ lip/GRID/s25/brid2p.mpg
1012
+ lip/GRID/s25/brij5s.mpg
1013
+ lip/GRID/s25/brij6p.mpg
1014
+ lip/GRID/s25/brix2n.mpg
1015
+ lip/GRID/s25/brix5a.mpg
1016
+ lip/GRID/s25/brwe4p.mpg
1017
+ lip/GRID/s25/brwe5a.mpg
1018
+ lip/GRID/s25/brwk9a.mpg
1019
+ lip/GRID/s25/brwrzn.mpg
1020
+ lip/GRID/s25/bwak4n.mpg
1021
+ lip/GRID/s25/bwak5s.mpg
1022
+ lip/GRID/s25/bway2n.mpg
1023
+ lip/GRID/s25/bwbe5s.mpg
1024
+ lip/GRID/s25/bwbk9s.mpg
1025
+ lip/GRID/s25/bwid6n.mpg
1026
+ lip/GRID/s25/bwik2p.mpg
1027
+ lip/GRID/s25/bwik3a.mpg
1028
+ lip/GRID/s25/bwix8n.mpg
1029
+ lip/GRID/s25/bwiy1a.mpg
1030
+ lip/GRID/s25/bwwe9s.mpg
1031
+ lip/GRID/s25/bwwr6n.mpg
1032
+ lip/GRID/s25/bwwr8p.mpg
1033
+ lip/GRID/s25/bwwr9a.mpg
1034
+ lip/GRID/s25/bwwz1s.mpg
1035
+ lip/GRID/s25/lbah6n.mpg
1036
+ lip/GRID/s25/lbah8p.mpg
1037
+ lip/GRID/s25/lbao2p.mpg
1038
+ lip/GRID/s25/lbau5s.mpg
1039
+ lip/GRID/s25/lbbi1s.mpg
1040
+ lip/GRID/s25/lbbi2p.mpg
1041
+ lip/GRID/s25/lbbo7a.mpg
1042
+ lip/GRID/s25/lbbu8n.mpg
1043
+ lip/GRID/s25/lbin9a.mpg
1044
+ lip/GRID/s25/lbiu3a.mpg
1045
+ lip/GRID/s25/lbwc1s.mpg
1046
+ lip/GRID/s25/lbwo8n.mpg
1047
+ lip/GRID/s25/lbwo9s.mpg
1048
+ lip/GRID/s25/lbwp1a.mpg
1049
+ lip/GRID/s25/lbwpzp.mpg
1050
+ lip/GRID/s25/lbwv5a.mpg
1051
+ lip/GRID/s25/lgap8n.mpg
1052
+ lip/GRID/s25/lgaq1a.mpg
1053
+ lip/GRID/s25/lgax3s.mpg
1054
+ lip/GRID/s25/lgbd7a.mpg
1055
+ lip/GRID/s25/lgbq3s.mpg
1056
+ lip/GRID/s25/lgbx9a.mpg
1057
+ lip/GRID/s25/lgic9a.mpg
1058
+ lip/GRID/s25/lgij1s.mpg
1059
+ lip/GRID/s25/lgij3a.mpg
1060
+ lip/GRID/s25/lgijzn.mpg
1061
+ lip/GRID/s25/lgixzp.mpg
1062
+ lip/GRID/s25/lgwd9s.mpg
1063
+ lip/GRID/s25/lgwe1a.mpg
1064
+ lip/GRID/s25/lgwk4p.mpg
1065
+ lip/GRID/s25/lgwq6n.mpg
1066
+ lip/GRID/s25/lgwq9a.mpg
1067
+ lip/GRID/s25/lrai3s.mpg
1068
+ lip/GRID/s25/lrbc2n.mpg
1069
+ lip/GRID/s25/lrbp2p.mpg
1070
+ lip/GRID/s25/lrbv7a.mpg
1071
+ lip/GRID/s25/lrib5s.mpg
1072
+ lip/GRID/s25/lrib6p.mpg
1073
+ lip/GRID/s25/lrio4p.mpg
1074
+ lip/GRID/s25/lrwc7s.mpg
1075
+ lip/GRID/s25/lrwc8p.mpg
1076
+ lip/GRID/s25/lrwj2p.mpg
1077
+ lip/GRID/s25/lwac4n.mpg
1078
+ lip/GRID/s25/lwac5s.mpg
1079
+ lip/GRID/s25/lwac6p.mpg
1080
+ lip/GRID/s25/lwac7a.mpg
1081
+ lip/GRID/s25/lwbc9s.mpg
1082
+ lip/GRID/s25/lwbd1a.mpg
1083
+ lip/GRID/s25/lwbj4p.mpg
1084
+ lip/GRID/s25/lwbj5a.mpg
1085
+ lip/GRID/s25/lwbp6n.mpg
1086
+ lip/GRID/s25/lwbx1s.mpg
1087
+ lip/GRID/s25/lwiczn.mpg
1088
+ lip/GRID/s25/lwii6p.mpg
1089
+ lip/GRID/s25/lwiv4p.mpg
1090
+ lip/GRID/s25/lwwj6n.mpg
1091
+ lip/GRID/s25/lwwq2p.mpg
1092
+ lip/GRID/s25/pbag1s.mpg
1093
+ lip/GRID/s25/pbas9s.mpg
1094
+ lip/GRID/s25/pbat1a.mpg
1095
+ lip/GRID/s25/pbatzp.mpg
1096
+ lip/GRID/s25/pbba2p.mpg
1097
+ lip/GRID/s25/pbba3a.mpg
1098
+ lip/GRID/s25/pbbg6p.mpg
1099
+ lip/GRID/s25/pbbnzp.mpg
1100
+ lip/GRID/s25/pbiz8n.mpg
1101
+ lip/GRID/s25/pbwa7a.mpg
1102
+ lip/GRID/s25/pbwn2n.mpg
1103
+ lip/GRID/s25/pbwn5a.mpg
1104
+ lip/GRID/s25/pbwt6n.mpg
1105
+ lip/GRID/s25/pgab4n.mpg
1106
+ lip/GRID/s25/pgab5s.mpg
1107
+ lip/GRID/s25/pgah9s.mpg
1108
+ lip/GRID/s25/pgao2n.mpg
1109
+ lip/GRID/s25/pgao3s.mpg
1110
+ lip/GRID/s25/pgao5a.mpg
1111
+ lip/GRID/s25/pgbb9s.mpg
1112
+ lip/GRID/s25/pgbi2n.mpg
1113
+ lip/GRID/s25/pgbi3s.mpg
1114
+ lip/GRID/s25/pgih5s.mpg
1115
+ lip/GRID/s25/pgin9s.mpg
1116
+ lip/GRID/s25/pgiozp.mpg
1117
+ lip/GRID/s25/pgiu2n.mpg
1118
+ lip/GRID/s25/pgiu4p.mpg
1119
+ lip/GRID/s25/pgwp1s.mpg
1120
+ lip/GRID/s25/pgwp2p.mpg
1121
+ lip/GRID/s25/pgwp3a.mpg
1122
+ lip/GRID/s25/pgwpzn.mpg
1123
+ lip/GRID/s25/pgwv5s.mpg
1124
+ lip/GRID/s25/praa2n.mpg
1125
+ lip/GRID/s25/prag8p.mpg
1126
+ lip/GRID/s25/prat7a.mpg
1127
+ lip/GRID/s25/prbn7a.mpg
1128
+ lip/GRID/s25/priazp.mpg
1129
+ lip/GRID/s25/prwb3a.mpg
1130
+ lip/GRID/s25/prwu3s.mpg
1131
+ lip/GRID/s25/pwab1a.mpg
1132
+ lip/GRID/s25/pwah2n.mpg
1133
+ lip/GRID/s25/pwah3s.mpg
1134
+ lip/GRID/s25/pwan9a.mpg
1135
+ lip/GRID/s25/pwau1s.mpg
1136
+ lip/GRID/s25/pwbu5s.mpg
1137
+ lip/GRID/s25/pwbu6p.mpg
1138
+ lip/GRID/s25/pwia6p.mpg
1139
+ lip/GRID/s25/pwig8n.mpg
1140
+ lip/GRID/s25/pwih1a.mpg
1141
+ lip/GRID/s25/pwin3s.mpg
1142
+ lip/GRID/s25/pwwi1s.mpg
1143
+ lip/GRID/s25/pwwizn.mpg
1144
+ lip/GRID/s25/pwwu9s.mpg
1145
+ lip/GRID/s25/sbbl2n.mpg
1146
+ lip/GRID/s25/sbbl4p.mpg
1147
+ lip/GRID/s25/sbbl5a.mpg
1148
+ lip/GRID/s25/sbbz1s.mpg
1149
+ lip/GRID/s25/sbie3a.mpg
1150
+ lip/GRID/s25/sbik5s.mpg
1151
+ lip/GRID/s25/sbir1a.mpg
1152
+ lip/GRID/s25/sbwl8p.mpg
1153
+ lip/GRID/s25/sbws1s.mpg
1154
+ lip/GRID/s25/sbwz7a.mpg
1155
+ lip/GRID/s25/sgag2n.mpg
1156
+ lip/GRID/s25/sgam7s.mpg
1157
+ lip/GRID/s25/sgam9a.mpg
1158
+ lip/GRID/s25/sgat1s.mpg
1159
+ lip/GRID/s25/sgat3a.mpg
1160
+ lip/GRID/s25/sgbg9a.mpg
1161
+ lip/GRID/s25/sgbn1s.mpg
1162
+ lip/GRID/s25/sgbnzn.mpg
1163
+ lip/GRID/s25/sgbt7a.mpg
1164
+ lip/GRID/s25/sgif8n.mpg
1165
+ lip/GRID/s25/sgim5a.mpg
1166
+ lip/GRID/s25/sgis6n.mpg
1167
+ lip/GRID/s25/sgis7s.mpg
1168
+ lip/GRID/s25/sgis9a.mpg
1169
+ lip/GRID/s25/sgwh3a.mpg
1170
+ lip/GRID/s25/srbs3s.mpg
1171
+ lip/GRID/s25/srbs5a.mpg
1172
+ lip/GRID/s25/srbz7s.mpg
1173
+ lip/GRID/s25/sril3a.mpg
1174
+ lip/GRID/s25/srwm5a.mpg
1175
+ lip/GRID/s25/srws7s.mpg
1176
+ lip/GRID/s25/swaf6n.mpg
1177
+ lip/GRID/s25/swam3a.mpg
1178
+ lip/GRID/s25/swamzn.mpg
1179
+ lip/GRID/s25/swas4n.mpg
1180
+ lip/GRID/s25/swas5s.mpg
1181
+ lip/GRID/s25/swas6p.mpg
1182
+ lip/GRID/s25/swas7a.mpg
1183
+ lip/GRID/s25/swbg1s.mpg
1184
+ lip/GRID/s25/swbm5s.mpg
1185
+ lip/GRID/s25/swbm7a.mpg
1186
+ lip/GRID/s25/swil8p.mpg
1187
+ lip/GRID/s25/swil9a.mpg
1188
+ lip/GRID/s25/swwg5s.mpg
1189
+ lip/GRID/s25/swwg7a.mpg
1190
+ lip/GRID/s25/swwn1a.mpg
1191
+ lip/GRID/s25/swwt2n.mpg
1192
+ lip/GRID/s25/swwt3s.mpg
1193
+ lip/GRID/s3/bbafzn.mpg
1194
+ lip/GRID/s3/bbaz2n.mpg
1195
+ lip/GRID/s3/bbaz4p.mpg
1196
+ lip/GRID/s3/bbbf4n.mpg
1197
+ lip/GRID/s3/bbbf5s.mpg
1198
+ lip/GRID/s3/bbbs2n.mpg
1199
+ lip/GRID/s3/bbbs3s.mpg
1200
+ lip/GRID/s3/bbbs4p.mpg
1201
+ lip/GRID/s3/bbie9a.mpg
1202
+ lip/GRID/s3/bbil3a.mpg
1203
+ lip/GRID/s3/bbiz1a.mpg
1204
+ lip/GRID/s3/bbwm5a.mpg
1205
+ lip/GRID/s3/bgaa7a.mpg
1206
+ lip/GRID/s3/bgag8n.mpg
1207
+ lip/GRID/s3/bgan2n.mpg
1208
+ lip/GRID/s3/bgan4p.mpg
1209
+ lip/GRID/s3/bgat6n.mpg
1210
+ lip/GRID/s3/bgat8p.mpg
1211
+ lip/GRID/s3/bgba9s.mpg
1212
+ lip/GRID/s3/bgbb1a.mpg
1213
+ lip/GRID/s3/bgbh2n.mpg
1214
+ lip/GRID/s3/bgia1s.mpg
1215
+ lip/GRID/s3/bgig7a.mpg
1216
+ lip/GRID/s3/bgit5a.mpg
1217
+ lip/GRID/s3/bras5s.mpg
1218
+ lip/GRID/s3/bras6p.mpg
1219
+ lip/GRID/s3/brbm4n.mpg
1220
+ lip/GRID/s3/brbs9s.mpg
1221
+ lip/GRID/s3/bris1s.mpg
1222
+ lip/GRID/s3/briz6p.mpg
1223
+ lip/GRID/s3/briz7a.mpg
1224
+ lip/GRID/s3/brwa1s.mpg
1225
+ lip/GRID/s3/brwazn.mpg
1226
+ lip/GRID/s3/brwg5s.mpg
1227
+ lip/GRID/s3/brwt5a.mpg
1228
+ lip/GRID/s3/bwat3a.mpg
1229
+ lip/GRID/s3/bwbn1s.mpg
1230
+ lip/GRID/s3/bwbn2p.mpg
1231
+ lip/GRID/s3/bwbn3a.mpg
1232
+ lip/GRID/s3/bwig1a.mpg
1233
+ lip/GRID/s3/bwim5a.mpg
1234
+ lip/GRID/s3/bwis7s.mpg
1235
+ lip/GRID/s3/bwis8p.mpg
1236
+ lip/GRID/s3/bwwh1s.mpg
1237
+ lip/GRID/s3/lbad4n.mpg
1238
+ lip/GRID/s3/lbad7a.mpg
1239
+ lip/GRID/s3/lbaj8n.mpg
1240
+ lip/GRID/s3/lbaq3s.mpg
1241
+ lip/GRID/s3/lbax6n.mpg
1242
+ lip/GRID/s3/lbax7s.mpg
1243
+ lip/GRID/s3/lbax8p.mpg
1244
+ lip/GRID/s3/lbbk5a.mpg
1245
+ lip/GRID/s3/lbbq8p.mpg
1246
+ lip/GRID/s3/lbid3a.mpg
1247
+ lip/GRID/s3/lbip8n.mpg
1248
+ lip/GRID/s3/lbwe3s.mpg
1249
+ lip/GRID/s3/lbwk6n.mpg
1250
+ lip/GRID/s3/lgal7s.mpg
1251
+ lip/GRID/s3/lgas1s.mpg
1252
+ lip/GRID/s3/lgas2p.mpg
1253
+ lip/GRID/s3/lgaz7a.mpg
1254
+ lip/GRID/s3/lgbf7s.mpg
1255
+ lip/GRID/s3/lgbs5s.mpg
1256
+ lip/GRID/s3/lgif1a.mpg
1257
+ lip/GRID/s3/lgil3s.mpg
1258
+ lip/GRID/s3/lgwg1s.mpg
1259
+ lip/GRID/s3/lgwm6p.mpg
1260
+ lip/GRID/s3/lgwm7a.mpg
1261
+ lip/GRID/s3/lrae3a.mpg
1262
+ lip/GRID/s3/lraezn.mpg
1263
+ lip/GRID/s3/lray4p.mpg
1264
+ lip/GRID/s3/lrbe7a.mpg
1265
+ lip/GRID/s3/lrbk8n.mpg
1266
+ lip/GRID/s3/lrbl1a.mpg
1267
+ lip/GRID/s3/lrby7s.mpg
1268
+ lip/GRID/s3/lrby8p.mpg
1269
+ lip/GRID/s3/lrid7s.mpg
1270
+ lip/GRID/s3/lrwl3s.mpg
1271
+ lip/GRID/s3/lrwr8p.mpg
1272
+ lip/GRID/s3/lrwzzn.mpg
1273
+ lip/GRID/s3/lwae6n.mpg
1274
+ lip/GRID/s3/lwal1s.mpg
1275
+ lip/GRID/s3/lwalzn.mpg
1276
+ lip/GRID/s3/lway8n.mpg
1277
+ lip/GRID/s3/lwbr8n.mpg
1278
+ lip/GRID/s3/lwbz4p.mpg
1279
+ lip/GRID/s3/lwbz5a.mpg
1280
+ lip/GRID/s3/lwie3s.mpg
1281
+ lip/GRID/s3/lwiy4n.mpg
1282
+ lip/GRID/s3/lwwl8n.mpg
1283
+ lip/GRID/s3/lwwm1a.mpg
1284
+ lip/GRID/s3/lwws4p.mpg
1285
+ lip/GRID/s3/lwws5a.mpg
1286
+ lip/GRID/s3/lwwz7s.mpg
1287
+ lip/GRID/s3/pbao6n.mpg
1288
+ lip/GRID/s3/pbav2p.mpg
1289
+ lip/GRID/s3/pbbi7s.mpg
1290
+ lip/GRID/s3/pbbi8p.mpg
1291
+ lip/GRID/s3/pbbp1s.mpg
1292
+ lip/GRID/s3/pbbv4n.mpg
1293
+ lip/GRID/s3/pbib4n.mpg
1294
+ lip/GRID/s3/pbib5s.mpg
1295
+ lip/GRID/s3/pbih8n.mpg
1296
+ lip/GRID/s3/pbiizp.mpg
1297
+ lip/GRID/s3/pbiu7s.mpg
1298
+ lip/GRID/s3/pbiu8p.mpg
1299
+ lip/GRID/s3/pbiu9a.mpg
1300
+ lip/GRID/s3/pbwc6n.mpg
1301
+ lip/GRID/s3/pbwp4n.mpg
1302
+ lip/GRID/s3/pbwxzp.mpg
1303
+ lip/GRID/s3/pgad9a.mpg
1304
+ lip/GRID/s3/pgak2p.mpg
1305
+ lip/GRID/s3/pgax9s.mpg
1306
+ lip/GRID/s3/pgbezn.mpg
1307
+ lip/GRID/s3/pgbk5s.mpg
1308
+ lip/GRID/s3/pgbq8n.mpg
1309
+ lip/GRID/s3/pgby3s.mpg
1310
+ lip/GRID/s3/pgid3s.mpg
1311
+ lip/GRID/s3/pgiq3a.mpg
1312
+ lip/GRID/s3/pgix6p.mpg
1313
+ lip/GRID/s3/pgix7a.mpg
1314
+ lip/GRID/s3/pgwe7a.mpg
1315
+ lip/GRID/s3/pgwlzp.mpg
1316
+ lip/GRID/s3/pgwr5a.mpg
1317
+ lip/GRID/s3/pgwy9a.mpg
1318
+ lip/GRID/s3/prac4n.mpg
1319
+ lip/GRID/s3/prai9s.mpg
1320
+ lip/GRID/s3/prap4p.mpg
1321
+ lip/GRID/s3/prav7s.mpg
1322
+ lip/GRID/s3/prbj3s.mpg
1323
+ lip/GRID/s3/pric1s.mpg
1324
+ lip/GRID/s3/pric2p.mpg
1325
+ lip/GRID/s3/pric3a.mpg
1326
+ lip/GRID/s3/prii4n.mpg
1327
+ lip/GRID/s3/prio8n.mpg
1328
+ lip/GRID/s3/prio9s.mpg
1329
+ lip/GRID/s3/priv5a.mpg
1330
+ lip/GRID/s3/prwd2n.mpg
1331
+ lip/GRID/s3/prwj9a.mpg
1332
+ lip/GRID/s3/pwad3a.mpg
1333
+ lip/GRID/s3/pwadzn.mpg
1334
+ lip/GRID/s3/pwbd7a.mpg
1335
+ lip/GRID/s3/pwic6n.mpg
1336
+ lip/GRID/s3/pwij2p.mpg
1337
+ lip/GRID/s3/pwijzn.mpg
1338
+ lip/GRID/s3/pwwk5a.mpg
1339
+ lip/GRID/s3/sbaa2n.mpg
1340
+ lip/GRID/s3/sbaa3s.mpg
1341
+ lip/GRID/s3/sbag7s.mpg
1342
+ lip/GRID/s3/sbag8p.mpg
1343
+ lip/GRID/s3/sbag9a.mpg
1344
+ lip/GRID/s3/sbanzn.mpg
1345
+ lip/GRID/s3/sbat5s.mpg
1346
+ lip/GRID/s3/sbbt9s.mpg
1347
+ lip/GRID/s3/sbig2n.mpg
1348
+ lip/GRID/s3/sbig3s.mpg
1349
+ lip/GRID/s3/sbig4p.mpg
1350
+ lip/GRID/s3/sbim8p.mpg
1351
+ lip/GRID/s3/sbit2p.mpg
1352
+ lip/GRID/s3/sbit3a.mpg
1353
+ lip/GRID/s3/sbwbzn.mpg
1354
+ lip/GRID/s3/sbwh4n.mpg
1355
+ lip/GRID/s3/sbwu3s.mpg
1356
+ lip/GRID/s3/sgac1s.mpg
1357
+ lip/GRID/s3/sgai5s.mpg
1358
+ lip/GRID/s3/sgav3s.mpg
1359
+ lip/GRID/s3/sgav5a.mpg
1360
+ lip/GRID/s3/sgbc4n.mpg
1361
+ lip/GRID/s3/sgbi9s.mpg
1362
+ lip/GRID/s3/sgbp3s.mpg
1363
+ lip/GRID/s3/sgbv6n.mpg
1364
+ lip/GRID/s3/sgbv7s.mpg
1365
+ lip/GRID/s3/sgiizn.mpg
1366
+ lip/GRID/s3/sgio5s.mpg
1367
+ lip/GRID/s3/sgiu9s.mpg
1368
+ lip/GRID/s3/sgwc8n.mpg
1369
+ lip/GRID/s3/sraa9s.mpg
1370
+ lip/GRID/s3/srab1a.mpg
1371
+ lip/GRID/s3/sran7s.mpg
1372
+ lip/GRID/s3/srau3a.mpg
1373
+ lip/GRID/s3/srbh6n.mpg
1374
+ lip/GRID/s3/srbu4n.mpg
1375
+ lip/GRID/s3/srbu6p.mpg
1376
+ lip/GRID/s3/srit6n.mpg
1377
+ lip/GRID/s3/srit9a.mpg
1378
+ lip/GRID/s3/srwb6n.mpg
1379
+ lip/GRID/s3/srwi3a.mpg
1380
+ lip/GRID/s3/srwo6p.mpg
1381
+ lip/GRID/s3/srwo7a.mpg
1382
+ lip/GRID/s3/srwvzp.mpg
1383
+ lip/GRID/s3/swao2n.mpg
1384
+ lip/GRID/s3/swao3s.mpg
1385
+ lip/GRID/s3/swbvzn.mpg
1386
+ lip/GRID/s3/swibzn.mpg
1387
+ lip/GRID/s3/swih6p.mpg
1388
+ lip/GRID/s3/swio1a.mpg
1389
+ lip/GRID/s3/swiozp.mpg
1390
+ lip/GRID/s3/swiu4p.mpg
1391
+ lip/GRID/s3/swwc2n.mpg
1392
+ lip/GRID/s3/swwv4n.mpg
1393
+ lip/GRID/s30/bbac3n.mpg
1394
+ lip/GRID/s30/bbai9p.mpg
1395
+ lip/GRID/s30/bbap3p.mpg
1396
+ lip/GRID/s30/bbav6s.mpg
1397
+ lip/GRID/s30/bbbc9p.mpg
1398
+ lip/GRID/s30/bbbdza.mpg
1399
+ lip/GRID/s30/bbbj4a.mpg
1400
+ lip/GRID/s30/bbbx1p.mpg
1401
+ lip/GRID/s30/bbbxzs.mpg
1402
+ lip/GRID/s30/bbic1p.mpg
1403
+ lip/GRID/s30/bbiczs.mpg
1404
+ lip/GRID/s30/bbio8s.mpg
1405
+ lip/GRID/s30/bbio9p.mpg
1406
+ lip/GRID/s30/bbiv3p.mpg
1407
+ lip/GRID/s30/bbwd4a.mpg
1408
+ lip/GRID/s30/bbwp9n.mpg
1409
+ lip/GRID/s30/bgay4s.mpg
1410
+ lip/GRID/s30/bgay5p.mpg
1411
+ lip/GRID/s30/bgbe7p.mpg
1412
+ lip/GRID/s30/bgbk9n.mpg
1413
+ lip/GRID/s30/bgblzs.mpg
1414
+ lip/GRID/s30/bgbr6a.mpg
1415
+ lip/GRID/s30/bgid8s.mpg
1416
+ lip/GRID/s30/bgiq5n.mpg
1417
+ lip/GRID/s30/bgix9n.mpg
1418
+ lip/GRID/s30/bgwe9n.mpg
1419
+ lip/GRID/s30/bgwl3n.mpg
1420
+ lip/GRID/s30/braj6a.mpg
1421
+ lip/GRID/s30/brap8s.mpg
1422
+ lip/GRID/s30/brbd4s.mpg
1423
+ lip/GRID/s30/brbd6a.mpg
1424
+ lip/GRID/s30/brbkza.mpg
1425
+ lip/GRID/s30/brbx5n.mpg
1426
+ lip/GRID/s30/brbx7p.mpg
1427
+ lip/GRID/s30/bric6s.mpg
1428
+ lip/GRID/s30/brip6a.mpg
1429
+ lip/GRID/s30/briv8s.mpg
1430
+ lip/GRID/s30/brixza.mpg
1431
+ lip/GRID/s30/brwd9p.mpg
1432
+ lip/GRID/s30/brwq5n.mpg
1433
+ lip/GRID/s30/brwyzs.mpg
1434
+ lip/GRID/s30/bwad6s.mpg
1435
+ lip/GRID/s30/bwaq3n.mpg
1436
+ lip/GRID/s30/bwby1n.mpg
1437
+ lip/GRID/s30/bwby4a.mpg
1438
+ lip/GRID/s30/bwid3p.mpg
1439
+ lip/GRID/s30/bwij7p.mpg
1440
+ lip/GRID/s30/bwip9n.mpg
1441
+ lip/GRID/s30/bwiq1p.mpg
1442
+ lip/GRID/s30/bwix4s.mpg
1443
+ lip/GRID/s30/bwwe3n.mpg
1444
+ lip/GRID/s30/bwwe5p.mpg
1445
+ lip/GRID/s30/bwwe6a.mpg
1446
+ lip/GRID/s30/lbah1n.mpg
1447
+ lip/GRID/s30/lban7p.mpg
1448
+ lip/GRID/s30/lbat9n.mpg
1449
+ lip/GRID/s30/lbbb4a.mpg
1450
+ lip/GRID/s30/lbbh5n.mpg
1451
+ lip/GRID/s30/lbbu6a.mpg
1452
+ lip/GRID/s30/lbia3n.mpg
1453
+ lip/GRID/s30/lbia5p.mpg
1454
+ lip/GRID/s30/lbihza.mpg
1455
+ lip/GRID/s30/lbit6s.mpg
1456
+ lip/GRID/s30/lbwb6s.mpg
1457
+ lip/GRID/s30/lbwi1p.mpg
1458
+ lip/GRID/s30/lbwo6a.mpg
1459
+ lip/GRID/s30/lgac7p.mpg
1460
+ lip/GRID/s30/lgaj2a.mpg
1461
+ lip/GRID/s30/lgap3n.mpg
1462
+ lip/GRID/s30/lgap4s.mpg
1463
+ lip/GRID/s30/lgaxza.mpg
1464
+ lip/GRID/s30/lgbdzs.mpg
1465
+ lip/GRID/s30/lgbx2s.mpg
1466
+ lip/GRID/s30/lgii8a.mpg
1467
+ lip/GRID/s30/lgip1p.mpg
1468
+ lip/GRID/s30/lgwq3p.mpg
1469
+ lip/GRID/s30/lrab3n.mpg
1470
+ lip/GRID/s30/lrab6a.mpg
1471
+ lip/GRID/s30/lrau6s.mpg
1472
+ lip/GRID/s30/lrbb9p.mpg
1473
+ lip/GRID/s30/lrbu9n.mpg
1474
+ lip/GRID/s30/lria9n.mpg
1475
+ lip/GRID/s30/lrin7n.mpg
1476
+ lip/GRID/s30/lriu3p.mpg
1477
+ lip/GRID/s30/lrwi8a.mpg
1478
+ lip/GRID/s30/lrwo9n.mpg
1479
+ lip/GRID/s30/lwac1p.mpg
1480
+ lip/GRID/s30/lwac2a.mpg
1481
+ lip/GRID/s30/lwav4a.mpg
1482
+ lip/GRID/s30/lwbc3n.mpg
1483
+ lip/GRID/s30/lwbc6a.mpg
1484
+ lip/GRID/s30/lwii2a.mpg
1485
+ lip/GRID/s30/lwio3n.mpg
1486
+ lip/GRID/s30/lwiu9p.mpg
1487
+ lip/GRID/s30/lwwc9p.mpg
1488
+ lip/GRID/s30/lwwj4a.mpg
1489
+ lip/GRID/s30/lwwp6s.mpg
1490
+ lip/GRID/s30/pbaf5n.mpg
1491
+ lip/GRID/s30/pbamzs.mpg
1492
+ lip/GRID/s30/pbbg2a.mpg
1493
+ lip/GRID/s30/pbbs9p.mpg
1494
+ lip/GRID/s30/pbif1n.mpg
1495
+ lip/GRID/s30/pbif4a.mpg
1496
+ lip/GRID/s30/pbil8a.mpg
1497
+ lip/GRID/s30/pbir9n.mpg
1498
+ lip/GRID/s30/pbiz3n.mpg
1499
+ lip/GRID/s30/pbwg4s.mpg
1500
+ lip/GRID/s30/pgaa9n.mpg
1501
+ lip/GRID/s30/pgab2a.mpg
1502
+ lip/GRID/s30/pgabzs.mpg
1503
+ lip/GRID/s30/pgah5p.mpg
1504
+ lip/GRID/s30/pgan8s.mpg
1505
+ lip/GRID/s30/pgau1n.mpg
1506
+ lip/GRID/s30/pgbb5p.mpg
1507
+ lip/GRID/s30/pgbh8s.mpg
1508
+ lip/GRID/s30/pgbh9p.mpg
1509
+ lip/GRID/s30/pgig9n.mpg
1510
+ lip/GRID/s30/pgihzs.mpg
1511
+ lip/GRID/s30/pgin4s.mpg
1512
+ lip/GRID/s30/pgwi1n.mpg
1513
+ lip/GRID/s30/pgwi2s.mpg
1514
+ lip/GRID/s30/pgwv1p.mpg
1515
+ lip/GRID/s30/praaza.mpg
1516
+ lip/GRID/s30/pram8a.mpg
1517
+ lip/GRID/s30/prbm9n.mpg
1518
+ lip/GRID/s30/prbnzs.mpg
1519
+ lip/GRID/s30/prbt4s.mpg
1520
+ lip/GRID/s30/prim1n.mpg
1521
+ lip/GRID/s30/pris5n.mpg
1522
+ lip/GRID/s30/pris8a.mpg
1523
+ lip/GRID/s30/prwa6s.mpg
1524
+ lip/GRID/s30/prwh2a.mpg
1525
+ lip/GRID/s30/prwn4s.mpg
1526
+ lip/GRID/s30/prwuza.mpg
1527
+ lip/GRID/s30/pwaa3n.mpg
1528
+ lip/GRID/s30/pwahza.mpg
1529
+ lip/GRID/s30/pwan3p.mpg
1530
+ lip/GRID/s30/pwat7p.mpg
1531
+ lip/GRID/s30/pwbn8a.mpg
1532
+ lip/GRID/s30/pwbuzs.mpg
1533
+ lip/GRID/s30/pwia2a.mpg
1534
+ lip/GRID/s30/pwig6a.mpg
1535
+ lip/GRID/s30/pwinza.mpg
1536
+ lip/GRID/s30/pwwh5n.mpg
1537
+ lip/GRID/s30/pwwh7p.mpg
1538
+ lip/GRID/s30/pwwn9n.mpg
1539
+ lip/GRID/s30/pwwu4s.mpg
1540
+ lip/GRID/s30/pwwu6a.mpg
1541
+ lip/GRID/s30/sbad9n.mpg
1542
+ lip/GRID/s30/sbae2a.mpg
1543
+ lip/GRID/s30/sbak3n.mpg
1544
+ lip/GRID/s30/sbbe4s.mpg
1545
+ lip/GRID/s30/sbbe5p.mpg
1546
+ lip/GRID/s30/sbbk9p.mpg
1547
+ lip/GRID/s30/sbblza.mpg
1548
+ lip/GRID/s30/sbid5n.mpg
1549
+ lip/GRID/s30/sbik1p.mpg
1550
+ lip/GRID/s30/sbix8s.mpg
1551
+ lip/GRID/s30/sbwl2s.mpg
1552
+ lip/GRID/s30/sbwr7p.mpg
1553
+ lip/GRID/s30/sgam1n.mpg
1554
+ lip/GRID/s30/sgam4a.mpg
1555
+ lip/GRID/s30/sgaz9n.mpg
1556
+ lip/GRID/s30/sgbg1n.mpg
1557
+ lip/GRID/s30/sgbm7p.mpg
1558
+ lip/GRID/s30/sgil8s.mpg
1559
+ lip/GRID/s30/sgimza.mpg
1560
+ lip/GRID/s30/sgwa2s.mpg
1561
+ lip/GRID/s30/sgwnzs.mpg
1562
+ lip/GRID/s30/sgwt3n.mpg
1563
+ lip/GRID/s30/srae5n.mpg
1564
+ lip/GRID/s30/sralzs.mpg
1565
+ lip/GRID/s30/srbz4a.mpg
1566
+ lip/GRID/s30/srir1p.mpg
1567
+ lip/GRID/s30/srirzs.mpg
1568
+ lip/GRID/s30/sriy3n.mpg
1569
+ lip/GRID/s30/srws1n.mpg
1570
+ lip/GRID/s30/srwz5n.mpg
1571
+ lip/GRID/s30/swaz5p.mpg
1572
+ lip/GRID/s30/swbf8a.mpg
1573
+ lip/GRID/s30/swbl9n.mpg
1574
+ lip/GRID/s30/swbm1p.mpg
1575
+ lip/GRID/s30/swbs5p.mpg
1576
+ lip/GRID/s30/swie7n.mpg
1577
+ lip/GRID/s30/swie9p.mpg
1578
+ lip/GRID/s30/swil4a.mpg
1579
+ lip/GRID/s30/swir5n.mpg
1580
+ lip/GRID/s30/swwg2a.mpg
1581
+ lip/GRID/s31/bbac3s.mpg
1582
+ lip/GRID/s31/bbai8p.mpg
1583
+ lip/GRID/s31/bbap3a.mpg
1584
+ lip/GRID/s31/bbav5s.mpg
1585
+ lip/GRID/s31/bbbc9a.mpg
1586
+ lip/GRID/s31/bbbxzp.mpg
1587
+ lip/GRID/s31/bbib8n.mpg
1588
+ lip/GRID/s31/bbiczp.mpg
1589
+ lip/GRID/s31/bbii2n.mpg
1590
+ lip/GRID/s31/bbii5a.mpg
1591
+ lip/GRID/s31/bbio7s.mpg
1592
+ lip/GRID/s31/bbwd3a.mpg
1593
+ lip/GRID/s31/bbwdzn.mpg
1594
+ lip/GRID/s31/bbwj6p.mpg
1595
+ lip/GRID/s31/bbwqzp.mpg
1596
+ lip/GRID/s31/bbwx4p.mpg
1597
+ lip/GRID/s31/bgbe5s.mpg
1598
+ lip/GRID/s31/bgbr2n.mpg
1599
+ lip/GRID/s31/bgbr4p.mpg
1600
+ lip/GRID/s31/bgby7s.mpg
1601
+ lip/GRID/s31/bgid7s.mpg
1602
+ lip/GRID/s31/bgid9a.mpg
1603
+ lip/GRID/s31/bgik3a.mpg
1604
+ lip/GRID/s31/bgiq5s.mpg
1605
+ lip/GRID/s31/bgix8n.mpg
1606
+ lip/GRID/s31/bgwe8n.mpg
1607
+ lip/GRID/s31/bgwr9a.mpg
1608
+ lip/GRID/s31/brac8n.mpg
1609
+ lip/GRID/s31/braj3s.mpg
1610
+ lip/GRID/s31/brax2p.mpg
1611
+ lip/GRID/s31/brbq1s.mpg
1612
+ lip/GRID/s31/bric5s.mpg
1613
+ lip/GRID/s31/brwkzn.mpg
1614
+ lip/GRID/s31/bwad4n.mpg
1615
+ lip/GRID/s31/bwaj9s.mpg
1616
+ lip/GRID/s31/bwaq5a.mpg
1617
+ lip/GRID/s31/bwax9a.mpg
1618
+ lip/GRID/s31/bwbezp.mpg
1619
+ lip/GRID/s31/bwbq6n.mpg
1620
+ lip/GRID/s31/bwby1s.mpg
1621
+ lip/GRID/s31/bwby3a.mpg
1622
+ lip/GRID/s31/bwid1s.mpg
1623
+ lip/GRID/s31/bwij5s.mpg
1624
+ lip/GRID/s31/bwiq1a.mpg
1625
+ lip/GRID/s31/bwwe2n.mpg
1626
+ lip/GRID/s31/bwwr3a.mpg
1627
+ lip/GRID/s31/bwwrzn.mpg
1628
+ lip/GRID/s31/lbaa8p.mpg
1629
+ lip/GRID/s31/lbau1a.mpg
1630
+ lip/GRID/s31/lbbb3a.mpg
1631
+ lip/GRID/s31/lbbbzn.mpg
1632
+ lip/GRID/s31/lbbozp.mpg
1633
+ lip/GRID/s31/lbbu2n.mpg
1634
+ lip/GRID/s31/lbig6n.mpg
1635
+ lip/GRID/s31/lbig7s.mpg
1636
+ lip/GRID/s31/lbin1s.mpg
1637
+ lip/GRID/s31/lbit7a.mpg
1638
+ lip/GRID/s31/lbwb4n.mpg
1639
+ lip/GRID/s31/lbwb5s.mpg
1640
+ lip/GRID/s31/lbwh9s.mpg
1641
+ lip/GRID/s31/lgac7a.mpg
1642
+ lip/GRID/s31/lgai9s.mpg
1643
+ lip/GRID/s31/lgap2n.mpg
1644
+ lip/GRID/s31/lgbc9s.mpg
1645
+ lip/GRID/s31/lgbj3s.mpg
1646
+ lip/GRID/s31/lgbj5a.mpg
1647
+ lip/GRID/s31/lgbp6n.mpg
1648
+ lip/GRID/s31/lgbp8p.mpg
1649
+ lip/GRID/s31/lgbx3a.mpg
1650
+ lip/GRID/s31/lgic3a.mpg
1651
+ lip/GRID/s31/lgiczn.mpg
1652
+ lip/GRID/s31/lgio9s.mpg
1653
+ lip/GRID/s31/lgip1a.mpg
1654
+ lip/GRID/s31/lgiv4p.mpg
1655
+ lip/GRID/s31/lgwd4p.mpg
1656
+ lip/GRID/s31/lgwd5a.mpg
1657
+ lip/GRID/s31/lgwj6n.mpg
1658
+ lip/GRID/s31/lgwq1s.mpg
1659
+ lip/GRID/s31/lgwq3a.mpg
1660
+ lip/GRID/s31/lgwx5s.mpg
1661
+ lip/GRID/s31/lrbi2p.mpg
1662
+ lip/GRID/s31/lrbizn.mpg
1663
+ lip/GRID/s31/lrbu8n.mpg
1664
+ lip/GRID/s31/lrbvzp.mpg
1665
+ lip/GRID/s31/lrih4p.mpg
1666
+ lip/GRID/s31/lrih5a.mpg
1667
+ lip/GRID/s31/lrwczn.mpg
1668
+ lip/GRID/s31/lrwi6p.mpg
1669
+ lip/GRID/s31/lrwo9s.mpg
1670
+ lip/GRID/s31/lwai3s.mpg
1671
+ lip/GRID/s31/lwai5a.mpg
1672
+ lip/GRID/s31/lwib4n.mpg
1673
+ lip/GRID/s31/lwio3s.mpg
1674
+ lip/GRID/s31/lwwc7s.mpg
1675
+ lip/GRID/s31/lwwj3a.mpg
1676
+ lip/GRID/s31/lwwv9s.mpg
1677
+ lip/GRID/s31/lwwxzp.mpg
1678
+ lip/GRID/s31/pbaf6p.mpg
1679
+ lip/GRID/s31/pbal8n.mpg
1680
+ lip/GRID/s31/pbal9s.mpg
1681
+ lip/GRID/s31/pbaz8p.mpg
1682
+ lip/GRID/s31/pbbf9s.mpg
1683
+ lip/GRID/s31/pbbgzp.mpg
1684
+ lip/GRID/s31/pbbm4p.mpg
1685
+ lip/GRID/s31/pbbm5a.mpg
1686
+ lip/GRID/s31/pbbs9a.mpg
1687
+ lip/GRID/s31/pbil4n.mpg
1688
+ lip/GRID/s31/pbil5s.mpg
1689
+ lip/GRID/s31/pbwg5a.mpg
1690
+ lip/GRID/s31/pbwm7s.mpg
1691
+ lip/GRID/s31/pgaa8n.mpg
1692
+ lip/GRID/s31/pgab1a.mpg
1693
+ lip/GRID/s31/pgah2n.mpg
1694
+ lip/GRID/s31/pgah4p.mpg
1695
+ lip/GRID/s31/pgah5a.mpg
1696
+ lip/GRID/s31/pgan6n.mpg
1697
+ lip/GRID/s31/pgan8p.mpg
1698
+ lip/GRID/s31/pgbh7s.mpg
1699
+ lip/GRID/s31/pgbo2p.mpg
1700
+ lip/GRID/s31/pgbu4n.mpg
1701
+ lip/GRID/s31/pgbu7a.mpg
1702
+ lip/GRID/s31/prag3a.mpg
1703
+ lip/GRID/s31/pram6p.mpg
1704
+ lip/GRID/s31/prba2p.mpg
1705
+ lip/GRID/s31/prbazn.mpg
1706
+ lip/GRID/s31/prbg7a.mpg
1707
+ lip/GRID/s31/prbn1a.mpg
1708
+ lip/GRID/s31/prbnzp.mpg
1709
+ lip/GRID/s31/prbt3s.mpg
1710
+ lip/GRID/s31/prim1s.mpg
1711
+ lip/GRID/s31/pris6p.mpg
1712
+ lip/GRID/s31/prwa6p.mpg
1713
+ lip/GRID/s31/prwh1a.mpg
1714
+ lip/GRID/s31/prwt6n.mpg
1715
+ lip/GRID/s31/prwt9a.mpg
1716
+ lip/GRID/s31/pwba6n.mpg
1717
+ lip/GRID/s31/pwbh1s.mpg
1718
+ lip/GRID/s31/pwbhzn.mpg
1719
+ lip/GRID/s31/pwig4p.mpg
1720
+ lip/GRID/s31/pwig5a.mpg
1721
+ lip/GRID/s31/pwim9a.mpg
1722
+ lip/GRID/s31/pwit2p.mpg
1723
+ lip/GRID/s31/pwwh7a.mpg
1724
+ lip/GRID/s31/pwwu3s.mpg
1725
+ lip/GRID/s31/sbad9s.mpg
1726
+ lip/GRID/s31/sbak5a.mpg
1727
+ lip/GRID/s31/sbay1s.mpg
1728
+ lip/GRID/s31/sbay3a.mpg
1729
+ lip/GRID/s31/sbbe2n.mpg
1730
+ lip/GRID/s31/sbbk7s.mpg
1731
+ lip/GRID/s31/sbbrzn.mpg
1732
+ lip/GRID/s31/sbix6n.mpg
1733
+ lip/GRID/s31/sbix8p.mpg
1734
+ lip/GRID/s31/sbwe8p.mpg
1735
+ lip/GRID/s31/sbwlzn.mpg
1736
+ lip/GRID/s31/sbwr5s.mpg
1737
+ lip/GRID/s31/sgaz9s.mpg
1738
+ lip/GRID/s31/sgbg3a.mpg
1739
+ lip/GRID/s31/sgbm6p.mpg
1740
+ lip/GRID/s31/sgif2n.mpg
1741
+ lip/GRID/s31/sgil6n.mpg
1742
+ lip/GRID/s31/sgil7s.mpg
1743
+ lip/GRID/s31/sgil8p.mpg
1744
+ lip/GRID/s31/sgiz5s.mpg
1745
+ lip/GRID/s31/sgwa1s.mpg
1746
+ lip/GRID/s31/sgwm9s.mpg
1747
+ lip/GRID/s31/sray6n.mpg
1748
+ lip/GRID/s31/srbl3s.mpg
1749
+ lip/GRID/s31/srbr6n.mpg
1750
+ lip/GRID/s31/srbr8p.mpg
1751
+ lip/GRID/s31/srbr9a.mpg
1752
+ lip/GRID/s31/srbz1s.mpg
1753
+ lip/GRID/s31/srbz2p.mpg
1754
+ lip/GRID/s31/srbz3a.mpg
1755
+ lip/GRID/s31/srbzzn.mpg
1756
+ lip/GRID/s31/srik5s.mpg
1757
+ lip/GRID/s31/sriy3s.mpg
1758
+ lip/GRID/s31/sriy5a.mpg
1759
+ lip/GRID/s31/srwl6n.mpg
1760
+ lip/GRID/s31/srwl7s.mpg
1761
+ lip/GRID/s31/swaf1s.mpg
1762
+ lip/GRID/s31/swaf2p.mpg
1763
+ lip/GRID/s31/swal4n.mpg
1764
+ lip/GRID/s31/swal5s.mpg
1765
+ lip/GRID/s31/swar8n.mpg
1766
+ lip/GRID/s31/swbl9s.mpg
1767
+ lip/GRID/s31/swbs4p.mpg
1768
+ lip/GRID/s31/swbs5a.mpg
1769
+ lip/GRID/s31/swbz9a.mpg
1770
+ lip/GRID/s31/swie6n.mpg
1771
+ lip/GRID/s31/swie8p.mpg
1772
+ lip/GRID/s31/swil1s.mpg
1773
+ lip/GRID/s31/swir7a.mpg
1774
+ lip/GRID/s31/swiy9s.mpg
1775
+ lip/GRID/s31/swwf9s.mpg
1776
+ lip/GRID/s4/bbal4s.mpg
1777
+ lip/GRID/s4/bbar7n.mpg
1778
+ lip/GRID/s4/bbar8s.mpg
1779
+ lip/GRID/s4/bbbf4s.mpg
1780
+ lip/GRID/s4/bbbz5n.mpg
1781
+ lip/GRID/s4/bbbz7p.mpg
1782
+ lip/GRID/s4/bbizza.mpg
1783
+ lip/GRID/s4/bbwf9p.mpg
1784
+ lip/GRID/s4/bbwm1n.mpg
1785
+ lip/GRID/s4/bgaa4s.mpg
1786
+ lip/GRID/s4/bgaa5p.mpg
1787
+ lip/GRID/s4/bgan4a.mpg
1788
+ lip/GRID/s4/bgat5n.mpg
1789
+ lip/GRID/s4/bgba7n.mpg
1790
+ lip/GRID/s4/bgbh1n.mpg
1791
+ lip/GRID/s4/bgbu2a.mpg
1792
+ lip/GRID/s4/bgig3n.mpg
1793
+ lip/GRID/s4/bgig4s.mpg
1794
+ lip/GRID/s4/bgim9p.mpg
1795
+ lip/GRID/s4/bginza.mpg
1796
+ lip/GRID/s4/bgit3p.mpg
1797
+ lip/GRID/s4/bgit4a.mpg
1798
+ lip/GRID/s4/bgwb1n.mpg
1799
+ lip/GRID/s4/bgwb3p.mpg
1800
+ lip/GRID/s4/bgwh5n.mpg
1801
+ lip/GRID/s4/bgwh6s.mpg
1802
+ lip/GRID/s4/bgwn9n.mpg
1803
+ lip/GRID/s4/bgwu3n.mpg
1804
+ lip/GRID/s4/bgwu6a.mpg
1805
+ lip/GRID/s4/braf6s.mpg
1806
+ lip/GRID/s4/braf7p.mpg
1807
+ lip/GRID/s4/braf8a.mpg
1808
+ lip/GRID/s4/bram1p.mpg
1809
+ lip/GRID/s4/bras5p.mpg
1810
+ lip/GRID/s4/braz9p.mpg
1811
+ lip/GRID/s4/brbg1p.mpg
1812
+ lip/GRID/s4/brbs7n.mpg
1813
+ lip/GRID/s4/brbs8s.mpg
1814
+ lip/GRID/s4/brbtza.mpg
1815
+ lip/GRID/s4/brif4a.mpg
1816
+ lip/GRID/s4/bril6s.mpg
1817
+ lip/GRID/s4/bris1p.mpg
1818
+ lip/GRID/s4/briz4s.mpg
1819
+ lip/GRID/s4/brwa1p.mpg
1820
+ lip/GRID/s4/brwg5p.mpg
1821
+ lip/GRID/s4/brwm8s.mpg
1822
+ lip/GRID/s4/brwnza.mpg
1823
+ lip/GRID/s4/brwt4a.mpg
1824
+ lip/GRID/s4/bwam5n.mpg
1825
+ lip/GRID/s4/bwas9n.mpg
1826
+ lip/GRID/s4/bwat1p.mpg
1827
+ lip/GRID/s4/bwba1n.mpg
1828
+ lip/GRID/s4/bwba3p.mpg
1829
+ lip/GRID/s4/bwbm9n.mpg
1830
+ lip/GRID/s4/bwbn1p.mpg
1831
+ lip/GRID/s4/bwbt4s.mpg
1832
+ lip/GRID/s4/bwigza.mpg
1833
+ lip/GRID/s4/bwis6s.mpg
1834
+ lip/GRID/s4/bwiz9n.mpg
1835
+ lip/GRID/s4/bwwa5n.mpg
1836
+ lip/GRID/s4/bwwn5p.mpg
1837
+ lip/GRID/s4/lbad3n.mpg
1838
+ lip/GRID/s4/lbad4s.mpg
1839
+ lip/GRID/s4/lbakza.mpg
1840
+ lip/GRID/s4/lbaq2s.mpg
1841
+ lip/GRID/s4/lbaq3p.mpg
1842
+ lip/GRID/s4/lbaq4a.mpg
1843
+ lip/GRID/s4/lbax5n.mpg
1844
+ lip/GRID/s4/lbbk3p.mpg
1845
+ lip/GRID/s4/lbbq7p.mpg
1846
+ lip/GRID/s4/lbbq8a.mpg
1847
+ lip/GRID/s4/lbid1p.mpg
1848
+ lip/GRID/s4/lbidzs.mpg
1849
+ lip/GRID/s4/lbiqza.mpg
1850
+ lip/GRID/s4/lbix1n.mpg
1851
+ lip/GRID/s4/lbwk8a.mpg
1852
+ lip/GRID/s4/lbwy4s.mpg
1853
+ lip/GRID/s4/lgaf1n.mpg
1854
+ lip/GRID/s4/lgal5n.mpg
1855
+ lip/GRID/s4/lgas1p.mpg
1856
+ lip/GRID/s4/lgaz4s.mpg
1857
+ lip/GRID/s4/lgaz5p.mpg
1858
+ lip/GRID/s4/lgaz6a.mpg
1859
+ lip/GRID/s4/lgbl9n.mpg
1860
+ lip/GRID/s4/lgbmzs.mpg
1861
+ lip/GRID/s4/lgbs4s.mpg
1862
+ lip/GRID/s4/lgil4a.mpg
1863
+ lip/GRID/s4/lgir6s.mpg
1864
+ lip/GRID/s4/lgir7p.mpg
1865
+ lip/GRID/s4/lgir8a.mpg
1866
+ lip/GRID/s4/lgiz1p.mpg
1867
+ lip/GRID/s4/lgiz2a.mpg
1868
+ lip/GRID/s4/lgwm4s.mpg
1869
+ lip/GRID/s4/lray3p.mpg
1870
+ lip/GRID/s4/lrbe4s.mpg
1871
+ lip/GRID/s4/lrbe6a.mpg
1872
+ lip/GRID/s4/lrbk7n.mpg
1873
+ lip/GRID/s4/lrbk8s.mpg
1874
+ lip/GRID/s4/lrblza.mpg
1875
+ lip/GRID/s4/lriq3n.mpg
1876
+ lip/GRID/s4/lrwl3p.mpg
1877
+ lip/GRID/s4/lrwzzs.mpg
1878
+ lip/GRID/s4/lwae5n.mpg
1879
+ lip/GRID/s4/lwal1p.mpg
1880
+ lip/GRID/s4/lwbr7n.mpg
1881
+ lip/GRID/s4/lwbsza.mpg
1882
+ lip/GRID/s4/lwbz1n.mpg
1883
+ lip/GRID/s4/lwie2s.mpg
1884
+ lip/GRID/s4/lwik5n.mpg
1885
+ lip/GRID/s4/lwiy5p.mpg
1886
+ lip/GRID/s4/lwwl7n.mpg
1887
+ lip/GRID/s4/lwwz7p.mpg
1888
+ lip/GRID/s4/pbai2s.mpg
1889
+ lip/GRID/s4/pbao5n.mpg
1890
+ lip/GRID/s4/pbbc1n.mpg
1891
+ lip/GRID/s4/pbbc3p.mpg
1892
+ lip/GRID/s4/pbbi5n.mpg
1893
+ lip/GRID/s4/pbbv3n.mpg
1894
+ lip/GRID/s4/pbio3p.mpg
1895
+ lip/GRID/s4/pbio4a.mpg
1896
+ lip/GRID/s4/pbiu7p.mpg
1897
+ lip/GRID/s4/pbwj1p.mpg
1898
+ lip/GRID/s4/pbwp4s.mpg
1899
+ lip/GRID/s4/pbwp5p.mpg
1900
+ lip/GRID/s4/pbwv7n.mpg
1901
+ lip/GRID/s4/pbwxza.mpg
1902
+ lip/GRID/s4/pgad7p.mpg
1903
+ lip/GRID/s4/pgak1p.mpg
1904
+ lip/GRID/s4/pgak2a.mpg
1905
+ lip/GRID/s4/pgaq3n.mpg
1906
+ lip/GRID/s4/pgayza.mpg
1907
+ lip/GRID/s4/pgbd9n.mpg
1908
+ lip/GRID/s4/pgbe1p.mpg
1909
+ lip/GRID/s4/pgbq7n.mpg
1910
+ lip/GRID/s4/pgbq9p.mpg
1911
+ lip/GRID/s4/pgid2s.mpg
1912
+ lip/GRID/s4/pgij6s.mpg
1913
+ lip/GRID/s4/pgiq1p.mpg
1914
+ lip/GRID/s4/pgwk9p.mpg
1915
+ lip/GRID/s4/pgwr1n.mpg
1916
+ lip/GRID/s4/pgwr3p.mpg
1917
+ lip/GRID/s4/prap4a.mpg
1918
+ lip/GRID/s4/prav8a.mpg
1919
+ lip/GRID/s4/prbc8s.mpg
1920
+ lip/GRID/s4/prii5p.mpg
1921
+ lip/GRID/s4/priv2s.mpg
1922
+ lip/GRID/s4/prwq1p.mpg
1923
+ lip/GRID/s4/pwax1n.mpg
1924
+ lip/GRID/s4/pwbx7p.mpg
1925
+ lip/GRID/s4/pwbx8a.mpg
1926
+ lip/GRID/s4/pwic7p.mpg
1927
+ lip/GRID/s4/pwip4s.mpg
1928
+ lip/GRID/s4/pwiv9p.mpg
1929
+ lip/GRID/s4/pwwk2s.mpg
1930
+ lip/GRID/s4/pwwk4a.mpg
1931
+ lip/GRID/s4/pwwq6s.mpg
1932
+ lip/GRID/s4/pwwy1p.mpg
1933
+ lip/GRID/s4/pwwyzs.mpg
1934
+ lip/GRID/s4/sbaa2s.mpg
1935
+ lip/GRID/s4/sbag6s.mpg
1936
+ lip/GRID/s4/sbag8a.mpg
1937
+ lip/GRID/s4/sban2a.mpg
1938
+ lip/GRID/s4/sbat3n.mpg
1939
+ lip/GRID/s4/sbat4s.mpg
1940
+ lip/GRID/s4/sbat5p.mpg
1941
+ lip/GRID/s4/sbba6s.mpg
1942
+ lip/GRID/s4/sbba8a.mpg
1943
+ lip/GRID/s4/sbbh1p.mpg
1944
+ lip/GRID/s4/sbbhzs.mpg
1945
+ lip/GRID/s4/sbbn5p.mpg
1946
+ lip/GRID/s4/sbbuza.mpg
1947
+ lip/GRID/s4/sbiaza.mpg
1948
+ lip/GRID/s4/sbig2s.mpg
1949
+ lip/GRID/s4/sbis9n.mpg
1950
+ lip/GRID/s4/sbit1p.mpg
1951
+ lip/GRID/s4/sbitzs.mpg
1952
+ lip/GRID/s4/sbwb1p.mpg
1953
+ lip/GRID/s4/sbwh4s.mpg
1954
+ lip/GRID/s4/sbwn7n.mpg
1955
+ lip/GRID/s4/sgab9n.mpg
1956
+ lip/GRID/s4/sgaczs.mpg
1957
+ lip/GRID/s4/sgai6a.mpg
1958
+ lip/GRID/s4/sgao7n.mpg
1959
+ lip/GRID/s4/sgav4a.mpg
1960
+ lip/GRID/s4/sgbc4s.mpg
1961
+ lip/GRID/s4/sgbp1n.mpg
1962
+ lip/GRID/s4/sgbp2s.mpg
1963
+ lip/GRID/s4/sgbp4a.mpg
1964
+ lip/GRID/s4/sgib6s.mpg
1965
+ lip/GRID/s4/sgib8a.mpg
1966
+ lip/GRID/s4/sgiu7n.mpg
1967
+ lip/GRID/s4/sgiu8s.mpg
1968
+ lip/GRID/s4/sgwc7n.mpg
1969
+ lip/GRID/s4/sgwp8a.mpg
1970
+ lip/GRID/s4/sgwx1p.mpg
1971
+ lip/GRID/s4/sran5n.mpg
1972
+ lip/GRID/s4/sran7p.mpg
1973
+ lip/GRID/s4/srau2a.mpg
1974
+ lip/GRID/s4/srbb1n.mpg
1975
+ lip/GRID/s4/srbb2s.mpg
1976
+ lip/GRID/s4/srbn9n.mpg
1977
+ lip/GRID/s4/srbo2a.mpg
1978
+ lip/GRID/s4/srbu5p.mpg
1979
+ lip/GRID/s4/srig7n.mpg
1980
+ lip/GRID/s4/srin2s.mpg
1981
+ lip/GRID/s4/srit7p.mpg
1982
+ lip/GRID/s4/srit8a.mpg
1983
+ lip/GRID/s4/srwh9n.mpg
1984
+ lip/GRID/s4/srwi1p.mpg
1985
+ lip/GRID/s4/srwizs.mpg
1986
+ lip/GRID/s4/srwo3n.mpg
1987
+ lip/GRID/s4/swab4s.mpg
1988
+ lip/GRID/s4/swbi3p.mpg
1989
+ lip/GRID/s4/swbv2a.mpg
1990
+ lip/GRID/s4/swbvzs.mpg
1991
+ lip/GRID/s4/swia9n.mpg
1992
+ lip/GRID/s4/swih3n.mpg
1993
+ lip/GRID/s4/swin8s.mpg
1994
+ lip/GRID/s7/bbar4n.mpg
1995
+ lip/GRID/s7/bbar7a.mpg
1996
+ lip/GRID/s7/bbazzp.mpg
1997
+ lip/GRID/s7/bbbf3a.mpg
1998
+ lip/GRID/s7/bbbfzn.mpg
1999
+ lip/GRID/s7/bbbl6p.mpg
2000
+ lip/GRID/s7/bbbr9s.mpg
2001
+ lip/GRID/s7/bbbz3s.mpg
2002
+ lip/GRID/s7/bbik7s.mpg
2003
+ lip/GRID/s7/bbirzn.mpg
2004
+ lip/GRID/s7/bbwl9s.mpg
2005
+ lip/GRID/s7/bbws2n.mpg
2006
+ lip/GRID/s7/bbws4p.mpg
2007
+ lip/GRID/s7/bbws5a.mpg
2008
+ lip/GRID/s7/bgaa2p.mpg
2009
+ lip/GRID/s7/bgaa3a.mpg
2010
+ lip/GRID/s7/bgat4p.mpg
2011
+ lip/GRID/s7/bgat5a.mpg
2012
+ lip/GRID/s7/bgba7a.mpg
2013
+ lip/GRID/s7/bgbn4p.mpg
2014
+ lip/GRID/s7/bgbt9a.mpg
2015
+ lip/GRID/s7/bgim4n.mpg
2016
+ lip/GRID/s7/bgim5s.mpg
2017
+ lip/GRID/s7/bgim7a.mpg
2018
+ lip/GRID/s7/bgit1a.mpg
2019
+ lip/GRID/s7/bgitzp.mpg
2020
+ lip/GRID/s7/bgwb1a.mpg
2021
+ lip/GRID/s7/bgwbzp.mpg
2022
+ lip/GRID/s7/bral6n.mpg
2023
+ lip/GRID/s7/bral9a.mpg
2024
+ lip/GRID/s7/bras1s.mpg
2025
+ lip/GRID/s7/bras2p.mpg
2026
+ lip/GRID/s7/bras3a.mpg
2027
+ lip/GRID/s7/braz7a.mpg
2028
+ lip/GRID/s7/brbm1s.mpg
2029
+ lip/GRID/s7/brizzn.mpg
2030
+ lip/GRID/s7/brwm5s.mpg
2031
+ lip/GRID/s7/bwbazp.mpg
2032
+ lip/GRID/s7/bwim1a.mpg
2033
+ lip/GRID/s7/bwwa3s.mpg
2034
+ lip/GRID/s7/bwwn2p.mpg
2035
+ lip/GRID/s7/bwwn3a.mpg
2036
+ lip/GRID/s7/lbap9s.mpg
2037
+ lip/GRID/s7/lbaq1a.mpg
2038
+ lip/GRID/s7/lbaqzp.mpg
2039
+ lip/GRID/s7/lbax4p.mpg
2040
+ lip/GRID/s7/lbbd4n.mpg
2041
+ lip/GRID/s7/lbbj9s.mpg
2042
+ lip/GRID/s7/lbbq3s.mpg
2043
+ lip/GRID/s7/lbbx7s.mpg
2044
+ lip/GRID/s7/lbbx8p.mpg
2045
+ lip/GRID/s7/lbijzn.mpg
2046
+ lip/GRID/s7/lbip6p.mpg
2047
+ lip/GRID/s7/lbip7a.mpg
2048
+ lip/GRID/s7/lbix1a.mpg
2049
+ lip/GRID/s7/lbwk3s.mpg
2050
+ lip/GRID/s7/lbwy2p.mpg
2051
+ lip/GRID/s7/lgae9s.mpg
2052
+ lip/GRID/s7/lgar6n.mpg
2053
+ lip/GRID/s7/lgbf3s.mpg
2054
+ lip/GRID/s7/lgbs1s.mpg
2055
+ lip/GRID/s7/lgbszn.mpg
2056
+ lip/GRID/s7/lgbz5s.mpg
2057
+ lip/GRID/s7/lgbz7a.mpg
2058
+ lip/GRID/s7/lgie5s.mpg
2059
+ lip/GRID/s7/lgir3s.mpg
2060
+ lip/GRID/s7/lrad8p.mpg
2061
+ lip/GRID/s7/lrak2p.mpg
2062
+ lip/GRID/s7/lrakzn.mpg
2063
+ lip/GRID/s7/lraq4n.mpg
2064
+ lip/GRID/s7/lraq5s.mpg
2065
+ lip/GRID/s7/lraq7a.mpg
2066
+ lip/GRID/s7/lrax8n.mpg
2067
+ lip/GRID/s7/lrax9s.mpg
2068
+ lip/GRID/s7/lrid3s.mpg
2069
+ lip/GRID/s7/lrij7s.mpg
2070
+ lip/GRID/s7/lrwk9s.mpg
2071
+ lip/GRID/s7/lwae4p.mpg
2072
+ lip/GRID/s7/lwak7s.mpg
2073
+ lip/GRID/s7/lwak9a.mpg
2074
+ lip/GRID/s7/lwar1s.mpg
2075
+ lip/GRID/s7/lwar2p.mpg
2076
+ lip/GRID/s7/lway6p.mpg
2077
+ lip/GRID/s7/lway7a.mpg
2078
+ lip/GRID/s7/lwbe6n.mpg
2079
+ lip/GRID/s7/lwbr6p.mpg
2080
+ lip/GRID/s7/lwid8n.mpg
2081
+ lip/GRID/s7/lwie1a.mpg
2082
+ lip/GRID/s7/lwiezp.mpg
2083
+ lip/GRID/s7/lwik3s.mpg
2084
+ lip/GRID/s7/lwiq7s.mpg
2085
+ lip/GRID/s7/lwwfzn.mpg
2086
+ lip/GRID/s7/lwwz2n.mpg
2087
+ lip/GRID/s7/lwwz3s.mpg
2088
+ lip/GRID/s7/pbab4n.mpg
2089
+ lip/GRID/s7/pbab7a.mpg
2090
+ lip/GRID/s7/pbai1a.mpg
2091
+ lip/GRID/s7/pbaizp.mpg
2092
+ lip/GRID/s7/pbao2n.mpg
2093
+ lip/GRID/s7/pbao3s.mpg
2094
+ lip/GRID/s7/pbao5a.mpg
2095
+ lip/GRID/s7/pbbb8n.mpg
2096
+ lip/GRID/s7/pbbczp.mpg
2097
+ lip/GRID/s7/pbbi3s.mpg
2098
+ lip/GRID/s7/pbbo8p.mpg
2099
+ lip/GRID/s7/pbbv1s.mpg
2100
+ lip/GRID/s7/pbibzn.mpg
2101
+ lip/GRID/s7/pbwc2n.mpg
2102
+ lip/GRID/s7/pbwp3a.mpg
2103
+ lip/GRID/s7/pbwv6p.mpg
2104
+ lip/GRID/s7/pbwv7a.mpg
2105
+ lip/GRID/s7/pgaj6n.mpg
2106
+ lip/GRID/s7/pgaj7s.mpg
2107
+ lip/GRID/s7/pgaqzn.mpg
2108
+ lip/GRID/s7/pgbd7s.mpg
2109
+ lip/GRID/s7/pgbk1s.mpg
2110
+ lip/GRID/s7/pgbkzn.mpg
2111
+ lip/GRID/s7/pgbq6p.mpg
2112
+ lip/GRID/s7/pgbq7a.mpg
2113
+ lip/GRID/s7/pgbx9s.mpg
2114
+ lip/GRID/s7/pgid1a.mpg
2115
+ lip/GRID/s7/pgij2n.mpg
2116
+ lip/GRID/s7/pgip8p.mpg
2117
+ lip/GRID/s7/pgwk4n.mpg
2118
+ lip/GRID/s7/pgwk5s.mpg
2119
+ lip/GRID/s7/pgwy5a.mpg
2120
+ lip/GRID/s7/prav2n.mpg
2121
+ lip/GRID/s7/prav3s.mpg
2122
+ lip/GRID/s7/prav4p.mpg
2123
+ lip/GRID/s7/prbc4n.mpg
2124
+ lip/GRID/s7/prbc6p.mpg
2125
+ lip/GRID/s7/prbc7a.mpg
2126
+ lip/GRID/s7/prbv8p.mpg
2127
+ lip/GRID/s7/prib8p.mpg
2128
+ lip/GRID/s7/prwc9s.mpg
2129
+ lip/GRID/s7/prwj5a.mpg
2130
+ lip/GRID/s7/prwxzn.mpg
2131
+ lip/GRID/s7/pwaj3a.mpg
2132
+ lip/GRID/s7/pwajzn.mpg
2133
+ lip/GRID/s7/pwax1a.mpg
2134
+ lip/GRID/s7/pwbj4n.mpg
2135
+ lip/GRID/s7/pwbj7a.mpg
2136
+ lip/GRID/s7/pwbx2n.mpg
2137
+ lip/GRID/s7/pwbx3s.mpg
2138
+ lip/GRID/s7/pwbx4p.mpg
2139
+ lip/GRID/s7/pwic4p.mpg
2140
+ lip/GRID/s7/pwip2p.mpg
2141
+ lip/GRID/s7/pwipzn.mpg
2142
+ lip/GRID/s7/pwwd5s.mpg
2143
+ lip/GRID/s7/pwwd7a.mpg
2144
+ lip/GRID/s7/pwwx7s.mpg
2145
+ lip/GRID/s7/sbam9a.mpg
2146
+ lip/GRID/s7/sbat2p.mpg
2147
+ lip/GRID/s7/sbba4p.mpg
2148
+ lip/GRID/s7/sbbt5s.mpg
2149
+ lip/GRID/s7/sbbt7a.mpg
2150
+ lip/GRID/s7/sbif9s.mpg
2151
+ lip/GRID/s7/sbig1a.mpg
2152
+ lip/GRID/s7/sbis9a.mpg
2153
+ lip/GRID/s7/sbwa6n.mpg
2154
+ lip/GRID/s7/sbwh1s.mpg
2155
+ lip/GRID/s7/sbwh2p.mpg
2156
+ lip/GRID/s7/sbwh3a.mpg
2157
+ lip/GRID/s7/sbwhzn.mpg
2158
+ lip/GRID/s7/sbwuzp.mpg
2159
+ lip/GRID/s7/sgai1s.mpg
2160
+ lip/GRID/s7/sgai2p.mpg
2161
+ lip/GRID/s7/sgaizn.mpg
2162
+ lip/GRID/s7/sgau9s.mpg
2163
+ lip/GRID/s7/sgbo9s.mpg
2164
+ lip/GRID/s7/sgih8p.mpg
2165
+ lip/GRID/s7/sgiozn.mpg
2166
+ lip/GRID/s7/sgiu5s.mpg
2167
+ lip/GRID/s7/sgwc6p.mpg
2168
+ lip/GRID/s7/sgwc7a.mpg
2169
+ lip/GRID/s7/sgwi8n.mpg
2170
+ lip/GRID/s7/sgwjzp.mpg
2171
+ lip/GRID/s7/sgwv8p.mpg
2172
+ lip/GRID/s7/srahzp.mpg
2173
+ lip/GRID/s7/sran2n.mpg
2174
+ lip/GRID/s7/srat6n.mpg
2175
+ lip/GRID/s7/srbh2n.mpg
2176
+ lip/GRID/s7/sria1s.mpg
2177
+ lip/GRID/s7/sria2p.mpg
2178
+ lip/GRID/s7/srig4n.mpg
2179
+ lip/GRID/s7/srit3s.mpg
2180
+ lip/GRID/s7/srwb3s.mpg
2181
+ lip/GRID/s7/srwozn.mpg
2182
+ lip/GRID/s7/srwu4n.mpg
2183
+ lip/GRID/s7/swab2p.mpg
2184
+ lip/GRID/s7/swabzn.mpg
2185
+ lip/GRID/s7/swah4n.mpg
2186
+ lip/GRID/s7/swau3s.mpg
2187
+ lip/GRID/s7/swbi1a.mpg
2188
+ lip/GRID/s7/swbo4p.mpg
2189
+ lip/GRID/s7/swbu7s.mpg
2190
+ lip/GRID/s7/swia6n.mpg
2191
+ lip/GRID/s7/swih3a.mpg
2192
+ lip/GRID/s7/swihzn.mpg
2193
+ lip/GRID/s7/swin4n.mpg
2194
+ lip/GRID/s7/swit8n.mpg
2195
+ lip/GRID/s7/swwb9s.mpg
2196
+ lip/GRID/s7/swwi4p.mpg
2197
+ lip/GRID/s7/swwv1s.mpg
2198
+ lip/GRID/s8/bbal2a.mpg
2199
+ lip/GRID/s8/bbar5p.mpg
2200
+ lip/GRID/s8/bbay7n.mpg
2201
+ lip/GRID/s8/bbay8s.mpg
2202
+ lip/GRID/s8/bbazza.mpg
2203
+ lip/GRID/s8/bbbe9n.mpg
2204
+ lip/GRID/s8/bbbl3n.mpg
2205
+ lip/GRID/s8/bbbr8s.mpg
2206
+ lip/GRID/s8/bbbz2s.mpg
2207
+ lip/GRID/s8/bbbz3p.mpg
2208
+ lip/GRID/s8/bbik6s.mpg
2209
+ lip/GRID/s8/bbir2a.mpg
2210
+ lip/GRID/s8/bbwf3n.mpg
2211
+ lip/GRID/s8/bbwmza.mpg
2212
+ lip/GRID/s8/bbwz6s.mpg
2213
+ lip/GRID/s8/bgaa2a.mpg
2214
+ lip/GRID/s8/bgag5p.mpg
2215
+ lip/GRID/s8/bgam7n.mpg
2216
+ lip/GRID/s8/bgba3n.mpg
2217
+ lip/GRID/s8/bgbg7n.mpg
2218
+ lip/GRID/s8/bgbg8s.mpg
2219
+ lip/GRID/s8/bgbn4a.mpg
2220
+ lip/GRID/s8/bgbt5n.mpg
2221
+ lip/GRID/s8/bgbt6s.mpg
2222
+ lip/GRID/s8/bgig2a.mpg
2223
+ lip/GRID/s8/bgitza.mpg
2224
+ lip/GRID/s8/bgwh1n.mpg
2225
+ lip/GRID/s8/bgwh3p.mpg
2226
+ lip/GRID/s8/bgwh4a.mpg
2227
+ lip/GRID/s8/bgwn8a.mpg
2228
+ lip/GRID/s8/bgwu1p.mpg
2229
+ lip/GRID/s8/bral5n.mpg
2230
+ lip/GRID/s8/braz4s.mpg
2231
+ lip/GRID/s8/brbf5n.mpg
2232
+ lip/GRID/s8/brbf6s.mpg
2233
+ lip/GRID/s8/brbmzs.mpg
2234
+ lip/GRID/s8/brbz9p.mpg
2235
+ lip/GRID/s8/bril1n.mpg
2236
+ lip/GRID/s8/bril2s.mpg
2237
+ lip/GRID/s8/bril3p.mpg
2238
+ lip/GRID/s8/briz1p.mpg
2239
+ lip/GRID/s8/brwg2a.mpg
2240
+ lip/GRID/s8/brwm5p.mpg
2241
+ lip/GRID/s8/brws8s.mpg
2242
+ lip/GRID/s8/brws9p.mpg
2243
+ lip/GRID/s8/bwam2s.mpg
2244
+ lip/GRID/s8/bwas5n.mpg
2245
+ lip/GRID/s8/bwbm8a.mpg
2246
+ lip/GRID/s8/bwbt1p.mpg
2247
+ lip/GRID/s8/bwbt2a.mpg
2248
+ lip/GRID/s8/bwif5p.mpg
2249
+ lip/GRID/s8/bwis3p.mpg
2250
+ lip/GRID/s8/bwiz6s.mpg
2251
+ lip/GRID/s8/bwwg6s.mpg
2252
+ lip/GRID/s8/bwwn1p.mpg
2253
+ lip/GRID/s8/lbac9n.mpg
2254
+ lip/GRID/s8/lbad2a.mpg
2255
+ lip/GRID/s8/lbaj3n.mpg
2256
+ lip/GRID/s8/lbaqza.mpg
2257
+ lip/GRID/s8/lbax2s.mpg
2258
+ lip/GRID/s8/lbax4a.mpg
2259
+ lip/GRID/s8/lbbq3p.mpg
2260
+ lip/GRID/s8/lbbx6s.mpg
2261
+ lip/GRID/s8/lbic6s.mpg
2262
+ lip/GRID/s8/lbip3n.mpg
2263
+ lip/GRID/s8/lbwd9p.mpg
2264
+ lip/GRID/s8/lbwq6s.mpg
2265
+ lip/GRID/s8/lbwq7p.mpg
2266
+ lip/GRID/s8/lbwq8a.mpg
2267
+ lip/GRID/s8/lgae8s.mpg
2268
+ lip/GRID/s8/lgbf1n.mpg
2269
+ lip/GRID/s8/lgbz4s.mpg
2270
+ lip/GRID/s8/lgbz6a.mpg
2271
+ lip/GRID/s8/lgie3n.mpg
2272
+ lip/GRID/s8/lgie6a.mpg
2273
+ lip/GRID/s8/lgik7n.mpg
2274
+ lip/GRID/s8/lgilza.mpg
2275
+ lip/GRID/s8/lgir1n.mpg
2276
+ lip/GRID/s8/lgir2s.mpg
2277
+ lip/GRID/s8/lgiy5n.mpg
2278
+ lip/GRID/s8/lgwl9n.mpg
2279
+ lip/GRID/s8/lraj9n.mpg
2280
+ lip/GRID/s8/lrak1p.mpg
2281
+ lip/GRID/s8/lrbe2a.mpg
2282
+ lip/GRID/s8/lrbk5p.mpg
2283
+ lip/GRID/s8/lrbk6a.mpg
2284
+ lip/GRID/s8/lrbq7n.mpg
2285
+ lip/GRID/s8/lrby2s.mpg
2286
+ lip/GRID/s8/lrid1n.mpg
2287
+ lip/GRID/s8/lrij5n.mpg
2288
+ lip/GRID/s8/lrij6s.mpg
2289
+ lip/GRID/s8/lrwk9p.mpg
2290
+ lip/GRID/s8/lwae4a.mpg
2291
+ lip/GRID/s8/lwaq9n.mpg
2292
+ lip/GRID/s8/lwarzs.mpg
2293
+ lip/GRID/s8/lway4s.mpg
2294
+ lip/GRID/s8/lwbe7p.mpg
2295
+ lip/GRID/s8/lwby7n.mpg
2296
+ lip/GRID/s8/lwby8s.mpg
2297
+ lip/GRID/s8/lwid8s.mpg
2298
+ lip/GRID/s8/lwid9p.mpg
2299
+ lip/GRID/s8/lwik2s.mpg
2300
+ lip/GRID/s8/lwiyzs.mpg
2301
+ lip/GRID/s8/lwwf2a.mpg
2302
+ lip/GRID/s8/lwwl6a.mpg
2303
+ lip/GRID/s8/lwwz1n.mpg
2304
+ lip/GRID/s8/lwwz3p.mpg
2305
+ lip/GRID/s8/pbah7n.mpg
2306
+ lip/GRID/s8/pbbb7n.mpg
2307
+ lip/GRID/s8/pbbi1n.mpg
2308
+ lip/GRID/s8/pbbo6s.mpg
2309
+ lip/GRID/s8/pbbo7p.mpg
2310
+ lip/GRID/s8/pbia9n.mpg
2311
+ lip/GRID/s8/pbib1p.mpg
2312
+ lip/GRID/s8/pbib2a.mpg
2313
+ lip/GRID/s8/pbih5p.mpg
2314
+ lip/GRID/s8/pbin7n.mpg
2315
+ lip/GRID/s8/pbwc4a.mpg
2316
+ lip/GRID/s8/pbwi5n.mpg
2317
+ lip/GRID/s8/pbwi8a.mpg
2318
+ lip/GRID/s8/pbwv4s.mpg
2319
+ lip/GRID/s8/pbwv5p.mpg
2320
+ lip/GRID/s8/pgaj7p.mpg
2321
+ lip/GRID/s8/pgax6a.mpg
2322
+ lip/GRID/s8/pgbk1p.mpg
2323
+ lip/GRID/s8/pgbq5p.mpg
2324
+ lip/GRID/s8/pgbx8s.mpg
2325
+ lip/GRID/s8/pgidza.mpg
2326
+ lip/GRID/s8/pgij3p.mpg
2327
+ lip/GRID/s8/pgip8a.mpg
2328
+ lip/GRID/s8/pgixzs.mpg
2329
+ lip/GRID/s8/pgwe1p.mpg
2330
+ lip/GRID/s8/pgwk3n.mpg
2331
+ lip/GRID/s8/prbjza.mpg
2332
+ lip/GRID/s8/prbp1n.mpg
2333
+ lip/GRID/s8/prbv5n.mpg
2334
+ lip/GRID/s8/prii1p.mpg
2335
+ lip/GRID/s8/prio4s.mpg
2336
+ lip/GRID/s8/prio5p.mpg
2337
+ lip/GRID/s8/prwc7n.mpg
2338
+ lip/GRID/s8/prwc8s.mpg
2339
+ lip/GRID/s8/prwc9p.mpg
2340
+ lip/GRID/s8/prwp6s.mpg
2341
+ lip/GRID/s8/pwac5n.mpg
2342
+ lip/GRID/s8/pwac8a.mpg
2343
+ lip/GRID/s8/pwap6a.mpg
2344
+ lip/GRID/s8/pwav8s.mpg
2345
+ lip/GRID/s8/pwav9p.mpg
2346
+ lip/GRID/s8/pwbc9n.mpg
2347
+ lip/GRID/s8/pwbj5p.mpg
2348
+ lip/GRID/s8/pwic2s.mpg
2349
+ lip/GRID/s8/pwii6s.mpg
2350
+ lip/GRID/s8/pwii7p.mpg
2351
+ lip/GRID/s8/pwio9n.mpg
2352
+ lip/GRID/s8/pwiv3n.mpg
2353
+ lip/GRID/s8/pwwj7n.mpg
2354
+ lip/GRID/s8/pwwq2s.mpg
2355
+ lip/GRID/s8/pwwx5n.mpg
2356
+ lip/GRID/s8/sbag3p.mpg
2357
+ lip/GRID/s8/sbbn2a.mpg
2358
+ lip/GRID/s8/sbbt3n.mpg
2359
+ lip/GRID/s8/sbbt4s.mpg
2360
+ lip/GRID/s8/sbif7n.mpg
2361
+ lip/GRID/s8/sbif9p.mpg
2362
+ lip/GRID/s8/sbim4a.mpg
2363
+ lip/GRID/s8/sbis5n.mpg
2364
+ lip/GRID/s8/sbwh1p.mpg
2365
+ lip/GRID/s8/sbwt8s.mpg
2366
+ lip/GRID/s8/sbwuza.mpg
2367
+ lip/GRID/s8/sgab8a.mpg
2368
+ lip/GRID/s8/sgai1p.mpg
2369
+ lip/GRID/s8/sgao5p.mpg
2370
+ lip/GRID/s8/sgao6a.mpg
2371
+ lip/GRID/s8/sgbczs.mpg
2372
+ lip/GRID/s8/sgbpza.mpg
2373
+ lip/GRID/s8/sgbv2s.mpg
2374
+ lip/GRID/s8/sgio1p.mpg
2375
+ lip/GRID/s8/sgiozs.mpg
2376
+ lip/GRID/s8/sgiu3n.mpg
2377
+ lip/GRID/s8/sgwc3n.mpg
2378
+ lip/GRID/s8/sgwi9p.mpg
2379
+ lip/GRID/s8/sgwjza.mpg
2380
+ lip/GRID/s8/sgwp4a.mpg
2381
+ lip/GRID/s8/sgwv7p.mpg
2382
+ lip/GRID/s8/sraa3n.mpg
2383
+ lip/GRID/s8/sraa6a.mpg
2384
+ lip/GRID/s8/srag8s.mpg
2385
+ lip/GRID/s8/srat6s.mpg
2386
+ lip/GRID/s8/srat7p.mpg
2387
+ lip/GRID/s8/srba8s.mpg
2388
+ lip/GRID/s8/srbh1n.mpg
2389
+ lip/GRID/s8/srbn5n.mpg
2390
+ lip/GRID/s8/srbn8a.mpg
2391
+ lip/GRID/s8/sria1p.mpg
2392
+ lip/GRID/s8/sriazs.mpg
2393
+ lip/GRID/s8/srit3p.mpg
2394
+ lip/GRID/s8/swab2a.mpg
2395
+ lip/GRID/s8/swau4a.mpg
2396
+ lip/GRID/s8/swbh9p.mpg
2397
+ lip/GRID/s8/swbiza.mpg
2398
+ lip/GRID/s8/swbu5n.mpg
2399
+ lip/GRID/s8/swbu6s.mpg
2400
+ lip/GRID/s8/swin3n.mpg
2401
+ lip/GRID/s8/swwb7n.mpg
2402
+ lip/GRID/s8/swwi2s.mpg
2403
+ lip/GRID/s8/swwo5n.mpg
2404
+ lip/GRID/s9/bbay6n.mpg
2405
+ lip/GRID/s9/bbbe9s.mpg
2406
+ lip/GRID/s9/bbbr7s.mpg
2407
+ lip/GRID/s9/bbbr8p.mpg
2408
+ lip/GRID/s9/bbbz2p.mpg
2409
+ lip/GRID/s9/bbiq8n.mpg
2410
+ lip/GRID/s9/bbirzp.mpg
2411
+ lip/GRID/s9/bbiy2n.mpg
2412
+ lip/GRID/s9/bbwf2n.mpg
2413
+ lip/GRID/s9/bbwf3s.mpg
2414
+ lip/GRID/s9/bbwl9a.mpg
2415
+ lip/GRID/s9/bgaa1a.mpg
2416
+ lip/GRID/s9/bgag5a.mpg
2417
+ lip/GRID/s9/bgam8p.mpg
2418
+ lip/GRID/s9/bgat1s.mpg
2419
+ lip/GRID/s9/bgim2n.mpg
2420
+ lip/GRID/s9/bgim3s.mpg
2421
+ lip/GRID/s9/bgim4p.mpg
2422
+ lip/GRID/s9/bgis9a.mpg
2423
+ lip/GRID/s9/bgwh3a.mpg
2424
+ lip/GRID/s9/bgwu1a.mpg
2425
+ lip/GRID/s9/braf1s.mpg
2426
+ lip/GRID/s9/braf3a.mpg
2427
+ lip/GRID/s9/brbf7a.mpg
2428
+ lip/GRID/s9/brbs2n.mpg
2429
+ lip/GRID/s9/brbs5a.mpg
2430
+ lip/GRID/s9/brbz7s.mpg
2431
+ lip/GRID/s9/brilzn.mpg
2432
+ lip/GRID/s9/brir6p.mpg
2433
+ lip/GRID/s9/brir7a.mpg
2434
+ lip/GRID/s9/briy8n.mpg
2435
+ lip/GRID/s9/brizzp.mpg
2436
+ lip/GRID/s9/brwm5a.mpg
2437
+ lip/GRID/s9/brws7s.mpg
2438
+ lip/GRID/s9/brws8p.mpg
2439
+ lip/GRID/s9/brws9a.mpg
2440
+ lip/GRID/s9/bwaf9a.mpg
2441
+ lip/GRID/s9/bwam1s.mpg
2442
+ lip/GRID/s9/bwas5s.mpg
2443
+ lip/GRID/s9/bwif2n.mpg
2444
+ lip/GRID/s9/bwis3a.mpg
2445
+ lip/GRID/s9/bwwg5s.mpg
2446
+ lip/GRID/s9/bwwm8n.mpg
2447
+ lip/GRID/s9/bwwn1a.mpg
2448
+ lip/GRID/s9/bwwt4p.mpg
2449
+ lip/GRID/s9/lbac9s.mpg
2450
+ lip/GRID/s9/lbap6n.mpg
2451
+ lip/GRID/s9/lbap7s.mpg
2452
+ lip/GRID/s9/lbax1s.mpg
2453
+ lip/GRID/s9/lbbd3s.mpg
2454
+ lip/GRID/s9/lbbj6n.mpg
2455
+ lip/GRID/s9/lbbqzn.mpg
2456
+ lip/GRID/s9/lbic6p.mpg
2457
+ lip/GRID/s9/lbii8n.mpg
2458
+ lip/GRID/s9/lbiv8p.mpg
2459
+ lip/GRID/s9/lbwd6n.mpg
2460
+ lip/GRID/s9/lbwd8p.mpg
2461
+ lip/GRID/s9/lbwq5s.mpg
2462
+ lip/GRID/s9/lbwx8n.mpg
2463
+ lip/GRID/s9/lgar6p.mpg
2464
+ lip/GRID/s9/lgar7a.mpg
2465
+ lip/GRID/s9/lgbf2p.mpg
2466
+ lip/GRID/s9/lgbf3a.mpg
2467
+ lip/GRID/s9/lgbfzn.mpg
2468
+ lip/GRID/s9/lgbl5s.mpg
2469
+ lip/GRID/s9/lgbl7a.mpg
2470
+ lip/GRID/s9/lgie5a.mpg
2471
+ lip/GRID/s9/lgwm1a.mpg
2472
+ lip/GRID/s9/lgws3s.mpg
2473
+ lip/GRID/s9/lgws5a.mpg
2474
+ lip/GRID/s9/lgwz8p.mpg
2475
+ lip/GRID/s9/lrad4n.mpg
2476
+ lip/GRID/s9/lrad6p.mpg
2477
+ lip/GRID/s9/lrad7a.mpg
2478
+ lip/GRID/s9/lraj9s.mpg
2479
+ lip/GRID/s9/lraq5a.mpg
2480
+ lip/GRID/s9/lrbezp.mpg
2481
+ lip/GRID/s9/lrbk5a.mpg
2482
+ lip/GRID/s9/lriqzp.mpg
2483
+ lip/GRID/s9/lrix5a.mpg
2484
+ lip/GRID/s9/lrwe2n.mpg
2485
+ lip/GRID/s9/lrwe4p.mpg
2486
+ lip/GRID/s9/lrwr2p.mpg
2487
+ lip/GRID/s9/lrwr3a.mpg
2488
+ lip/GRID/s9/lrwy5s.mpg
2489
+ lip/GRID/s9/lwae1s.mpg
2490
+ lip/GRID/s9/lwae2p.mpg
2491
+ lip/GRID/s9/lwak6p.mpg
2492
+ lip/GRID/s9/lway2n.mpg
2493
+ lip/GRID/s9/lwbl1a.mpg
2494
+ lip/GRID/s9/lwbr5a.mpg
2495
+ lip/GRID/s9/lwby6n.mpg
2496
+ lip/GRID/s9/lwby8p.mpg
2497
+ lip/GRID/s9/lwid7s.mpg
2498
+ lip/GRID/s9/lwiq4n.mpg
2499
+ lip/GRID/s9/lwwl4p.mpg
2500
+ lip/GRID/s9/pbah8p.mpg
2501
+ lip/GRID/s9/pbao3a.mpg
2502
+ lip/GRID/s9/pbaozn.mpg
2503
+ lip/GRID/s9/pbau5s.mpg
2504
+ lip/GRID/s9/pbbo6p.mpg
2505
+ lip/GRID/s9/pbbo7a.mpg
2506
+ lip/GRID/s9/pbbvzp.mpg
2507
+ lip/GRID/s9/pbia9s.mpg
2508
+ lip/GRID/s9/pbih3s.mpg
2509
+ lip/GRID/s9/pbih5a.mpg
2510
+ lip/GRID/s9/pbiu1s.mpg
2511
+ lip/GRID/s9/pbiu2p.mpg
2512
+ lip/GRID/s9/pbwc3a.mpg
2513
+ lip/GRID/s9/pbwv5a.mpg
2514
+ lip/GRID/s9/pgaj7a.mpg
2515
+ lip/GRID/s9/pgbj8n.mpg
2516
+ lip/GRID/s9/pgbx9a.mpg
2517
+ lip/GRID/s9/pgic8p.mpg
2518
+ lip/GRID/s9/pgij3a.mpg
2519
+ lip/GRID/s9/pgip6p.mpg
2520
+ lip/GRID/s9/pgwd9s.mpg
2521
+ lip/GRID/s9/pgwk3s.mpg
2522
+ lip/GRID/s9/pgwy3a.mpg
2523
+ lip/GRID/s9/pgwyzn.mpg
2524
+ lip/GRID/s9/prab9s.mpg
2525
+ lip/GRID/s9/prao9a.mpg
2526
+ lip/GRID/s9/prbp3a.mpg
2527
+ lip/GRID/s9/prbpzn.mpg
2528
+ lip/GRID/s9/prih8n.mpg
2529
+ lip/GRID/s9/prwc7s.mpg
2530
+ lip/GRID/s9/prwjzn.mpg
2531
+ lip/GRID/s9/prwp5s.mpg
2532
+ lip/GRID/s9/pwai8n.mpg
2533
+ lip/GRID/s9/pwai9s.mpg
2534
+ lip/GRID/s9/pwap3s.mpg
2535
+ lip/GRID/s9/pwav8p.mpg
2536
+ lip/GRID/s9/pwbc8n.mpg
2537
+ lip/GRID/s9/pwbdzp.mpg
2538
+ lip/GRID/s9/pwbj4p.mpg
2539
+ lip/GRID/s9/pwbp7s.mpg
2540
+ lip/GRID/s9/pwbxzn.mpg
2541
+ lip/GRID/s9/pwii5s.mpg
2542
+ lip/GRID/s9/pwwj8p.mpg
2543
+ lip/GRID/s9/sbagzn.mpg
2544
+ lip/GRID/s9/sbas8n.mpg
2545
+ lip/GRID/s9/sbba2p.mpg
2546
+ lip/GRID/s9/sbbt5a.mpg
2547
+ lip/GRID/s9/sbif7s.mpg
2548
+ lip/GRID/s9/sbim3a.mpg
2549
+ lip/GRID/s9/sbwa4n.mpg
2550
+ lip/GRID/s9/sbwg8n.mpg
2551
+ lip/GRID/s9/sbwg9s.mpg
2552
+ lip/GRID/s9/sbwn2n.mpg
2553
+ lip/GRID/s9/sbwn5a.mpg
2554
+ lip/GRID/s9/sbwt8p.mpg
2555
+ lip/GRID/s9/sbwt9a.mpg
2556
+ lip/GRID/s9/sgab5s.mpg
2557
+ lip/GRID/s9/sgab6p.mpg
2558
+ lip/GRID/s9/sgai1a.mpg
2559
+ lip/GRID/s9/sgau6n.mpg
2560
+ lip/GRID/s9/sgau7s.mpg
2561
+ lip/GRID/s9/sgbb8n.mpg
2562
+ lip/GRID/s9/sgbb9s.mpg
2563
+ lip/GRID/s9/sgbi3s.mpg
2564
+ lip/GRID/s9/sgbi4p.mpg
2565
+ lip/GRID/s9/sgiozp.mpg
2566
+ lip/GRID/s9/sgiu3s.mpg
2567
+ lip/GRID/s9/sgiu4p.mpg
2568
+ lip/GRID/s9/sgwp2p.mpg
2569
+ lip/GRID/s9/sgwv5s.mpg
2570
+ lip/GRID/s9/sgwv7a.mpg
2571
+ lip/GRID/s9/sraa5a.mpg
2572
+ lip/GRID/s9/srag9a.mpg
2573
+ lip/GRID/s9/sranzn.mpg
2574
+ lip/GRID/s9/srat6p.mpg
2575
+ lip/GRID/s9/srbt8n.mpg
2576
+ lip/GRID/s9/srbt9s.mpg
2577
+ lip/GRID/s9/sriazp.mpg
2578
+ lip/GRID/s9/srit2p.mpg
2579
+ lip/GRID/s9/sritzn.mpg
2580
+ lip/GRID/s9/srwh6p.mpg
2581
+ lip/GRID/s9/srwh7a.mpg
2582
+ lip/GRID/s9/srwu4p.mpg
2583
+ lip/GRID/s9/srwu5a.mpg
2584
+ lip/GRID/s9/swbb2n.mpg
2585
+ lip/GRID/s9/swbb4p.mpg
2586
+ lip/GRID/s9/swbh8p.mpg
2587
+ lip/GRID/s9/swbo1s.mpg
2588
+ lip/GRID/s9/swin2n.mpg
2589
+ lip/GRID/s9/swin4p.mpg
2590
+ lip/GRID/s9/swit6n.mpg
2591
+ lip/GRID/s9/swwb6n.mpg
2592
+ lip/GRID/s9/swwu8n.mpg
2593
+ lip/GRID/s9/swwu9s.mpg
dataset.py ADDED
@@ -0,0 +1,714 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # encoding: utf-8
2
+ import numpy as np
3
+ import glob
4
+ import time
5
+ import cv2
6
+ import yaml
7
+ import os
8
+ import torch
9
+ import glob
10
+ import re
11
+ import string
12
+ import copy
13
+ import json
14
+ import random
15
+ import enum
16
+ import editdistance
17
+ import pronouncing
18
+
19
+ from torch.utils.data import Dataset
20
+
21
+ import Extractor
22
+ import options
23
+ from cvtransforms import *
24
+ from typing import List, Iterable
25
+ from helpers import *
26
+
27
+
28
+ class CharMap(str, enum.Enum):
29
+ letters = 'letters'
30
+ lsr2_text = 'lsr2_text'
31
+ phonemes = 'phonemes'
32
+ cmu_phonemes = 'cmu_phonemes'
33
+ visemes = 'visemes'
34
+
35
+
36
+ class Datasets(str, enum.Enum):
37
+ GRID = 'GRID'
38
+ LRS2 = 'LRS2'
39
+
40
+
41
+ class GridDataset(Dataset):
42
+ letters = [
43
+ ' ', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I',
44
+ 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S',
45
+ 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'
46
+ ]
47
+ lrs2_chars = [
48
+ ' ', "'", '0', '1', '2', '3', '4', '5', '6', '7', '8',
49
+ '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J',
50
+ 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U',
51
+ 'V', 'W', 'X', 'Y', 'Z'
52
+ ]
53
+ # phonemes used by the lipnet dataset
54
+ phonemes = [
55
+ ' ', 'AE1', 'AO1', 'D', 'JH', 'Y', 'P', 'AH0', 'OW1', 'G',
56
+ 'AY1', 'TH', 'IY1', 'CH', 'T', 'AW1', 'F', 'AH1', 'Z',
57
+ 'R', 'EH1', 'UW1', 'M', 'B', 'W', 'V', 'DH', 'K', 'IH0',
58
+ 'AA1', 'IH1', 'S', 'EY1', 'N', 'OW0', 'L'
59
+ ]
60
+ # full set of phonemes in the CMU phoneme corpus
61
+ cmu_phonemes = [
62
+ ' ', '#', 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1',
63
+ 'AE2', 'AH', 'AH0', 'AH1', 'AH2', 'AO', 'AO0', 'AO1', 'AO2',
64
+ 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
65
+ 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER',
66
+ 'ER0', 'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G',
67
+ 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2',
68
+ 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2',
69
+ 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH',
70
+ 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V',
71
+ 'W', 'Y', 'Z', 'ZH'
72
+ ]
73
+
74
+ phoneme_chars = map_phonemes(phonemes)
75
+ cmu_phoneme_chars = map_phonemes(cmu_phonemes)
76
+
77
+ def __init__(
78
+ self, video_path, alignments_dir,
79
+ phonemes_dir, file_list, vid_pad,
80
+ image_dir, txt_pad, phase, shared_dict=None,
81
+ char_map=CharMap.letters, base_dir='',
82
+ frame_doubling=False, sample_all_props=False
83
+ ):
84
+ self.base_dir = base_dir
85
+ self.sample_all_props = sample_all_props
86
+
87
+ self.image_dir = os.path.join(base_dir, image_dir)
88
+ self.alignments_dir = os.path.join(base_dir, alignments_dir)
89
+ self.phonemes_dir = os.path.join(base_dir, phonemes_dir)
90
+ self.frame_doubling = frame_doubling
91
+
92
+ if type(file_list) is str:
93
+ file_list = os.path.join(base_dir, file_list)
94
+ # print('FILE_LIST', file_list, base_dir)
95
+ file_list = open(file_list, 'r').readlines()
96
+
97
+ self.shared_dict = shared_dict
98
+ self.char_map = char_map
99
+
100
+ self.vid_pad = vid_pad
101
+ self.txt_pad = txt_pad
102
+ self.phase = phase
103
+
104
+ self.videos = [
105
+ os.path.join(video_path, line.strip())
106
+ for line in file_list
107
+ ]
108
+
109
+ self.data = []
110
+ for vid in self.videos:
111
+ items = vid.split(os.path.sep)
112
+ if len(items) < 2:
113
+ print('BAD VID ITEM', items)
114
+ raise ValueError
115
+
116
+ speaker_name, filename = items[-2], items[-1]
117
+ self.data.append((vid, speaker_name, filename))
118
+
119
+ def _fetch_anno_path(self, spk, basename):
120
+ return self.fetch_anno_path(
121
+ spk=spk, basename=basename, char_map=self.char_map
122
+ )
123
+
124
+ @classmethod
125
+ def text_to_phonemes(
126
+ cls, text, as_str=True, char_map=CharMap.phonemes
127
+ ):
128
+ sentence_phonemes = []
129
+
130
+ words = text.upper().strip().split(' ')
131
+ for word in words:
132
+ word_phonemes = pronouncing.phones_for_word(word)[0]
133
+ word_phonemes = word_phonemes.split(' ')
134
+ sentence_phonemes.extend(word_phonemes)
135
+ sentence_phonemes.append(' ')
136
+
137
+ if sentence_phonemes[-1] == ' ':
138
+ sentence_phonemes = sentence_phonemes[:-1]
139
+
140
+ if as_str:
141
+ return cls.stringify(sentence_phonemes, char_map=char_map)
142
+ else:
143
+ return sentence_phonemes
144
+
145
+ def fetch_anno_path(self, spk, basename, char_map):
146
+ if char_map == CharMap.letters:
147
+ align_path_name = os.path.join(
148
+ self.alignments_dir, spk, basename + '.align'
149
+ )
150
+ return align_path_name
151
+ elif char_map == CharMap.lsr2_text:
152
+ align_path_name = os.path.join(
153
+ self.alignments_dir, spk, basename + '.txt'
154
+ )
155
+ return align_path_name
156
+ elif char_map == CharMap.phonemes:
157
+ phonemes_path_name = os.path.join(
158
+ self.phonemes_dir, spk, basename + '.align'
159
+ )
160
+ return phonemes_path_name
161
+ elif char_map == CharMap.cmu_phonemes:
162
+ phonemes_path_name = os.path.join(
163
+ self.phonemes_dir, spk, basename + '.txt'
164
+ )
165
+ return phonemes_path_name
166
+ else:
167
+ raise NotImplementedError
168
+
169
+ def fetch_anno_text(self, spk, basename, char_map: CharMap):
170
+ return self.load_anno_text(self.fetch_anno_path(
171
+ spk, basename, char_map=char_map
172
+ ), char_map=char_map)
173
+
174
+ def __getitem__(self, idx):
175
+ (vid, spk, name) = self.data[idx]
176
+ return self.load_sample(
177
+ video_name=vid, speaker_name=spk,
178
+ filename=name
179
+ )
180
+
181
+ def load_random_sample(self, char_map=None):
182
+ (vid, spk, name) = random.choice(self.data)
183
+ return self.load_sample(
184
+ video_name=vid, speaker_name=spk,
185
+ filename=name, char_map=char_map
186
+ )
187
+
188
+ def load_sample(
189
+ self, video_name, speaker_name, filename,
190
+ char_map=None
191
+ ):
192
+ if char_map is None:
193
+ char_map = self.char_map
194
+ if self.sample_all_props:
195
+ char_map = all
196
+
197
+ vid = self.load_vid(video_name)
198
+ if self.frame_doubling:
199
+ vid = np.repeat(vid, repeats=2, axis=0)
200
+
201
+ basename, _ = os.path.splitext(filename)
202
+ # print('SPK_NAME', (spk, name, anno_path))
203
+ txt_results, phoneme_results = {}, {}
204
+ cmu_phoneme_results = {}
205
+
206
+ if (char_map is all) or (char_map == CharMap.letters):
207
+ txt_anno, txt_anno_arr = self.fetch_anno_text(
208
+ speaker_name, basename, char_map=CharMap.letters
209
+ )
210
+
211
+ txt_anno_arr_len = txt_anno_arr.shape[0]
212
+ txt_anno_arr = self._padding(txt_anno_arr, self.txt_pad)
213
+ assert not np.isnan(txt_anno_arr).any()
214
+
215
+ txt_anno += [' '] * (options.txt_padding - len(txt_anno))
216
+ txt_results = kwargify(
217
+ txt=torch.LongTensor(txt_anno_arr),
218
+ txt_len=txt_anno_arr_len, txt_anno=txt_anno
219
+ )
220
+
221
+ if (char_map is all) or (char_map == CharMap.phonemes):
222
+ phoneme_anno, phoneme_anno_arr = self.fetch_anno_text(
223
+ speaker_name, basename, char_map=CharMap.phonemes
224
+ )
225
+
226
+ phoneme_anno_arr_len = phoneme_anno_arr.shape[0]
227
+ phoneme_anno_arr = self._padding(
228
+ phoneme_anno_arr, self.txt_pad
229
+ )
230
+ assert not np.isnan(phoneme_anno_arr_len).any()
231
+
232
+ phoneme_results = kwargify(
233
+ phonemes=torch.LongTensor(phoneme_anno_arr),
234
+ phonemes_len=phoneme_anno_arr_len,
235
+ )
236
+
237
+ elif (char_map is all) or (char_map == CharMap.cmu_phonemes):
238
+ phoneme_anno, phoneme_anno_arr = self.fetch_anno_text(
239
+ speaker_name, basename, char_map=CharMap.cmu_phonemes
240
+ )
241
+
242
+ phoneme_anno_arr_len = phoneme_anno_arr.shape[0]
243
+ phoneme_anno_arr = self._padding(
244
+ phoneme_anno_arr, self.txt_pad
245
+ )
246
+ assert not np.isnan(phoneme_anno_arr_len).any()
247
+
248
+ cmu_phoneme_results = kwargify(
249
+ cmu_phonemes=torch.LongTensor(phoneme_anno_arr),
250
+ cmu_phonemes_len=phoneme_anno_arr_len,
251
+ )
252
+
253
+ if self.phase == 'train':
254
+ vid = HorizontalFlip(vid)
255
+
256
+ vid = ColorNormalize(vid)
257
+ vid_len = vid.shape[0]
258
+ vid = self._padding(vid, self.vid_pad)
259
+
260
+ """
261
+ if vid_len <= anno_len * 2:
262
+ raise ValueError(f'CTC INVALID: {self.data[idx]}')
263
+ """
264
+
265
+ assert not np.isnan(vid).any()
266
+
267
+ return kwargify(
268
+ vid=torch.FloatTensor(vid.transpose(3, 0, 1, 2)),
269
+ vid_len=vid_len, **txt_results, **phoneme_results,
270
+ **cmu_phoneme_results
271
+ )
272
+
273
+ def __len__(self):
274
+ return len(self.data)
275
+
276
+ @staticmethod
277
+ def serialize(data: np.ndarray):
278
+ return torch.from_numpy(data.astype(np.uint8))
279
+
280
+ @staticmethod
281
+ def deserialize(data: torch.Tensor):
282
+ return data.numpy().astype(np.float16)
283
+
284
+ @staticmethod
285
+ def process_vid(video_path: str, to_tensor=True):
286
+ frames = Extractor.extract_frames(
287
+ video_path, recycle_landmarks=True, use_gpu=True
288
+ )
289
+
290
+ frames = [f for f in frames if f is not None]
291
+ array = list(filter(lambda im: im is not None, frames))
292
+ array = [
293
+ cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4)
294
+ for im in array
295
+ ]
296
+
297
+ array = np.stack(array, axis=0).astype(np.float16)
298
+ vid = ColorNormalize(array)
299
+
300
+ if to_tensor:
301
+ vid = torch.FloatTensor(vid.transpose(3, 0, 1, 2))
302
+
303
+ return vid
304
+
305
+ def load_vid(self, video_path: str) -> np.ndarray:
306
+ return self._load_vid(video_path, cache=False)
307
+
308
+ def _load_vid(self, video_path: str, cache=True) -> np.ndarray:
309
+ if cache and self.shared_dict is not None:
310
+ if video_path in self.shared_dict:
311
+ return self.deserialize(
312
+ self.shared_dict[video_path]
313
+ )
314
+
315
+ # print('LOAD_DIR', video_path)
316
+ base_filename = os.path.basename(video_path)
317
+ basename, _ = os.path.splitext(base_filename)
318
+ speaker_dir = os.path.basename(os.path.dirname(video_path))
319
+ image_dir = f'{self.image_dir}/{speaker_dir}/{basename}'
320
+
321
+ files = os.listdir(image_dir)
322
+ files = list(filter(lambda file: file.find('.jpg') != -1, files))
323
+ files = sorted(files, key=lambda file: int(os.path.splitext(file)[0]))
324
+ array = [cv2.imread(os.path.join(image_dir, file)) for file in files]
325
+ array = list(filter(lambda im: im is not None, array))
326
+ array = [
327
+ cv2.resize(im, (128, 64), interpolation=cv2.INTER_LANCZOS4)
328
+ for im in array
329
+ ]
330
+
331
+ try:
332
+ array = np.stack(array, axis=0).astype(np.float16)
333
+ except ValueError as e:
334
+ print(f'BAD VIDEO PATH: {video_path}')
335
+ raise e
336
+
337
+ if cache and self.shared_dict is not None:
338
+ # print('SD >>')
339
+ serialized_data = self.serialize(array)
340
+ serialized_data.share_memory_()
341
+ self.shared_dict[video_path] = serialized_data
342
+ # print('SD <<')
343
+
344
+ return array
345
+
346
+ @classmethod
347
+ def load_anno(cls, name, char_map):
348
+ return cls.load_anno_text(name, char_map)[1]
349
+
350
+ @classmethod
351
+ def load_anno_text(cls, name, char_map):
352
+ # print('ANNOTATION_NAME', name)
353
+ txt = cls.load_sentence(name, char_map=char_map)
354
+ indices = cls.txt2arr(txt, 1, char_map=char_map)
355
+ # print('TXT', txt)
356
+ return txt, indices
357
+
358
+ def _load_anno(self, name):
359
+ return self.load_anno(name, self.char_map)
360
+
361
+ @classmethod
362
+ def load_sentence(cls, name, char_map=CharMap.letters) -> List[str]:
363
+ with open(name, 'r') as f:
364
+ if char_map == CharMap.letters:
365
+ lines = [line.strip().split(' ') for line in f.readlines()]
366
+ txt = [line[2] for line in lines]
367
+ txt = list(filter(
368
+ lambda s: not s.upper() in ['SIL', 'SP'], txt
369
+ ))
370
+
371
+ all_chars = list(' '.join(txt))
372
+ all_chars = [char.upper() for char in all_chars]
373
+ return all_chars
374
+
375
+ elif char_map == CharMap.lsr2_text:
376
+ text_line = f.readlines()[0]
377
+ text_line = text_line[5:].strip()
378
+ all_chars = [char.upper() for char in text_line]
379
+ return all_chars
380
+
381
+ elif char_map in (CharMap.phonemes, CharMap.cmu_phonemes):
382
+ all_chars = []
383
+
384
+ for line in f.readlines():
385
+ word_phonemes = line.strip().split(' ')
386
+ all_chars.extend(word_phonemes)
387
+ all_chars.append(' ')
388
+
389
+ if all_chars[-1] == ' ':
390
+ all_chars = all_chars[:-1]
391
+
392
+ return all_chars
393
+ else:
394
+ raise ValueError(f'BAD CHAR MAP {char_map}')
395
+
396
+ @classmethod
397
+ def load_str_sentence(cls, name, char_map=CharMap.letters) -> str:
398
+ chars_seq = cls.load_sentence(name=name, char_map=char_map)
399
+ return cls.stringify(chars_seq, char_map=char_map)
400
+
401
+ @staticmethod
402
+ def tokenize_text(text: str, word_tokenize=False) -> List[str]:
403
+ """
404
+ :param text:
405
+ :param word_tokenize:
406
+ whether to tokenize into words or individual characters
407
+ :return:
408
+ """
409
+ if word_tokenize:
410
+ return text.split(' ')
411
+ else:
412
+ return list(text)
413
+
414
+ @staticmethod
415
+ def tokenize_phonemes(text: str, word_tokenize=False) -> List[str]:
416
+ """
417
+ :param text:
418
+ :param word_tokenize:
419
+ whether to tokenize into words or individual phonemes
420
+ example:
421
+ text = 'S-EH1-T G-R-IY1-N IH0-N EH1-L S-IH1-K-S AH0-G-EH1-N'
422
+ word-level tokens:
423
+ ['S-EH1-T', 'G-R-IY1-N', 'IH0-N', 'EH1-L', 'S-IH1-K-S', 'AH0-G-EH1-N']
424
+ phoneme-level tokens:
425
+ ['S', 'EH1', 'T', ' ', 'G', 'R', 'IY1', 'N', ' ', 'IH0',
426
+ 'N', ' ', 'EH1', 'L', ' ', 'S', 'IH1', 'K', 'S', ' ',
427
+ 'AH0', 'G', 'EH1', 'N']
428
+ :return:
429
+ """
430
+ if word_tokenize:
431
+ return text.split(' ')
432
+ else:
433
+ words = text.split(' ')
434
+ phonemes = []
435
+
436
+ for word in words:
437
+ assert not word.startswith('-')
438
+ assert not word.endswith('-')
439
+ phonemes.extend(word.split('-'))
440
+ phonemes.append(' ')
441
+
442
+ if phonemes[-1] == ' ':
443
+ phonemes = phonemes[:-1]
444
+
445
+ return phonemes
446
+
447
+ @staticmethod
448
+ def _padding(array, length):
449
+ array = [array[_] for _ in range(array.shape[0])]
450
+ size = array[0].shape
451
+
452
+ for i in range(length - len(array)):
453
+ array.append(np.zeros(size))
454
+
455
+ return np.stack(array, axis=0)
456
+
457
+ @classmethod
458
+ def txt2arr(cls, txt, start, char_map=CharMap.letters):
459
+ arr = []
460
+
461
+ if char_map == CharMap.letters:
462
+ for char in list(txt):
463
+ arr.append(cls.letters.index(char) + start)
464
+
465
+ elif char_map == CharMap.phonemes:
466
+ # print('TXT', txt)
467
+ for phoneme in txt:
468
+ arr.append(cls.phonemes.index(phoneme) + start)
469
+
470
+ elif char_map == CharMap.cmu_phonemes:
471
+ # print('TXT', txt)
472
+ for phoneme in txt:
473
+ arr.append(cls.cmu_phonemes.index(phoneme) + start)
474
+
475
+ elif char_map == CharMap.visemes:
476
+ raise NotImplementedError
477
+ else:
478
+ raise ValueError(f'BAD CHAR MAP: {char_map}')
479
+
480
+ return np.array(arr)
481
+
482
+ def arr2txt(self, arr, start, char_map=None):
483
+ char_map = self.char_map if char_map is None else char_map
484
+ return self._arr2txt(arr, start, char_map=char_map)
485
+
486
+ @classmethod
487
+ def _arr2txt(cls, arr, start, char_map=CharMap.letters):
488
+ txt = []
489
+
490
+ for n in arr:
491
+ if n >= start:
492
+ if char_map == CharMap.letters:
493
+ txt.append(cls.letters[n - start])
494
+ elif char_map == CharMap.phonemes:
495
+ txt.append(cls.phonemes[n - start])
496
+ elif char_map == CharMap.cmu_phonemes:
497
+ txt.append(cls.cmu_phonemes[n - start])
498
+ elif char_map == CharMap.visemes:
499
+ raise NotImplementedError
500
+ else:
501
+ raise ValueError(f'BAD CHAR MAP: {char_map}')
502
+
503
+ return cls.stringify(txt, char_map)
504
+
505
+ def get_char_mapping(self):
506
+ return self.char_mapping(self.char_map)
507
+
508
+ @classmethod
509
+ def char_mapping(cls, char_map):
510
+ if char_map == CharMap.letters:
511
+ return cls.letters
512
+ elif char_map == CharMap.phonemes:
513
+ return cls.phonemes
514
+ elif char_map == CharMap.cmu_phonemes:
515
+ return cls.cmu_phonemes
516
+ elif char_map == CharMap.visemes:
517
+ raise NotImplementedError
518
+ else:
519
+ raise ValueError(f'BAD CHAR MAP: {char_map}')
520
+
521
+ def ctc_decode(self, y):
522
+ y = y.argmax(-1)
523
+ return [
524
+ self.ctc_arr2txt(y[_], start=1)
525
+ for _ in range(y.size(0))
526
+ ]
527
+
528
+ def ctc_decode_indices(self, y):
529
+ y = y.argmax(-1)
530
+ return [
531
+ self.ctc_arr2txt_indices(y[_], start=1)[1]
532
+ for _ in range(y.size(0))
533
+ ]
534
+
535
+ def ctc_arr2txt(self, *args, **kwargs):
536
+ sentence, indices = self.ctc_arr2txt_pair(*args, **kwargs)
537
+ return sentence
538
+
539
+ def ctc_arr2txt_pair(
540
+ self, arr, start, char_map=None,
541
+ filter_previous=True
542
+ ):
543
+ """
544
+ converts token indices into a string sentence
545
+
546
+ :param arr:
547
+ array of token indices
548
+ :param start:
549
+ number of special characters in character set
550
+ :param char_map:
551
+ character set to use for tokenization
552
+ :param filter_previous:
553
+ if True, removes consecutive occurrences of an index / token
554
+ e.g. THREE becomes THRE, SOON becomes SON
555
+ :return:
556
+ """
557
+ sentence, indices = self.ctc_arr2txt_indices(
558
+ arr=arr, start=start, char_map=char_map,
559
+ filter_previous=filter_previous
560
+ )
561
+ return sentence, indices
562
+
563
+ def ctc_arr2txt_indices(
564
+ self, arr, start, char_map=None,
565
+ filter_previous=True
566
+ ):
567
+ """
568
+ converts token indices into a string sentence
569
+ and indices of tokens taken along arr
570
+
571
+ :param arr:
572
+ array of token indices
573
+ :param start:
574
+ number of special characters in character set
575
+ :param char_map:
576
+ character set to use for tokenization
577
+ :param filter_previous:
578
+ if True, removes consecutive occurrences of an index / token
579
+ e.g. THREE becomes THRE, SOON becomes SON
580
+ :return:
581
+ """
582
+ if char_map is None:
583
+ char_map = self.char_map
584
+
585
+ previous = -1
586
+ txt, indices = [], []
587
+ char_mapping = self.char_mapping(char_map)
588
+
589
+ for k, n in enumerate(arr):
590
+ check_consecutive = (
591
+ not filter_previous or previous != n
592
+ )
593
+ if n >= start:
594
+ has_empty_char = (
595
+ len(txt) > 0 and txt[-1] == ' ' and
596
+ char_mapping[n - start] == ' '
597
+ )
598
+
599
+ if not has_empty_char and check_consecutive:
600
+ txt.append(char_mapping[n - start])
601
+ indices.append(k)
602
+
603
+ previous = n
604
+
605
+ sentence = self.stringify(txt, char_map)
606
+ return sentence, indices
607
+
608
+ @staticmethod
609
+ def stringify(txt, char_map):
610
+ if char_map in (CharMap.letters, CharMap.lsr2_text):
611
+ return ''.join(txt).strip()
612
+ elif char_map in (CharMap.phonemes, CharMap.cmu_phonemes):
613
+ sentence = '-'.join(txt).strip()
614
+ sentence = sentence.replace('- ', ' ')
615
+ sentence = sentence.replace(' -', ' ')
616
+ if sentence.endswith('-'): sentence = sentence[:-1]
617
+ if sentence.startswith('-'): sentence = sentence[1:]
618
+ return sentence
619
+ else:
620
+ raise NotImplementedError
621
+
622
+ def _map_chars(self, chars: str):
623
+ return self.map_chars(chars, char_map=self.char_map)
624
+
625
+ @classmethod
626
+ def map_chars(cls, chars: str, char_map: CharMap):
627
+ # map a string containing multi-character
628
+ # phonemes like AE1 to a single character
629
+
630
+ if char_map == CharMap.letters:
631
+ return chars
632
+ elif char_map in (CharMap.phonemes, CharMap.cmu_phonemes):
633
+ if char_map == CharMap.phonemes:
634
+ phonemes_arr = cls.phonemes
635
+ char_phonemes_arr = cls.phonemes
636
+ elif char_map == CharMap.cmu_phonemes:
637
+ phonemes_arr = cls.cmu_phonemes
638
+ char_phonemes_arr = cls.cmu_phoneme_chars
639
+ else:
640
+ raise ValueError(f'BAD CHAR MAP {char_map}')
641
+
642
+ words = chars.split(' ')
643
+ char_phonemes = ''
644
+
645
+ for word in words:
646
+ phonemes = word.split('-')
647
+ phonemes = [
648
+ phoneme for phoneme in phonemes
649
+ if phoneme.strip() != ''
650
+ ]
651
+
652
+ for phoneme in phonemes:
653
+ char_phonemes += char_phonemes_arr[
654
+ phonemes_arr.index(phoneme)
655
+ ]
656
+
657
+ char_phonemes += ' '
658
+
659
+ return char_phonemes
660
+ elif char_map == CharMap.visemes:
661
+ raise NotImplementedError
662
+ else:
663
+ raise ValueError(f'BAD CHAR MAP: {char_map}')
664
+
665
+ @classmethod
666
+ def map_char_lists(
667
+ cls, char_lists: Iterable[str], char_map: CharMap
668
+ ):
669
+ return [cls.map_chars(
670
+ char_seq, char_map=char_map
671
+ ) for char_seq in char_lists]
672
+
673
+ def wer(self, raw_predict, raw_truth):
674
+ return self.get_wer(
675
+ raw_predict, raw_truth, char_map=self.char_map
676
+ )
677
+
678
+ @classmethod
679
+ def get_wer(cls, raw_predict, raw_truth, char_map: CharMap):
680
+ assert isinstance(raw_predict, Iterable)
681
+ assert isinstance(raw_truth, Iterable)
682
+
683
+ predict = cls.map_char_lists(raw_predict, char_map=char_map)
684
+ truth = cls.map_char_lists(raw_truth, char_map=char_map)
685
+ # print('WER', raw_truth, raw_predict)
686
+
687
+ word_pairs = [
688
+ (p[0].split(' '), p[1].split(' '))
689
+ for p in zip(predict, truth)
690
+ ]
691
+ wer = [
692
+ 1.0 * editdistance.eval(p[0], p[1])/len(p[1])
693
+ for p in word_pairs
694
+ ]
695
+ return wer
696
+
697
+ def cer(self, raw_predict, raw_truth):
698
+ return self.get_cer(
699
+ raw_predict, raw_truth, char_map=self.char_map
700
+ )
701
+
702
+ @classmethod
703
+ def get_cer(cls, raw_predict, raw_truth, char_map: CharMap):
704
+ assert isinstance(raw_predict, Iterable)
705
+ assert isinstance(raw_truth, Iterable)
706
+
707
+ predict = cls.map_char_lists(raw_predict, char_map=char_map)
708
+ truth = cls.map_char_lists(raw_truth, char_map=char_map)
709
+
710
+ cer = [
711
+ 1.0 * editdistance.eval(p[0], p[1]) / len(p[1])
712
+ for p in zip(predict, truth)
713
+ ]
714
+ return cer
dataset_test.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import options as opt
2
+ import matplotlib.pyplot as plt
3
+ import torch.optim as optim
4
+ import numpy as np
5
+ import time
6
+
7
+ from dataset import GridDataset
8
+ from torch.utils.data import DataLoader
9
+
10
+
11
+ def dataset2dataloader(
12
+ dataset, num_workers=opt.num_workers, shuffle=True
13
+ ):
14
+ return DataLoader(
15
+ dataset,
16
+ batch_size=opt.batch_size,
17
+ shuffle=shuffle,
18
+ num_workers=num_workers,
19
+ drop_last=False
20
+ )
21
+
22
+
23
+ dataset = GridDataset(
24
+ video_path=opt.video_path,
25
+ alignments_dir=opt.alignments_dir,
26
+ file_list=opt.train_list,
27
+ vid_pad=opt.vid_padding,
28
+ image_dir=opt.images_dir,
29
+ txt_pad=opt.txt_padding,
30
+ phase='train'
31
+ )
32
+
33
+ loader = dataset2dataloader(dataset)
34
+
35
+
36
+ def fetch_samples(num_samples=10):
37
+ samples = []
38
+ sample_no = 0
39
+
40
+ for sample in loader:
41
+ sample_no += 1
42
+ samples.append(sample)
43
+
44
+ if sample_no >= num_samples:
45
+ break
46
+
47
+ return samples
48
+
49
+
50
+ samples = fetch_samples()
51
+ print(samples[0])
52
+ print('END')
demo.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.init as init
4
+ import torch.nn.functional as F
5
+ from torch.utils.data import DataLoader
6
+ import math
7
+ import os
8
+ import sys
9
+ from dataset import GridDataset
10
+ import numpy as np
11
+ import time
12
+ from models.LipNet import LipNet
13
+ import torch.optim as optim
14
+ import re
15
+ import json
16
+ import tempfile
17
+ import shutil
18
+ import cv2
19
+ import face_alignment
20
+
21
+
22
+ def get_position(size, padding=0.25):
23
+ x = [0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
24
+ 0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
25
+ 0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
26
+ 0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
27
+ 0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
28
+ 0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
29
+ 0.553364, 0.490127, 0.42689]
30
+
31
+ y = [0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
32
+ 0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
33
+ 0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
34
+ 0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
35
+ 0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
36
+ 0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
37
+ 0.784792, 0.824182, 0.831803, 0.824182]
38
+
39
+ x, y = np.array(x), np.array(y)
40
+
41
+ x = (x + padding) / (2 * padding + 1)
42
+ y = (y + padding) / (2 * padding + 1)
43
+ x = x * size
44
+ y = y * size
45
+ return np.array(list(zip(x, y)))
46
+
47
+
48
+ def cal_area(anno):
49
+ return (anno[:, 0].max() - anno[:, 0].min()) * (anno[:, 1].max() - anno[:, 1].min())
50
+
51
+
52
+ def output_video(p, txt, dst):
53
+ files = os.listdir(p)
54
+ files = sorted(files, key=lambda x: int(os.path.splitext(x)[0]))
55
+
56
+ font = cv2.FONT_HERSHEY_SIMPLEX
57
+
58
+ for file, line in zip(files, txt):
59
+ img = cv2.imread(os.path.join(p, file))
60
+ h, w, _ = img.shape
61
+ img = cv2.putText(img, line, (w // 8, 11 * h // 12), font, 1.2, (0, 0, 0), 3, cv2.LINE_AA)
62
+ img = cv2.putText(img, line, (w // 8, 11 * h // 12), font, 1.2, (255, 255, 255), 0, cv2.LINE_AA)
63
+ h = h // 2
64
+ w = w // 2
65
+ img = cv2.resize(img, (w, h))
66
+ cv2.imwrite(os.path.join(p, file), img)
67
+
68
+ cmd = "ffmpeg -y -i {}/%d.jpg -r 25 \'{}\'".format(p, dst)
69
+ os.system(cmd)
70
+
71
+
72
+ def transformation_from_points(points1, points2):
73
+ points1 = points1.astype(np.float64)
74
+ points2 = points2.astype(np.float64)
75
+
76
+ c1 = np.mean(points1, axis=0)
77
+ c2 = np.mean(points2, axis=0)
78
+ points1 -= c1
79
+ points2 -= c2
80
+ s1 = np.std(points1)
81
+ s2 = np.std(points2)
82
+ points1 /= s1
83
+ points2 /= s2
84
+
85
+ U, S, Vt = np.linalg.svd(points1.T * points2)
86
+ R = (U * Vt).T
87
+ return np.vstack([
88
+ np.hstack(((s2 / s1) * R,
89
+ c2.T - (s2 / s1) * R * c1.T)),
90
+ np.matrix([0., 0., 1.])
91
+ ])
92
+
93
+
94
+ def load_video(file):
95
+ p = tempfile.mkdtemp()
96
+ cmd = 'ffmpeg -i \'{}\' -qscale:v 2 -r 25 \'{}/%d.jpg\''.format(file, p)
97
+ os.system(cmd)
98
+
99
+ files = os.listdir(p)
100
+ files = sorted(files, key=lambda x: int(os.path.splitext(x)[0]))
101
+
102
+ array = [cv2.imread(os.path.join(p, file)) for file in files]
103
+ array = list(filter(lambda im: not im is None, array))
104
+ # array = [cv2.resize(im, (100, 50), interpolation=cv2.INTER_LANCZOS4)
105
+ # for im in array]
106
+ fa = face_alignment.FaceAlignment(
107
+ face_alignment.LandmarksType.TWO_D,
108
+ flip_input=False, device='cuda'
109
+ )
110
+
111
+ points = [fa.get_landmarks(I) for I in array]
112
+
113
+ front256 = get_position(256)
114
+ video = []
115
+
116
+ for point, scene in zip(points, array):
117
+ if point is not None:
118
+ shape = np.array(point[0])
119
+ shape = shape[17:]
120
+ M = transformation_from_points(np.matrix(shape), np.matrix(front256))
121
+
122
+ img = cv2.warpAffine(scene, M[:2], (256, 256))
123
+ (x, y) = front256[-20:].mean(0).astype(np.int32)
124
+ w = 160 // 2
125
+ img = img[y - w // 2:y + w // 2, x - w:x + w, ...]
126
+ img = cv2.resize(img, (128, 64))
127
+ video.append(img)
128
+
129
+ video = np.stack(video, axis=0).astype(np.float32)
130
+ video = torch.FloatTensor(video.transpose(3, 0, 1, 2)) / 255.0
131
+
132
+ return video, p
133
+
134
+
135
+ def ctc_decode(y):
136
+ y = y.argmax(-1)
137
+ t = y.size(0)
138
+ result = []
139
+ for i in range(t + 1):
140
+ result.append(GridDataset.ctc_arr2txt(y[:i], start=1))
141
+
142
+ return result
143
+
144
+
145
+ if __name__ == '__main__':
146
+ opt = __import__('options')
147
+ os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
148
+
149
+ model = LipNet()
150
+ model = model.cuda()
151
+ net = nn.DataParallel(model).cuda()
152
+
153
+ if hasattr(opt, 'weights'):
154
+ pretrained_dict = torch.load(opt.weights)
155
+ model_dict = model.state_dict()
156
+ pretrained_dict = {k: v for k, v in pretrained_dict.items() if
157
+ k in model_dict.keys() and v.size() == model_dict[k].size()}
158
+ missed_params = [k for k, v in model_dict.items() if not k in pretrained_dict.keys()]
159
+ print('loaded params/tot params:{}/{}'.format(len(pretrained_dict), len(model_dict)))
160
+ print('miss matched params:{}'.format(missed_params))
161
+ model_dict.update(pretrained_dict)
162
+ model.load_state_dict(model_dict)
163
+
164
+ video, img_p = load_video(sys.argv[1])
165
+ y = model(video[None, ...].cuda())
166
+ txt = ctc_decode(y[0])
167
+
168
+ output_video(img_p, txt, sys.argv[2])
169
+ shutil.rmtree(img_p)
extract_lip.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import json
3
+ import numpy as np
4
+ from multiprocessing import Pool, Process, Queue
5
+ import time
6
+ import os
7
+
8
+
9
+ def get_position(size, padding=0.25):
10
+ x = [0.000213256, 0.0752622, 0.18113, 0.29077, 0.393397, 0.586856, 0.689483, 0.799124,
11
+ 0.904991, 0.98004, 0.490127, 0.490127, 0.490127, 0.490127, 0.36688, 0.426036,
12
+ 0.490127, 0.554217, 0.613373, 0.121737, 0.187122, 0.265825, 0.334606, 0.260918,
13
+ 0.182743, 0.645647, 0.714428, 0.793132, 0.858516, 0.79751, 0.719335, 0.254149,
14
+ 0.340985, 0.428858, 0.490127, 0.551395, 0.639268, 0.726104, 0.642159, 0.556721,
15
+ 0.490127, 0.423532, 0.338094, 0.290379, 0.428096, 0.490127, 0.552157, 0.689874,
16
+ 0.553364, 0.490127, 0.42689]
17
+
18
+ y = [0.106454, 0.038915, 0.0187482, 0.0344891, 0.0773906, 0.0773906, 0.0344891,
19
+ 0.0187482, 0.038915, 0.106454, 0.203352, 0.307009, 0.409805, 0.515625, 0.587326,
20
+ 0.609345, 0.628106, 0.609345, 0.587326, 0.216423, 0.178758, 0.179852, 0.231733,
21
+ 0.245099, 0.244077, 0.231733, 0.179852, 0.178758, 0.216423, 0.244077, 0.245099,
22
+ 0.780233, 0.745405, 0.727388, 0.742578, 0.727388, 0.745405, 0.780233, 0.864805,
23
+ 0.902192, 0.909281, 0.902192, 0.864805, 0.784792, 0.778746, 0.785343, 0.778746,
24
+ 0.784792, 0.824182, 0.831803, 0.824182]
25
+
26
+ x, y = np.array(x), np.array(y)
27
+
28
+ x = (x + padding) / (2 * padding + 1)
29
+ y = (y + padding) / (2 * padding + 1)
30
+ x = x * size
31
+ y = y * size
32
+ return np.array(list(zip(x, y)))
33
+
34
+
35
+ def cal_area(anno):
36
+ return (
37
+ (anno[:, 0].max() - anno[:, 0].min()) *
38
+ (anno[:, 1].max() - anno[:, 1].min())
39
+ )
40
+
41
+
42
+ def transformation_from_points(points1, points2):
43
+ points1 = points1.astype(np.float64)
44
+ points2 = points2.astype(np.float64)
45
+
46
+ c1 = np.mean(points1, axis=0)
47
+ c2 = np.mean(points2, axis=0)
48
+ points1 -= c1
49
+ points2 -= c2
50
+ s1 = np.std(points1)
51
+ s2 = np.std(points2)
52
+ points1 /= s1
53
+ points2 /= s2
54
+
55
+ U, S, Vt = np.linalg.svd(points1.T * points2)
56
+ R = (U * Vt).T
57
+
58
+ return np.vstack([np.hstack((
59
+ (s2 / s1) * R, c2.T - (s2 / s1) * R * c1.T)),
60
+ np.matrix([0., 0., 1.])
61
+ ])
62
+
63
+
64
+ def anno_img(img_dir, anno_dir, save_dir):
65
+ files = list(os.listdir(img_dir))
66
+ files = [file for file in files if (file.find('.jpg') != -1)]
67
+ shapes = []
68
+ for file in files:
69
+ img = os.path.join(img_dir, file)
70
+ anno = os.path.join(anno_dir, file).replace('.jpg', '.txt')
71
+
72
+ I = cv2.imread(img)
73
+ count = 0
74
+
75
+ with open(anno, 'r') as f:
76
+ annos = [line.strip().split('\t') for line in f.readlines()]
77
+ if len(annos) == 0: return
78
+ for (i, anno) in enumerate(annos):
79
+ x, y = [], []
80
+ for p in anno:
81
+ _, __ = p[1:-1].split(',')
82
+ _, __ = float(_), float(__)
83
+ x.append(_)
84
+ y.append(__)
85
+
86
+ annos[i] = np.stack([x, y], 1)
87
+
88
+ anno = sorted(annos, key=cal_area, reverse=True)[0]
89
+ shape = []
90
+
91
+ shapes.append(anno[17:])
92
+
93
+ front256 = get_position(256)
94
+ M_prev = None
95
+
96
+ for (shape, file) in zip(shapes, files):
97
+ img = os.path.join(img_dir, file)
98
+ I = cv2.imread(img)
99
+ M = transformation_from_points(np.matrix(shape), np.matrix(front256))
100
+ img = cv2.warpAffine(I, M[:2], (256, 256))
101
+ (x, y) = front256[-20:].mean(0).astype(np.int32)
102
+ w = 160 // 2
103
+ img = img[y - w // 2:y + w // 2, x - w:x + w, ...]
104
+ cv2.imwrite(os.path.join(save_dir, file), img)
105
+
106
+
107
+ def run(files):
108
+ tic = time.time()
109
+ count = 0
110
+ print('n_files:{}'.format(len(files)))
111
+ for (img_dir, anno_dir, save_dir) in files:
112
+ anno_img(img_dir, anno_dir, save_dir)
113
+ count += 1
114
+ if count % 1000 == 0:
115
+ print('eta={}'.format(
116
+ (time.time() - tic) /
117
+ (count) * (len(files) - count) /
118
+ 3600.0
119
+ ))
120
+
121
+
122
+ if __name__ == '__main__':
123
+ with open('grid.txt', 'r') as f:
124
+ data = [line.strip() for line in f.readlines()]
125
+ data = list(set([os.path.split(file)[0] for file in data]))
126
+
127
+ annos = [name.replace('GRID/6k_video_imgs', 'GRID/landmarks') for name in data]
128
+ targets = [name.replace('GRID/6k_video_imgs', 'GRID/lip') for name in data]
129
+
130
+ for dst in targets:
131
+ if (not os.path.exists(dst)):
132
+ os.makedirs(dst)
133
+
134
+ data = list(zip(data, annos, targets))
135
+ processes = []
136
+ n_p = 8
137
+ bs = len(data) // n_p
138
+ for i in range(n_p):
139
+ if i == n_p - 1:
140
+ bs = len(data)
141
+
142
+ p = Process(target=run, args=(data[:bs],))
143
+ data = data[bs:]
144
+ p.start()
145
+ processes.append(p)
146
+
147
+ assert (len(data) == 0)
148
+ for p in processes:
149
+ p.join()
extract_lip_v2.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os.path
2
+ import sys
3
+
4
+ from scripts import extract_lip
5
+ from multiprocessing import Pool, Process, Queue
6
+ from Loader import GridLoader
7
+ from dataset import GridDataset
8
+ from models.LipNet import LipNet
9
+
10
+ PARALLEL = False
11
+
12
+ loader = GridLoader()
13
+ video_paths = loader.load_video_paths(fetch_all_paths=False)
14
+ image_dirs, anno_dirs, target_dirs = [], [], []
15
+
16
+ for k in range(1, 35):
17
+ speaker_name = f's{k}'
18
+ image_dirpath = f'lip/GRID_imgs/{speaker_name}'
19
+ annos_dirpath = f'lip/GRID_aligns/{speaker_name}'
20
+ target_dirpath = f'lip/GRID_lip_imgs/{speaker_name}'
21
+
22
+ if not os.path.exists(image_dirpath):
23
+ continue
24
+
25
+ sentences = os.listdir(image_dirpath)
26
+ for sentence in sentences:
27
+ sentence_dir = f'{image_dirpath}/{sentence}'
28
+ print('SS', sentence_dir)
29
+
30
+ image_dirs.append(sentence_dir)
31
+ anno_dirs.append(annos_dirpath)
32
+ target_dirs.append(target_dirpath)
33
+
34
+ print(video_paths[:10])
35
+
36
+ for dst in target_dirs:
37
+ if not os.path.exists(dst):
38
+ os.makedirs(dst)
39
+
40
+ data = list(zip(image_dirs, anno_dirs, target_dirs))
41
+ processes = []
42
+ n_p = 8
43
+ bs = len(data) // n_p
44
+
45
+ if PARALLEL:
46
+ for i in range(n_p):
47
+ if i == n_p - 1:
48
+ bs = len(data)
49
+
50
+ p = Process(target=extract_lip.run, args=(data[:bs],))
51
+ data = data[bs:]
52
+ p.start()
53
+ processes.append(p)
54
+
55
+ assert (len(data) == 0)
56
+ for p in processes:
57
+ p.join()
58
+
59
+ else:
60
+ extract_lip.run(data)
extract_lsr2_vocab.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from TranslatorTrainer import *
2
+
3
+ vocab_filepaths = (
4
+ 'data/lsr2_phoneme_vocab.pth',
5
+ 'data/lsr2_text_char_vocab.pth'
6
+ )
7
+
8
+ trainer = TranslatorTrainer(
9
+ word_tokenize=False,
10
+ input_char_map=options.char_map,
11
+ output_char_map=options.text_char_map,
12
+ dataset_type=Datasets.LRS2
13
+ )
14
+
15
+ # trainer.train()
16
+ trainer.save_vocabs(*vocab_filepaths)
face_det_sfd.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import dlib
3
+ import os
4
+ import cv2
5
+ import face_alignment
6
+ import time
7
+
8
+ from multiprocessing import Pool, Process, Queue
9
+
10
+
11
+ def run(gpu, files):
12
+ os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu)
13
+ fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=False, device='cuda')
14
+ print('gpu={},n_files={}'.format(gpu, len(files)))
15
+ tic = time.time()
16
+ count = 0
17
+ for (img_name, savename) in files:
18
+ I = cv2.imread(img_name)
19
+ points_list = fa.get_landmarks(I)
20
+
21
+ with open(savename, 'w') as f:
22
+ if(points_list is not None):
23
+ for points in points_list:
24
+ for (x, y) in points:
25
+ f.write('({}, {})\t'.format(x, y))
26
+ f.write('\n')
27
+
28
+ count += 1
29
+ if(count % 1000 == 0):
30
+ print('dst={},eta={}'.format(savename, (time.time()-tic)/(count) * (len(files) - count) / 3600.0))
31
+
32
+
33
+ if(__name__ == '__main__'):
34
+ with open('imgs.txt', 'r') as f:
35
+ data = [line.strip() for line in f.readlines()]
36
+
37
+ data = [(name, name.replace('.jpg', '.txt')) for name in data]
38
+ for (_, dst) in data:
39
+ dir, _ = os.path.split(dst)
40
+ if(not os.path.exists(dir)):
41
+ os.makedirs(dir)
42
+
43
+ processes = []
44
+ n_p = 3
45
+ gpus = ['1', '2', '3']
46
+ bs = len(data) // n_p
47
+ for i in range(n_p):
48
+ if(i == n_p - 1):
49
+ bs = len(data)
50
+ p = Process(target=run, args=(gpus[i],data[:bs],))
51
+ data = data[bs:]
52
+ p.start()
53
+ processes.append(p)
54
+ assert(len(data) == 0)
55
+ for p in processes:
56
+ p.join()
generate_phoneme_train_split.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import Loader
2
+ import numpy as np
3
+ import os
4
+
5
+ from sklearn.model_selection import train_test_split
6
+
7
+ TEST_FRAC = 0.2
8
+ RANDOM_SEED = 42
9
+
10
+ loader = Loader.GridLoader()
11
+ # we'll leave out speaker 34 for testing
12
+ video_paths = loader.load_video_paths(
13
+ verbose=True, fetch_all_paths=False,
14
+ verify_phonemes_length=True
15
+ )
16
+
17
+ new_video_paths = []
18
+ for video_path in video_paths:
19
+ sentence = os.path.basename(video_path)
20
+ sentence, _ = os.path.splitext(sentence)
21
+ speaker_name = os.path.basename(os.path.dirname(video_path))
22
+ speaker_no = int(speaker_name[1:])
23
+ cache_key = (speaker_no, sentence)
24
+ new_video_paths.append(video_path)
25
+
26
+
27
+ video_paths = new_video_paths
28
+ train_paths, validate_paths, _, _ = train_test_split(
29
+ video_paths, video_paths,
30
+ test_size=TEST_FRAC, random_state=RANDOM_SEED
31
+ )
32
+
33
+
34
+ def get_speakers(filepaths):
35
+ return sorted(list(set([
36
+ os.path.basename(os.path.dirname(x)) for x in filepaths
37
+ ])))
38
+
39
+
40
+ train_paths = sorted(train_paths)
41
+ validate_paths = sorted(validate_paths)
42
+
43
+ print(f'ALL_SPEAKERS {get_speakers(video_paths)}')
44
+ print(f'TRAIN_PATHS: {len(train_paths)}')
45
+ print(f'TRAIN_SPEAKERS: {get_speakers(train_paths)}')
46
+ print(f'VALIDATE_PATHS: {len(validate_paths)}')
47
+ print(f'VALIDATE_SPEAKERS: {get_speakers(validate_paths)}')
48
+
49
+ open('data/phonemes_train.txt', 'w').write('\n'.join(train_paths))
50
+ open('data/phonemes_val.txt', 'w').write('\n'.join(validate_paths))
generate_train_split.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import Loader
2
+ import numpy as np
3
+ import os
4
+
5
+ from sklearn.model_selection import train_test_split
6
+
7
+ TEST_FRAC = 0.2
8
+ RANDOM_SEED = 42
9
+
10
+ loader = Loader.GridLoader()
11
+ # we'll leave out speaker 34 for testing
12
+ video_paths = loader.load_video_paths(
13
+ verbose=True, fetch_all_paths=False,
14
+ excluded_speakers=[34]
15
+ )
16
+
17
+ # speaker-sentence pairs where lip extraction had problems
18
+ bad_lip_pairs = {
19
+ (1, 'pbio7a'), (1, 'bwwuzn'), (7, 'bbir1s'), (1, 'prii9a'),
20
+ (2, 'pbwxzs'), (7, 'bbir2p'), (7, 'lbad1s'), (17, 'lbib9a'),
21
+ (1, 'bbizzn'), (7, 'lgws5s'), (3, 'lgbz9s'), (1, 'lrarzn'),
22
+ (3, 'pbiu6n'), (1, 'pbwx1s'), (3, 'bgit2n'), (3, 'lbij5s'),
23
+ (3, 'bramzn'), (1, 'lgbf8n'), (7, 'lrwe6p'), (1, 'brwg8p'),
24
+ (1, 'sbbh4p'), (3, 'swiu2n'), (7, 'lwak8p'), (7, 'sbatzn'),
25
+ (2, 'pwbd6s'), (7, 'pwii6n'), (9, 'bwaf6n'), (3, 'pgwy7s'),
26
+ (7, 'lwws1a'), (1, 'sran9s'), (7, 'bgam9s'), (3, 'bgbn9a'),
27
+ (3, 'prwq3a'), (7, 'sgio2p'), (4, 'lwiy3n'), (3, 'lbij7a'),
28
+ (1, 'brwa4p'), (2, 'pbib7p'), (3, 'lrbr3s')
29
+ }
30
+
31
+ new_video_paths = []
32
+ for video_path in video_paths:
33
+ sentence = os.path.basename(video_path)
34
+ sentence, _ = os.path.splitext(sentence)
35
+ speaker_name = os.path.basename(os.path.dirname(video_path))
36
+ speaker_no = int(speaker_name[1:])
37
+ cache_key = (speaker_no, sentence)
38
+ # print(cache_key)
39
+
40
+ if cache_key in bad_lip_pairs:
41
+ print('SKIPPING', video_path)
42
+ continue
43
+
44
+ new_video_paths.append(video_path)
45
+
46
+
47
+ video_paths = new_video_paths
48
+ train_paths, validate_paths, _, _ = train_test_split(
49
+ video_paths, video_paths,
50
+ test_size=TEST_FRAC, random_state=RANDOM_SEED
51
+ )
52
+
53
+
54
+ def get_speakers(filepaths):
55
+ return set([os.path.basename(os.path.dirname(x)) for x in filepaths])
56
+
57
+
58
+ train_paths = sorted(train_paths)
59
+ validate_paths = sorted(validate_paths)
60
+
61
+ print(f'ALL_SPEAKERS {get_speakers(video_paths)}')
62
+ print(f'TRAIN_PATHS: {len(train_paths)}')
63
+ print(f'TRAIN_SPEAKERS: {get_speakers(train_paths)}')
64
+ print(f'VALIDATE_PATHS: {len(validate_paths)}')
65
+ print(f'VALIDATE_SPEAKERS: {get_speakers(validate_paths)}')
66
+
67
+ open('data/unseen_train.txt', 'w').write('\n'.join(train_paths))
68
+ open('data/unseen_val.txt', 'w').write('\n'.join(validate_paths))
helpers.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import string
4
+ import shutil
5
+ import os
6
+
7
+
8
+ def kwargify(**kwargs):
9
+ return kwargs
10
+
11
+
12
+ def show_lr(optimizer):
13
+ lr = []
14
+ for param_group in optimizer.param_groups:
15
+ lr += [param_group['lr']]
16
+
17
+ return np.array(lr).mean()
18
+
19
+
20
+ def contains_nan_or_inf(tensor):
21
+ return torch.isnan(tensor).any() or torch.isinf(tensor).any()
22
+
23
+
24
+ def map_phonemes(phonemes):
25
+ new_phonemes = []
26
+ charset = string.printable.strip()
27
+
28
+ for phoneme in phonemes:
29
+ if phoneme == ' ':
30
+ new_phonemes.append(phoneme)
31
+ else:
32
+ index = phonemes.index(phoneme) - 1
33
+ new_phonemes.append(charset[index])
34
+
35
+ return new_phonemes
36
+
37
+
38
+ def empty_dir(directory):
39
+ for filename in os.listdir(directory):
40
+ file_path = os.path.join(directory, filename)
41
+
42
+ try:
43
+ if os.path.isfile(file_path):
44
+ os.remove(file_path)
45
+ elif os.path.islink(file_path):
46
+ os.unlink(file_path)
47
+ elif os.path.isdir(file_path):
48
+ shutil.rmtree(file_path)
49
+ except Exception as e:
50
+ print('Failed to delete %s. Reason: %s' % (file_path, e))
main.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import resource
3
+
4
+ from helpers import *
5
+ from Trainer import Trainer
6
+
7
+ rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
8
+ resource.setrlimit(
9
+ resource.RLIMIT_NOFILE, (65536, rlimit[1])
10
+ )
11
+
12
+ if __name__ == '__main__':
13
+ opt = __import__('options')
14
+ os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu
15
+ else:
16
+ import options as opt
17
+
18
+
19
+ if __name__ == '__main__':
20
+ print("Loading options...")
21
+ trainer = Trainer()
22
+
23
+ if hasattr(opt, 'weights'):
24
+ trainer.load_weights(opt.weights)
25
+
26
+ torch.manual_seed(opt.random_seed)
27
+ torch.cuda.manual_seed_all(opt.random_seed)
28
+ trainer.train()
models/LipNet.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.init as init
4
+ import torch.nn.functional as F
5
+ import math
6
+ import numpy as np
7
+
8
+ from helpers import *
9
+
10
+
11
+ class LipNet(torch.nn.Module):
12
+ def __init__(
13
+ self, output_classes, dropout_p=0.5, pre_gru_repeats=0
14
+ ):
15
+ super(LipNet, self).__init__()
16
+ self.pre_gru_repeats = pre_gru_repeats
17
+
18
+ self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2))
19
+ self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
20
+
21
+ self.conv2 = nn.Conv3d(32, 64, (3, 5, 5), (1, 1, 1), (1, 2, 2))
22
+ self.pool2 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
23
+
24
+ self.conv3 = nn.Conv3d(64, 96, (3, 3, 3), (1, 1, 1), (1, 1, 1))
25
+ self.pool3 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
26
+
27
+ self.gru1 = nn.GRU(96*4*8, 256, 1, bidirectional=True)
28
+ self.gru2 = nn.GRU(512, 256, 1, bidirectional=True)
29
+
30
+ self.output_classes = output_classes
31
+ self.FC = nn.Linear(512, output_classes+1)
32
+ self.dropout_p = dropout_p
33
+
34
+ self.relu = nn.ReLU(inplace=True)
35
+ self.dropout = nn.Dropout(self.dropout_p)
36
+ self.dropout3d = nn.Dropout3d(self.dropout_p)
37
+ self._init()
38
+
39
+ def _init(self):
40
+ init.kaiming_normal_(self.conv1.weight, nonlinearity='relu')
41
+ init.constant_(self.conv1.bias, 0)
42
+
43
+ init.kaiming_normal_(self.conv2.weight, nonlinearity='relu')
44
+ init.constant_(self.conv2.bias, 0)
45
+
46
+ init.kaiming_normal_(self.conv3.weight, nonlinearity='relu')
47
+ init.constant_(self.conv3.bias, 0)
48
+
49
+ init.kaiming_normal_(self.FC.weight, nonlinearity='sigmoid')
50
+ init.constant_(self.FC.bias, 0)
51
+
52
+ for m in (self.gru1, self.gru2):
53
+ stdv = math.sqrt(2 / (96 * 3 * 6 + 256))
54
+ for i in range(0, 256 * 3, 256):
55
+ init.uniform_(m.weight_ih_l0[i: i + 256],
56
+ -math.sqrt(3) * stdv, math.sqrt(3) * stdv)
57
+ init.orthogonal_(m.weight_hh_l0[i: i + 256])
58
+ init.constant_(m.bias_ih_l0[i: i + 256], 0)
59
+ init.uniform_(m.weight_ih_l0_reverse[i: i + 256],
60
+ -math.sqrt(3) * stdv, math.sqrt(3) * stdv)
61
+ init.orthogonal_(m.weight_hh_l0_reverse[i: i + 256])
62
+ init.constant_(m.bias_ih_l0_reverse[i: i + 256], 0)
63
+
64
+ def forward(self, x):
65
+ x = self.conv1(x)
66
+ x = self.relu(x)
67
+ x = self.dropout3d(x)
68
+ x = self.pool1(x)
69
+
70
+ x = self.conv2(x)
71
+ x = self.relu(x)
72
+ x = self.dropout3d(x)
73
+ x = self.pool2(x)
74
+
75
+ x = self.conv3(x)
76
+ x = self.relu(x)
77
+ x = self.dropout3d(x)
78
+ x = self.pool3(x)
79
+
80
+ # (B, C, T, H, W)->(T, B, C, H, W)
81
+ x = x.permute(2, 0, 1, 3, 4).contiguous()
82
+ # (B, C, T, H, W)->(T, B, C*H*W)
83
+ x = x.view(x.size(0), x.size(1), -1)
84
+
85
+ self.gru1.flatten_parameters()
86
+ self.gru2.flatten_parameters()
87
+
88
+ if self.pre_gru_repeats > 1:
89
+ x = torch.repeat_interleave(
90
+ x, dim=0, repeats=self.pre_gru_repeats
91
+ )
92
+
93
+ x, h = self.gru1(x)
94
+ x = self.dropout(x)
95
+ x, h = self.gru2(x)
96
+ x = self.dropout(x)
97
+
98
+ x = self.FC(x)
99
+ x = x.permute(1, 0, 2).contiguous()
100
+ # assert not contains_nan_or_inf(x19)
101
+ return x
102
+
103
+
models/LipNetPlus.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.init as init
4
+ import torch.nn.functional as F
5
+ from torch.nn import Transformer
6
+
7
+ import math
8
+ import numpy as np
9
+
10
+ from helpers import *
11
+ from torch import Tensor
12
+ from models.PhonemeTransformer import (
13
+ PositionalEncoding, TokenEmbedding
14
+ )
15
+
16
+
17
+ class LipNetPlus(torch.nn.Module):
18
+ def __init__(
19
+ self, output_classes, dropout_p=0.0, pre_gru_repeats=0,
20
+ gru_output_size=512, embeds_size=256,
21
+ output_vocab_size=512, dropout_t=0.1,
22
+ src_vocab_size=4, num_encoder_layers: int = 3,
23
+ num_decoder_layers: int = 3, nhead: int = 8,
24
+ dim_feedforward: int = 512,
25
+ ):
26
+ super(LipNetPlus, self).__init__()
27
+ assert gru_output_size % 2 == 0
28
+ self.pre_gru_repeats = pre_gru_repeats
29
+ self.gru_out_size = gru_output_size
30
+ self.gru_hidden_size = gru_output_size // 2
31
+ self.embeds_size = embeds_size
32
+
33
+ self.output_vocab_size = output_vocab_size
34
+ self.gru_output_size = gru_output_size
35
+ self.dropout_t = dropout_t
36
+
37
+ self.conv1 = nn.Conv3d(3, 32, (3, 5, 5), (1, 2, 2), (1, 2, 2))
38
+ self.pool1 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
39
+
40
+ self.conv2 = nn.Conv3d(32, 64, (3, 5, 5), (1, 1, 1), (1, 2, 2))
41
+ self.pool2 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
42
+
43
+ self.conv3 = nn.Conv3d(64, 96, (3, 3, 3), (1, 1, 1), (1, 1, 1))
44
+ self.pool3 = nn.MaxPool3d((1, 2, 2), (1, 2, 2))
45
+
46
+ self.gru1 = nn.GRU(
47
+ 96 * 4 * 8, self.gru_hidden_size, 1, bidirectional=True
48
+ )
49
+ self.gru2 = nn.GRU(
50
+ self.gru_output_size, self.gru_hidden_size, 1, bidirectional=True
51
+ )
52
+
53
+ self.output_classes = output_classes
54
+ self.FC = nn.Linear(self.gru_output_size, output_classes + 1)
55
+ self.dropout_p = dropout_p
56
+
57
+ self.relu = nn.ReLU(inplace=True)
58
+ self.dropout = nn.Dropout(self.dropout_p)
59
+ self.dropout3d = nn.Dropout3d(self.dropout_p)
60
+
61
+ self.src_tok_emb = TokenEmbedding(
62
+ src_vocab_size, self.embeds_size
63
+ )
64
+ self.tgt_tok_emb = TokenEmbedding(
65
+ output_vocab_size, self.embeds_size
66
+ )
67
+
68
+ self.embeds_layer = nn.Linear(
69
+ self.gru_output_size, self.embeds_size
70
+ )
71
+ self.transformer = Transformer(
72
+ d_model=self.embeds_size, nhead=nhead,
73
+ num_encoder_layers=num_encoder_layers,
74
+ num_decoder_layers=num_decoder_layers,
75
+ dim_feedforward=dim_feedforward,
76
+ dropout=dropout_t
77
+ )
78
+ self.positional_encoding = PositionalEncoding(
79
+ self.embeds_size, dropout=self.dropout_t
80
+ )
81
+ self.generator = nn.Linear(
82
+ self.embeds_size, self.output_vocab_size
83
+ )
84
+ self._init()
85
+
86
+ def _init(self):
87
+ init.kaiming_normal_(self.conv1.weight, nonlinearity='relu')
88
+ init.constant_(self.conv1.bias, 0)
89
+
90
+ init.kaiming_normal_(self.conv2.weight, nonlinearity='relu')
91
+ init.constant_(self.conv2.bias, 0)
92
+
93
+ init.kaiming_normal_(self.conv3.weight, nonlinearity='relu')
94
+ init.constant_(self.conv3.bias, 0)
95
+
96
+ init.kaiming_normal_(self.FC.weight, nonlinearity='sigmoid')
97
+ init.constant_(self.FC.bias, 0)
98
+
99
+ transformer_components = [
100
+ self.transformer, self.generator,
101
+ self.positional_encoding
102
+ ]
103
+
104
+ for component in transformer_components:
105
+ for p in component.parameters():
106
+ if p.dim() > 1:
107
+ nn.init.xavier_uniform_(p)
108
+
109
+ for m in (self.gru1, self.gru2):
110
+ stdv = math.sqrt(2 / (96 * 3 * 6 + 256))
111
+
112
+ for i in range(0, 256 * 3, 256):
113
+ init.uniform_(m.weight_ih_l0[i: i + 256],
114
+ -math.sqrt(3) * stdv, math.sqrt(3) * stdv)
115
+ init.orthogonal_(m.weight_hh_l0[i: i + 256])
116
+ init.constant_(m.bias_ih_l0[i: i + 256], 0)
117
+ init.uniform_(m.weight_ih_l0_reverse[i: i + 256],
118
+ -math.sqrt(3) * stdv, math.sqrt(3) * stdv)
119
+ init.orthogonal_(m.weight_hh_l0_reverse[i: i + 256])
120
+ init.constant_(m.bias_ih_l0_reverse[i: i + 256], 0)
121
+
122
+ def forward_gru(self, x):
123
+ x = self.conv1(x)
124
+ x = self.relu(x)
125
+ x = self.dropout3d(x)
126
+ x = self.pool1(x)
127
+
128
+ x = self.conv2(x)
129
+ x = self.relu(x)
130
+ x = self.dropout3d(x)
131
+ x = self.pool2(x)
132
+
133
+ x = self.conv3(x)
134
+ x = self.relu(x)
135
+ x = self.dropout3d(x)
136
+ x = self.pool3(x)
137
+
138
+ # (B, C, T, H, W)->(T, B, C, H, W)
139
+ x = x.permute(2, 0, 1, 3, 4).contiguous()
140
+ # (B, C, T, H, W)->(T, B, C*H*W)
141
+ x = x.view(x.size(0), x.size(1), -1)
142
+
143
+ self.gru1.flatten_parameters()
144
+ self.gru2.flatten_parameters()
145
+
146
+ if self.pre_gru_repeats > 1:
147
+ x = torch.repeat_interleave(
148
+ x, dim=0, repeats=self.pre_gru_repeats
149
+ )
150
+
151
+ x, h = self.gru1(x)
152
+ x = self.dropout(x)
153
+ x, h = self.gru2(x)
154
+ x = self.dropout(x)
155
+ return x
156
+
157
+ def predict_from_gru_out(self, x):
158
+ x = self.FC(x)
159
+ x = x.permute(1, 0, 2).contiguous()
160
+ # assert not contains_nan_or_inf(x19)
161
+ return x
162
+
163
+ def forward(self, x):
164
+ x = self.forward_gru(x)
165
+ x = self.predict_from_gru_out(x)
166
+ return x
167
+
168
+ def make_src_embeds(self, x):
169
+ x = self.embeds_layer(x)
170
+ x = self.relu(x)
171
+ return x
172
+
173
+ def seq_forward(
174
+ self, src_embeds: Tensor, trg: Tensor,
175
+ src_mask: Tensor, tgt_mask: Tensor, src_padding_mask: Tensor,
176
+ tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor
177
+ ):
178
+ src_emb = self.positional_encoding(src_embeds)
179
+ tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
180
+
181
+ outs = self.transformer(
182
+ src_emb, tgt_emb, src_mask, tgt_mask, None,
183
+ src_padding_mask, tgt_padding_mask, memory_key_padding_mask
184
+ )
185
+ return self.generator(outs)
models/PhonemeTransformer.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import math
4
+
5
+ from torch import Tensor
6
+ from torch.nn import Transformer
7
+
8
+ # Define special symbols and indices
9
+ UNK_IDX, PAD_IDX, BOS_IDX, EOS_IDX = 0, 1, 2, 3
10
+ # Make sure the tokens are in order of their indices to properly
11
+ # insert them in vocab
12
+
13
+ UNK, PAD, BOS, EOS = "<unk>", "<pad>", "<bos>", "<eos>"
14
+ SPECIAL_SYMBOLS = [UNK, PAD, BOS, EOS]
15
+
16
+
17
+ # helper Module that adds positional encoding to the
18
+ # token embedding to introduce a notion of word order.
19
+ class PositionalEncoding(nn.Module):
20
+ def __init__(self, emb_size: int, dropout: float, maxlen: int = 5000):
21
+ super(PositionalEncoding, self).__init__()
22
+ den = torch.exp(
23
+ -torch.arange(0, emb_size, 2) *
24
+ math.log(10000) / emb_size
25
+ )
26
+
27
+ pos = torch.arange(0, maxlen).reshape(maxlen, 1)
28
+ pos_embedding = torch.zeros((maxlen, emb_size))
29
+ pos_embedding[:, 0::2] = torch.sin(pos * den)
30
+ pos_embedding[:, 1::2] = torch.cos(pos * den)
31
+ pos_embedding = pos_embedding.unsqueeze(-2)
32
+
33
+ self.dropout = nn.Dropout(dropout)
34
+ self.register_buffer('pos_embedding', pos_embedding)
35
+
36
+ def forward(self, token_embedding: Tensor):
37
+ return self.dropout(
38
+ token_embedding + self.pos_embedding[:token_embedding.size(0), :]
39
+ )
40
+
41
+
42
+ # helper Module to convert tensor of input indices into
43
+ # corresponding tensor of token embeddings
44
+ class TokenEmbedding(nn.Module):
45
+ def __init__(self, vocab_size: int, emb_size):
46
+ super(TokenEmbedding, self).__init__()
47
+ self.embedding = nn.Embedding(vocab_size, emb_size)
48
+ self.emb_size = emb_size
49
+
50
+ def forward(self, tokens: Tensor):
51
+ return self.embedding(tokens.long()) * math.sqrt(self.emb_size)
52
+
53
+
54
+ # Seq2Seq Network
55
+ class Seq2SeqTransformer(nn.Module):
56
+ def __init__(
57
+ self, src_vocab_size: int, tgt_vocab_size: int,
58
+ num_encoder_layers: int = 3,
59
+ num_decoder_layers: int = 3, emb_size: int = 512,
60
+ nhead: int = 8, dim_feedforward: int = 512,
61
+ dropout: float = 0.1
62
+ ):
63
+ super(Seq2SeqTransformer, self).__init__()
64
+ self.transformer = Transformer(
65
+ d_model=emb_size, nhead=nhead,
66
+ num_encoder_layers=num_encoder_layers,
67
+ num_decoder_layers=num_decoder_layers,
68
+ dim_feedforward=dim_feedforward,
69
+ dropout=dropout
70
+ )
71
+
72
+ self.generator = nn.Linear(emb_size, tgt_vocab_size)
73
+ self.src_tok_emb = TokenEmbedding(src_vocab_size, emb_size)
74
+ self.tgt_tok_emb = TokenEmbedding(tgt_vocab_size, emb_size)
75
+ self.positional_encoding = PositionalEncoding(
76
+ emb_size, dropout=dropout
77
+ )
78
+ self._init()
79
+
80
+ def _init(self):
81
+ for p in self.parameters():
82
+ if p.dim() > 1:
83
+ nn.init.xavier_uniform_(p)
84
+
85
+ def forward(
86
+ self, src: Tensor, trg: Tensor,
87
+ src_mask: Tensor, tgt_mask: Tensor, src_padding_mask: Tensor,
88
+ tgt_padding_mask: Tensor, memory_key_padding_mask: Tensor
89
+ ):
90
+ # shape: [seq_len, batch_size, emb_size]
91
+ src_emb = self.positional_encoding(self.src_tok_emb(src))
92
+ tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))
93
+ outs = self.transformer(
94
+ src_emb, tgt_emb, src_mask, tgt_mask, None,
95
+ src_padding_mask, tgt_padding_mask, memory_key_padding_mask
96
+ )
97
+ return self.generator(outs)
98
+
99
+ def encode(self, src: Tensor, src_mask: Tensor):
100
+ return self.transformer.encoder(
101
+ self.positional_encoding(self.src_tok_emb(src)), src_mask
102
+ )
103
+
104
+ def decode(self, tgt: Tensor, memory: Tensor, tgt_mask: Tensor):
105
+ return self.transformer.decoder(
106
+ self.positional_encoding(self.tgt_tok_emb(tgt)),
107
+ memory, tgt_mask
108
+ )
109
+
110
+
111
+ def generate_square_subsequent_mask(sz, device):
112
+ mask = (
113
+ torch.triu(torch.ones((sz, sz), device=device)) == 1
114
+ ).transpose(0, 1)
115
+ mask = mask.float().masked_fill(
116
+ mask == 0, float('-inf')
117
+ ).masked_fill(mask == 1, float(0.0))
118
+ return mask
119
+
120
+
121
+ def create_tgt_mask(tgt, device):
122
+ tgt_seq_len = tgt.shape[0]
123
+ tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device)
124
+ tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)
125
+ return tgt_mask, tgt_padding_mask
126
+
127
+
128
+ def create_mask(src, tgt, device):
129
+ src_seq_len = src.shape[0]
130
+ tgt_seq_len = tgt.shape[0]
131
+
132
+ tgt_mask = generate_square_subsequent_mask(tgt_seq_len, device)
133
+ src_mask = torch.zeros(
134
+ (src_seq_len, src_seq_len), device=device
135
+ ).type(torch.bool)
136
+
137
+ src_padding_mask = (src == PAD_IDX).transpose(0, 1)
138
+ tgt_padding_mask = (tgt == PAD_IDX).transpose(0, 1)
139
+ return src_mask, tgt_mask, src_padding_mask, tgt_padding_mask
move-videos.sh ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Base directory
4
+ base_dir=lip/GRID_lips
5
+
6
+ # Loop through each speaker directory
7
+ for i in {1..34}
8
+ do
9
+ # Format the speaker directory, ensuring it is in the form s1, s2, ..., s34
10
+ speaker_dir=$(printf "s%d" $i)
11
+
12
+ # Source and destination paths
13
+ src="$base_dir/$speaker_dir/video/mpg_6000/*"
14
+ dest="$base_dir/$speaker_dir/"
15
+
16
+ vid_dir="$base_dir/$speaker_dir/video"
17
+ mpg_dir="$vid_dir/mpg_6000"
18
+
19
+ # Move the files and folders from source to destination
20
+ mv $src $dest
21
+ rmdir $mpg_dir
22
+ rmdir $vid_dir
23
+
24
+ # Echo the action
25
+ echo "Moved files from $src to $dest"
26
+ done
27
+
28
+ echo "All files moved successfully."
options.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gpu = '0'
2
+ random_seed = 0
3
+ data_type = 'phonemes'
4
+ video_path = 'lip/'
5
+ train_list = f'data/{data_type}_train.txt'
6
+ val_list = f'data/{data_type}_val.txt'
7
+ anno_path = 'GRID_align_txt'
8
+ vid_padding = 75
9
+ txt_padding = 200
10
+ batch_size = 32
11
+ base_lr = 8e-5
12
+ num_workers = 12
13
+ max_epoch = 10000
14
+ display = 10
15
+ test_step = 1000
16
+ save_prefix = f'weights/LipNet_{data_type}'
17
+ is_optimize = True
18
+
19
+ run_name = 'overlap-phonemes'
20
+ lsr2_dir = '/media/milselarch/47FC4BC577667AAD/LRS2'
21
+ pre_gru_repeats = 1
22
+ frame_doubling = False
23
+
24
+ video_dir = 'lip/GRID'
25
+ audio_dir = 'lip/GRID_wavs'
26
+ alignments_dir = 'lip/GRID_aligns'
27
+ crop_images_dir = 'lip/GRID_lips'
28
+ images_dir = crop_images_dir
29
+ dataset = 'GRID'
30
+
31
+ phonemes_dir = 'lip/GRID_phonemes'
32
+ cache_videos = False
33
+ use_lip_crops = True
34
+ # what character set to have lipnet map to
35
+ # options right now are 'letters' and 'phonemes'
36
+ text_char_map = 'letters'
37
+ char_map = 'phonemes'
38
+
39
+ # weights = 'weights/I198000-L00048-W00018-C00005.pt'
40
+ weights = 'weights/phoneme-231201-0052/I198000-L00048-W00018-C00005.pt'
options_grid.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gpu = '0'
2
+ random_seed = 0
3
+ data_type = 'phonemes'
4
+ video_path = 'lip/'
5
+ train_list = f'data/{data_type}_train.txt'
6
+ val_list = f'data/{data_type}_val.txt'
7
+ anno_path = 'GRID_align_txt'
8
+ vid_padding = 75
9
+ txt_padding = 200
10
+ batch_size = 16
11
+ base_lr = 2e-5
12
+ num_workers = 8
13
+ max_epoch = 10000
14
+ display = 10
15
+ test_step = 1000
16
+ save_prefix = f'weights/LipNet_{data_type}'
17
+ is_optimize = True
18
+
19
+ run_name = 'phonemes-nopre'
20
+ lsr2_dir = '/media/milselarch/47FC4BC577667AAD/LRS2'
21
+ pre_gru_repeats = 2
22
+ frame_doubling = False
23
+
24
+ video_dir = 'lip/GRID'
25
+ audio_dir = 'lip/GRID_wavs'
26
+ alignments_dir = 'lip/GRID_aligns'
27
+ crop_images_dir = 'lip/GRID_lips'
28
+ images_dir = crop_images_dir
29
+ dataset = 'GRID'
30
+
31
+ phonemes_dir = 'lip/GRID_phonemes'
32
+ cache_videos = False
33
+ use_lip_crops = True
34
+ # what character set to have lipnet map to
35
+ # options right now are 'letters' and 'phonemes'
36
+ text_char_map = 'letters'
37
+ char_map = 'phonemes'
38
+
39
+ # weights = 'weights/phoneme-231201-0052/I198000-L00048-W00018-C00005.pt'
options_lrs2.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gpu = '0'
2
+ random_seed = 0
3
+ data_type = 'LRS2_CTC2'
4
+ video_path = ''
5
+ train_list = f'data/{data_type}_train.txt'
6
+ val_list = f'data/{data_type}_val.txt'
7
+ anno_path = 'GRID_align_txt'
8
+ vid_padding = 100
9
+ txt_padding = 200
10
+ batch_size = 32
11
+ base_lr = 8e-5
12
+ num_workers = 8
13
+ max_epoch = 10000
14
+ display = 10
15
+ test_step = 1000
16
+ save_prefix = f'weights/LipNet_{data_type}'
17
+ is_optimize = True
18
+
19
+ run_name = 'phonemes-lrs2'
20
+ lsr2_dir = '/home/milselarch/projects/SUTD/50-035/LRS2'
21
+ # lsr2_dir = '/media/milselarch/47FC4BC577667AAD/LRS2'
22
+ pre_gru_repeats = 1
23
+ frame_doubling = False
24
+
25
+ video_dir = f'{lsr2_dir}/lrs2_v1/main'
26
+ # video_dir = 'lip/GRID'
27
+ audio_dir = 'lip/GRID_wavs'
28
+ alignments_dir = f'{lsr2_dir}/lrs2_v1/mvlrs_v1/main'
29
+ # alignments_dir = 'lip/GRID_aligns'
30
+ crop_images_dir = f'{lsr2_dir}/lrs2_v1/mvlrs_v1/main_images'
31
+ # crop_images_dir = 'lip/GRID_lips'
32
+ images_dir = crop_images_dir
33
+ dataset = 'LRS2'
34
+
35
+ # phonemes_dir = 'lip/GRID_phonemes'
36
+ phonemes_dir = f'{lsr2_dir}/lrs2_v1/mvlrs_v1/main_phonemes'
37
+ cache_videos = False
38
+ use_lip_crops = True
39
+ # what character set to have lipnet map to
40
+ # options right now are 'letters' and 'phonemes'
41
+ # 'lrs2_text' and 'cmu_phonemes
42
+ text_char_map = 'lsr2_text'
43
+ char_map = 'cmu_phonemes'
44
+
45
+ # weights = 'weights/phoneme-231201-0052/I198000-L00048-W00018-C00005.pt'
output_test.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ from dataset import GridDataset
4
+ from Trainer import Trainer
5
+
6
+ trainer = Trainer(write_logs=False)
7
+ trainer.load_datasets()
8
+ trainer.create_model()
9
+
10
+ dataloader = trainer.dataset2dataloader(
11
+ trainer.train_dataset, num_workers=0
12
+ )
13
+
14
+ for batch in dataloader:
15
+ break
16
+
17
+ vid = batch.get('vid').cuda()
18
+ txt = batch.get('txt').cuda()
19
+ vid_len = batch.get('vid_len').cuda()
20
+ txt_len = batch.get('txt_len').cuda()
21
+ y = trainer.net(vid)
22
+
23
+ print(y)
24
+ print('>>> ')
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy~=1.24.4
2
+ opencv-python~=4.8.0.76
3
+ scipy~=1.10.1
4
+ torch~=2.1.1
5
+ editdistance~=0.6.2
6
+ tensorboardX~=2.6.2.2
7
+ scipy==1.10.1
8
+ dlib==19.24.2
9
+ tqdm==4.66.1
10
+ face-alignment==1.4.1
11
+ imageio==2.33.0
12
+ pyyaml~=6.0.1
13
+ scikit-learn==1.3.2
14
+ huggingface-hub==0.19.4
15
+ matplotlib==3.7.4
16
+ pronouncing==0.2.0
17
+ torchtext~=0.16.1
saved-runs/embeds-transformer-231207-0315/options.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gpu = '0'
2
+ random_seed = 0
3
+ data_type = 'phonemes'
4
+ video_path = 'lip/'
5
+ train_list = f'data/{data_type}_train.txt'
6
+ val_list = f'data/{data_type}_val.txt'
7
+ anno_path = 'GRID_align_txt'
8
+ vid_padding = 80
9
+ txt_padding = 200
10
+ batch_size = 16
11
+ base_lr = 2e-5
12
+ num_workers = 8
13
+ max_epoch = 10000
14
+ display = 10
15
+ test_step = 1000
16
+ save_prefix = f'weights/LipNet_{data_type}'
17
+ is_optimize = True
18
+
19
+ run_name = 'phonemes-nopre'
20
+ lsr2_dir = '/media/milselarch/47FC4BC577667AAD/LRS2'
21
+ pre_gru_repeats = 1
22
+ frame_doubling = False
23
+
24
+ video_dir = 'lip/GRID'
25
+ audio_dir = 'lip/GRID_wavs'
26
+ alignments_dir = 'lip/GRID_aligns'
27
+ crop_images_dir = 'lip/GRID_lips'
28
+ images_dir = crop_images_dir
29
+ dataset = 'GRID'
30
+
31
+ phonemes_dir = 'lip/GRID_phonemes'
32
+ cache_videos = False
33
+ use_lip_crops = True
34
+ # what character set to have lipnet map to
35
+ # options right now are 'letters' and 'phonemes'
36
+ text_char_map = 'letters'
37
+ char_map = 'phonemes'
38
+
39
+ # weights = 'weights/I198000-L00048-W00018-C00005.pt'
40
+ weights = 'weights/phoneme-231201-0052/I198000-L00048-W00018-C00005.pt'
saved-runs/embeds-transformer-v2-231215-0040/options.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gpu = '0'
2
+ random_seed = 0
3
+ data_type = 'phonemes_overlap'
4
+ video_path = 'lip/'
5
+ train_list = f'data/{data_type}_train.txt'
6
+ val_list = f'data/{data_type}_val.txt'
7
+ anno_path = 'GRID_align_txt'
8
+ vid_padding = 75
9
+ txt_padding = 200
10
+ batch_size = 32
11
+ base_lr = 8e-5
12
+ num_workers = 12
13
+ max_epoch = 10000
14
+ display = 10
15
+ test_step = 1000
16
+ save_prefix = f'weights/LipNet_{data_type}'
17
+ is_optimize = True
18
+
19
+ run_name = 'overlap-phonemes'
20
+ lsr2_dir = '/media/milselarch/47FC4BC577667AAD/LRS2'
21
+ pre_gru_repeats = 1
22
+ frame_doubling = False
23
+
24
+ video_dir = 'lip/GRID'
25
+ audio_dir = 'lip/GRID_wavs'
26
+ alignments_dir = 'lip/GRID_aligns'
27
+ crop_images_dir = 'lip/GRID_lips'
28
+ images_dir = crop_images_dir
29
+ dataset = 'GRID'
30
+
31
+ phonemes_dir = 'lip/GRID_phonemes'
32
+ cache_videos = False
33
+ use_lip_crops = True
34
+ # what character set to have lipnet map to
35
+ # options right now are 'letters' and 'phonemes'
36
+ text_char_map = 'letters'
37
+ char_map = 'phonemes'
38
+
39
+ # weights = 'weights/I198000-L00048-W00018-C00005.pt'
40
+ # weights = 'weights/phoneme-231201-0052/I198000-L00048-W00018-C00005.pt'
saved-runs/letters-231210-1505/options.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gpu = '0'
2
+ random_seed = 0
3
+ data_type = 'phonemes'
4
+ video_path = 'lip/'
5
+ train_list = f'data/{data_type}_train.txt'
6
+ val_list = f'data/{data_type}_val.txt'
7
+ anno_path = 'GRID_align_txt'
8
+ vid_padding = 80
9
+ txt_padding = 200
10
+ batch_size = 16
11
+ base_lr = 2e-5
12
+ num_workers = 8
13
+ max_epoch = 10000
14
+ display = 10
15
+ test_step = 1000
16
+ save_prefix = f'weights/LipNet_{data_type}'
17
+ is_optimize = True
18
+
19
+ run_name = 'letters'
20
+ lsr2_dir = '/media/milselarch/47FC4BC577667AAD/LRS2'
21
+ pre_gru_repeats = 1
22
+ frame_doubling = False
23
+
24
+ video_dir = 'lip/GRID'
25
+ audio_dir = 'lip/GRID_wavs'
26
+ alignments_dir = 'lip/GRID_aligns'
27
+ crop_images_dir = 'lip/GRID_lips'
28
+ images_dir = crop_images_dir
29
+ dataset = 'GRID'
30
+
31
+ phonemes_dir = 'lip/GRID_phonemes'
32
+ cache_videos = False
33
+ use_lip_crops = True
34
+ # what character set to have lipnet map to
35
+ # options right now are 'letters' and 'phonemes'
36
+ text_char_map = 'letters'
37
+ char_map = 'letters'
38
+
39
+ # weights = 'weights/I198000-L00048-W00018-C00005.pt'
40
+ # weights = 'weights/phoneme-231201-0052/I198000-L00048-W00018-C00005.pt'