pokemon_classification / utils /inference_utils.py
MostHumble's picture
add inference script
eed12b2
raw
history blame
7.28 kB
import torch
import matplotlib.pyplot as plt
from torchvision import transforms
from PIL import Image
import os
import random
from utils.data import CLASS_NAMES
# Function to find correctly and incorrectly classified images
def find_images(dataloader, model, device, num_correct, num_incorrect):
correct_images = []
incorrect_images = []
correct_labels = []
incorrect_labels = []
correct_preds = []
incorrect_preds = []
model.eval()
with torch.no_grad():
for images, labels in dataloader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, preds = torch.max(outputs, 1)
for i in range(images.size(0)):
if preds[i] == labels[i] and len(correct_images) < num_correct:
correct_images.append(images[i].cpu())
correct_labels.append(labels[i].cpu())
correct_preds.append(preds[i].cpu())
elif preds[i] != labels[i] and len(incorrect_images) < num_incorrect:
incorrect_images.append(images[i].cpu())
incorrect_labels.append(labels[i].cpu())
incorrect_preds.append(preds[i].cpu())
if (
len(correct_images) >= num_correct
and len(incorrect_images) >= num_incorrect
):
break
if (
len(correct_images) >= num_correct
and len(incorrect_images) >= num_incorrect
):
break
return (
correct_images,
correct_labels,
correct_preds,
incorrect_images,
incorrect_labels,
incorrect_preds,
)
def find_images_from_path(data_path, model, device, num_correct=2, num_incorrect=2, label=None):
correct_images_paths = []
incorrect_images_paths = []
correct_labels = []
incorrect_labels = []
label_to_idx = {label: idx for idx, label in enumerate(CLASS_NAMES)}
model.eval()
# First collect available images for the specified label or all labels
label_images = {}
if label:
if os.path.isdir(os.path.join(data_path, label)):
label_path = os.path.join(data_path, label)
label_images[label] = [os.path.join(label_path, img) for img in os.listdir(label_path)]
else:
for label in os.listdir(data_path):
label_path = os.path.join(data_path, label)
if not os.path.isdir(label_path):
continue
label_images[label] = [os.path.join(label_path, img) for img in os.listdir(label_path)]
# Randomly process images until we have enough samples
with torch.no_grad():
while len(correct_images_paths) < num_correct or len(incorrect_images_paths) < num_incorrect:
# Randomly select a label that still has unprocessed images
available_labels = [l for l in label_images if label_images[l]]
if not available_labels:
break
selected_label = random.choice(available_labels)
image_path = random.choice(label_images[selected_label])
label_images[selected_label].remove(image_path) # Remove the selected image
image = preprocess_image(image_path, (224, 224)).to(device)
label_idx = label_to_idx[selected_label]
outputs = model(image)
_, pred = torch.max(outputs, 1)
if pred == label_idx and len(correct_images_paths) < num_correct:
correct_images_paths.append(image_path)
correct_labels.append(label_idx)
elif pred != label_idx and len(incorrect_images_paths) < num_incorrect:
incorrect_images_paths.append(image_path)
incorrect_labels.append(label_idx)
save_images_by_class(correct_images_paths, correct_labels, incorrect_images_paths, incorrect_labels)
def save_images_by_class(correct_images_paths, correct_labels, incorrect_images_paths, incorrect_labels):
# Create root directories for correct and incorrect classifications
for class_name in CLASS_NAMES:
os.makedirs(os.path.join('predictions', class_name, 'correct'), exist_ok=True)
os.makedirs(os.path.join('predictions', class_name, 'mistake'), exist_ok=True)
# Save correctly classified images
for img_path, label in zip(correct_images_paths, correct_labels):
class_name = CLASS_NAMES[label]
img_name = os.path.basename(img_path)
destination = os.path.join('predictions', class_name, 'correct', img_name)
os.makedirs(os.path.dirname(destination), exist_ok=True)
Image.open(img_path).save(destination)
# Save incorrectly classified images
for img_path, label in zip(incorrect_images_paths, incorrect_labels):
class_name = CLASS_NAMES[label]
img_name = os.path.basename(img_path)
destination = os.path.join('predictions', class_name, 'mistake', img_name)
os.makedirs(os.path.dirname(destination), exist_ok=True)
Image.open(img_path).save(destination)
def show_samples(dataloader, model, device, num_correct=3, num_incorrect=3):
# Get some correctly and incorrectly classified images
(
correct_images,
correct_labels,
correct_preds,
incorrect_images,
incorrect_labels,
incorrect_preds,
) = find_images(dataloader, model, device, num_correct, num_incorrect)
# Display the results in a grid
fig, axes = plt.subplots(
num_correct + num_incorrect, 1, figsize=(10, (num_correct + num_incorrect) * 5)
)
for i in range(num_correct):
axes[i].imshow(correct_images[i].permute(1, 2, 0))
axes[i].set_title(
f"Correctly Classified: True Label = {correct_labels[i]}, Predicted = {correct_preds[i]}"
)
axes[i].axis("off")
for i in range(num_incorrect):
axes[num_correct + i].imshow(incorrect_images[i].permute(1, 2, 0))
axes[num_correct + i].set_title(
f"Incorrectly Classified: True Label = {incorrect_labels[i]}, Predicted = {incorrect_preds[i]}"
)
axes[num_correct + i].axis("off")
plt.tight_layout()
plt.show()
# Function to preprocess image
def preprocess_image(image_path, img_shape):
# Load the image using PIL
image = Image.open(image_path)
# Apply preprocessing transformations
preprocess = transforms.Compose([
transforms.Resize(img_shape),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
image = preprocess(image).unsqueeze(0)
return image
# Function to predict
def predict(model, image):
model.eval()
with torch.no_grad():
outputs = model(image)
return outputs
# Function to get model predictions for LIME
def batch_predict(model, images, device):
model.eval()
batch = torch.stack(
tuple(preprocess_image(image, (224, 224)) for image in images), dim=0
)
batch = batch.to(device)
logits = model(batch)
probs = torch.nn.functional.softmax(logits, dim=1)
return probs.detach().cpu().numpy()