Commit
·
26b7c66
1
Parent(s):
6047fac
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: beit-base-patch16-224-pt22k-ft22k-rim_one-new
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- name: Accuracy
|
21 |
+
type: accuracy
|
22 |
+
value: 0.8767123287671232
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# beit-base-patch16-224-pt22k-ft22k-rim_one-new
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.4550
|
33 |
+
- Accuracy: 0.8767
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 5e-05
|
53 |
+
- train_batch_size: 32
|
54 |
+
- eval_batch_size: 32
|
55 |
+
- seed: 42
|
56 |
+
- gradient_accumulation_steps: 4
|
57 |
+
- total_train_batch_size: 128
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 30
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| No log | 0.73 | 2 | 0.2411 | 0.9178 |
|
68 |
+
| No log | 1.73 | 4 | 0.2182 | 0.8973 |
|
69 |
+
| No log | 2.73 | 6 | 0.3085 | 0.8973 |
|
70 |
+
| No log | 3.73 | 8 | 0.2794 | 0.8973 |
|
71 |
+
| 0.1392 | 4.73 | 10 | 0.2398 | 0.9110 |
|
72 |
+
| 0.1392 | 5.73 | 12 | 0.2925 | 0.8973 |
|
73 |
+
| 0.1392 | 6.73 | 14 | 0.2798 | 0.9110 |
|
74 |
+
| 0.1392 | 7.73 | 16 | 0.2184 | 0.9178 |
|
75 |
+
| 0.1392 | 8.73 | 18 | 0.3007 | 0.9110 |
|
76 |
+
| 0.0416 | 9.73 | 20 | 0.3344 | 0.9041 |
|
77 |
+
| 0.0416 | 10.73 | 22 | 0.3626 | 0.9110 |
|
78 |
+
| 0.0416 | 11.73 | 24 | 0.4842 | 0.8904 |
|
79 |
+
| 0.0416 | 12.73 | 26 | 0.3664 | 0.8973 |
|
80 |
+
| 0.0416 | 13.73 | 28 | 0.3458 | 0.9110 |
|
81 |
+
| 0.0263 | 14.73 | 30 | 0.2810 | 0.9110 |
|
82 |
+
| 0.0263 | 15.73 | 32 | 0.4695 | 0.8699 |
|
83 |
+
| 0.0263 | 16.73 | 34 | 0.3723 | 0.9041 |
|
84 |
+
| 0.0263 | 17.73 | 36 | 0.3447 | 0.9041 |
|
85 |
+
| 0.0263 | 18.73 | 38 | 0.3708 | 0.8904 |
|
86 |
+
| 0.0264 | 19.73 | 40 | 0.4052 | 0.9110 |
|
87 |
+
| 0.0264 | 20.73 | 42 | 0.4492 | 0.9041 |
|
88 |
+
| 0.0264 | 21.73 | 44 | 0.4649 | 0.8904 |
|
89 |
+
| 0.0264 | 22.73 | 46 | 0.4061 | 0.9178 |
|
90 |
+
| 0.0264 | 23.73 | 48 | 0.4136 | 0.9110 |
|
91 |
+
| 0.0139 | 24.73 | 50 | 0.4183 | 0.8973 |
|
92 |
+
| 0.0139 | 25.73 | 52 | 0.4504 | 0.8904 |
|
93 |
+
| 0.0139 | 26.73 | 54 | 0.4368 | 0.8973 |
|
94 |
+
| 0.0139 | 27.73 | 56 | 0.4711 | 0.9110 |
|
95 |
+
| 0.0139 | 28.73 | 58 | 0.3928 | 0.9110 |
|
96 |
+
| 0.005 | 29.73 | 60 | 0.4550 | 0.8767 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.20.1
|
102 |
+
- Pytorch 1.11.0+cu113
|
103 |
+
- Datasets 2.3.2
|
104 |
+
- Tokenizers 0.12.1
|