|
import dataclasses |
|
|
|
import jax |
|
|
|
from openpi.models import pi0 |
|
from openpi.training import config as _config |
|
from openpi.training import data_loader as _data_loader |
|
|
|
|
|
def test_torch_data_loader(): |
|
config = pi0.Pi0Config(action_dim=24, action_horizon=50, max_token_len=48) |
|
dataset = _data_loader.FakeDataset(config, 16) |
|
|
|
loader = _data_loader.TorchDataLoader( |
|
dataset, |
|
local_batch_size=4, |
|
num_batches=2, |
|
) |
|
batches = list(loader) |
|
|
|
assert len(batches) == 2 |
|
for batch in batches: |
|
assert all(x.shape[0] == 4 for x in jax.tree.leaves(batch)) |
|
|
|
|
|
def test_torch_data_loader_infinite(): |
|
config = pi0.Pi0Config(action_dim=24, action_horizon=50, max_token_len=48) |
|
dataset = _data_loader.FakeDataset(config, 4) |
|
|
|
loader = _data_loader.TorchDataLoader(dataset, local_batch_size=4) |
|
data_iter = iter(loader) |
|
|
|
for _ in range(10): |
|
_ = next(data_iter) |
|
|
|
|
|
def test_torch_data_loader_parallel(): |
|
config = pi0.Pi0Config(action_dim=24, action_horizon=50, max_token_len=48) |
|
dataset = _data_loader.FakeDataset(config, 10) |
|
|
|
loader = _data_loader.TorchDataLoader(dataset, local_batch_size=4, num_batches=2, num_workers=2) |
|
batches = list(loader) |
|
|
|
assert len(batches) == 2 |
|
|
|
for batch in batches: |
|
assert all(x.shape[0] == 4 for x in jax.tree.leaves(batch)) |
|
|
|
|
|
def test_with_fake_dataset(): |
|
config = _config.get_config("debug") |
|
|
|
loader = _data_loader.create_data_loader(config, skip_norm_stats=True, num_batches=2) |
|
batches = list(loader) |
|
|
|
assert len(batches) == 2 |
|
|
|
for batch in batches: |
|
assert all(x.shape[0] == config.batch_size for x in jax.tree.leaves(batch)) |
|
|
|
for _, actions in batches: |
|
assert actions.shape == (config.batch_size, config.model.action_horizon, config.model.action_dim) |
|
|
|
|
|
def test_with_real_dataset(): |
|
config = _config.get_config("pi0_aloha_sim") |
|
config = dataclasses.replace(config, batch_size=4) |
|
|
|
loader = _data_loader.create_data_loader( |
|
config, |
|
|
|
skip_norm_stats=True, |
|
num_batches=2, |
|
shuffle=True, |
|
) |
|
|
|
assert loader.data_config().repo_id == config.data.repo_id |
|
|
|
batches = list(loader) |
|
|
|
assert len(batches) == 2 |
|
|
|
for _, actions in batches: |
|
assert actions.shape == (config.batch_size, config.model.action_horizon, config.model.action_dim) |
|
|