Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- multilingual
|
6 |
+
tags:
|
7 |
+
- code-to-docstring
|
8 |
+
- code-summarization
|
9 |
+
- code-documentation
|
10 |
+
- encoder-decoder
|
11 |
+
- code
|
12 |
+
- python
|
13 |
+
- java
|
14 |
+
- transformers
|
15 |
+
- huggingface
|
16 |
+
- modernbert
|
17 |
+
- gpt2
|
18 |
+
base_model:
|
19 |
+
- Shuu12121/CodeModernBERT-Ghost
|
20 |
+
- openai-community/gpt2-large
|
21 |
+
pipeline_tag: text2text-generation
|
22 |
+
---
|
23 |
+
|
24 |
+
# CodeEncoderDecoderModel-Ghost-large👻
|
25 |
+
|
26 |
+
A multilingual encoder-decoder model for generating **docstrings from code snippets**.
|
27 |
+
It is based on a custom BERT-style encoder pretrained on source code (`CodeModernBERT-Ghost`) and a large-scale decoder model (`GPT2-large`).
|
28 |
+
|
29 |
+
## 🏗️ Model Architecture
|
30 |
+
|
31 |
+
- **Encoder:** [`Shuu12121/CodeModernBERT-Ghost`](https://huggingface.co/Shuu12121/CodeModernBERT-Ghost)
|
32 |
+
- **Decoder:** [`openai-community/gpt2-large`](https://huggingface.co/openai-community/gpt2-large)
|
33 |
+
- Connected via HuggingFace's `EncoderDecoderModel` with cross-attention.
|
34 |
+
|
35 |
+
## 🎯 Intended Use
|
36 |
+
|
37 |
+
- Generating docstrings (documentation comments) for functions or methods in multiple languages.
|
38 |
+
- Summarizing code for educational or review purposes.
|
39 |
+
- Assisting in automated documentation generation pipelines.
|
40 |
+
|
41 |
+
Supported languages (code input):
|
42 |
+
- Python
|
43 |
+
- Java
|
44 |
+
|
45 |
+
## 📦 How to Use
|
46 |
+
|
47 |
+
```python
|
48 |
+
from transformers import AutoTokenizer, EncoderDecoderModel
|
49 |
+
import torch
|
50 |
+
|
51 |
+
model = EncoderDecoderModel.from_pretrained("Shuu12121/CodeEncoderDecoderModel-Ghost-large").to("cuda")
|
52 |
+
encoder_tokenizer = AutoTokenizer.from_pretrained("Shuu12121/CodeEncoderDecoderModel-Ghost-large", subfolder="encoder_tokenizer")
|
53 |
+
decoder_tokenizer = AutoTokenizer.from_pretrained("Shuu12121/CodeEncoderDecoderModel-Ghost-large", subfolder="decoder_tokenizer")
|
54 |
+
|
55 |
+
if decoder_tokenizer.pad_token is None:
|
56 |
+
decoder_tokenizer.pad_token = decoder_tokenizer.eos_token
|
57 |
+
|
58 |
+
code = '''
|
59 |
+
def greet(name):
|
60 |
+
return f"Hello, {name}!"
|
61 |
+
'''
|
62 |
+
|
63 |
+
inputs = encoder_tokenizer(code, return_tensors="pt", truncation=True, padding=True, max_length=2048).to("cuda")
|
64 |
+
outputs = model.generate(
|
65 |
+
input_ids=inputs.input_ids,
|
66 |
+
attention_mask=inputs.attention_mask,
|
67 |
+
max_length=256,
|
68 |
+
num_beams=5,
|
69 |
+
early_stopping=True,
|
70 |
+
decoder_start_token_id=model.config.decoder_start_token_id,
|
71 |
+
eos_token_id=model.config.eos_token_id,
|
72 |
+
pad_token_id=model.config.pad_token_id,
|
73 |
+
no_repeat_ngram_size=2
|
74 |
+
)
|
75 |
+
|
76 |
+
docstring = decoder_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
print(docstring)
|
78 |
+
```
|
79 |
+
|
80 |
+
## 🧪 Training Details
|
81 |
+
|
82 |
+
- **Task:** Code-to-docstring generation
|
83 |
+
- **Dataset:** [CodeXGLUE: Code-to-Text](https://github.com/microsoft/CodeXGLUE) – using subsets of Python, Java, JavaScript, Go, Ruby, PHP
|
84 |
+
- **Loss:** Cross-entropy loss over tokenized docstrings
|
85 |
+
- **Max input length:** 2048 (encoder), max output length: 256 (decoder)
|
86 |
+
- **Decoder modifications:** Adapted GPT2-large with padding and cross-attention
|
87 |
+
|
88 |
+
## ⚠️ Limitations & Risks
|
89 |
+
|
90 |
+
1. **Generated documentation may be inaccurate, incomplete, or misleading**. Always review generated docstrings manually.
|
91 |
+
2. **Formatting may not follow specific standards** (e.g., Google/Numpy style in Python or full Javadoc).
|
92 |
+
3. **Limited context:** Only considers single-function input; lacks broader project-level understanding.
|
93 |
+
4. **Language variance:** Performance may differ depending on the programming language due to data distribution.
|
94 |
+
5. **⚠️ Decoder risks (GPT2-large):**
|
95 |
+
GPT-2 models are known to sometimes generate inappropriate, offensive, or biased outputs, depending on the prompt.
|
96 |
+
Although this model is fine-tuned on technical datasets (code-docstring pairs), due to inherited properties from `gpt2-large`, similar risks **may still be present** in edge cases. Please exercise caution, especially when using the model in public or educational settings.
|
97 |
+
|
98 |
+
## 📄 License
|
99 |
+
|
100 |
+
Apache-2.0
|
101 |
+
Model weights and tokenizer artifacts are released under the same license. You are free to use, modify, and redistribute with attribution.
|
102 |
+
|