Shuddup's picture
update model card README.md
f2b4808
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: depression_classifier_weighted_2
    results: []

depression_classifier_weighted_2

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0299
  • F1: {'f1': 0.5274571619747097}
  • Accuracy: {'accuracy': 0.5993836671802774}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
No log 1.0 451 0.9802 {'f1': 0.48800261330578315} {'accuracy': 0.561171032357473}
0.8742 2.0 902 0.8159 {'f1': 0.5567921899894229} {'accuracy': 0.636055469953775}
0.7241 3.0 1353 0.8759 {'f1': 0.5323551976865734} {'accuracy': 0.5950693374422188}
0.5999 4.0 1804 1.0016 {'f1': 0.5186059710481855} {'accuracy': 0.5685670261941448}
0.465 5.0 2255 1.0535 {'f1': 0.5143537550061232} {'accuracy': 0.5722650231124807}
0.3788 6.0 2706 1.0299 {'f1': 0.5274571619747097} {'accuracy': 0.5993836671802774}

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3