metadata
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-large-50-many-to-many-mmt-finetuned-hi-to-en
results: []
mbart-large-50-many-to-many-mmt-finetuned-hi-to-en
This model is a fine-tuned version of facebook/mbart-large-50-many-to-many-mmt on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5182
- Bleu: 0.0
- Gen Len: 5.5567
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
2.4071 | 0.07 | 500 | 2.4856 | 0.0 | 5.49 |
2.6727 | 0.13 | 1000 | 2.3521 | 0.0 | 5.4733 |
2.6438 | 0.2 | 1500 | 2.2782 | 0.0 | 5.38 |
2.5672 | 0.27 | 2000 | 2.2432 | 0.0 | 5.6367 |
2.5561 | 0.34 | 2500 | 2.0945 | 0.0 | 5.4733 |
2.5502 | 0.4 | 3000 | 2.0506 | 0.0 | 5.4667 |
2.5326 | 0.47 | 3500 | 2.0163 | 0.0 | 5.4367 |
2.4979 | 0.54 | 4000 | 1.9795 | 0.0 | 5.4267 |
2.4771 | 0.61 | 4500 | 1.9002 | 0.0 | 5.28 |
2.5121 | 0.67 | 5000 | 1.8497 | 0.0 | 5.5433 |
2.4568 | 0.74 | 5500 | 1.7447 | 0.0 | 5.66 |
2.4211 | 0.81 | 6000 | 1.6948 | 0.0 | 5.5633 |
2.4702 | 0.88 | 6500 | 1.5632 | 0.0 | 5.4267 |
2.4161 | 0.94 | 7000 | 1.5122 | 0.0 | 5.5633 |
2.2322 | 1.01 | 7500 | 1.3694 | 0.0 | 5.45 |
1.5244 | 1.08 | 8000 | 1.3296 | 0.0 | 5.55 |
1.5234 | 1.14 | 8500 | 1.2637 | 0.0 | 5.5267 |
1.5902 | 1.21 | 9000 | 1.2621 | 0.0 | 5.6133 |
1.4645 | 1.28 | 9500 | 1.1856 | 0.0 | 5.55 |
1.5426 | 1.35 | 10000 | 1.1528 | 0.0 | 5.6267 |
1.5414 | 1.41 | 10500 | 1.1533 | 0.0 | 5.6067 |
1.4708 | 1.48 | 11000 | 1.1136 | 0.0 | 5.5533 |
1.4625 | 1.55 | 11500 | 1.0736 | 0.0 | 5.54 |
1.5805 | 1.62 | 12000 | 1.0700 | 0.0 | 5.5733 |
1.5295 | 1.68 | 12500 | 1.0171 | 0.0 | 5.4867 |
1.5585 | 1.75 | 13000 | 0.9770 | 0.0 | 5.6133 |
1.5602 | 1.82 | 13500 | 0.9106 | 0.0 | 5.5867 |
1.5361 | 1.89 | 14000 | 0.8823 | 0.0 | 5.5333 |
1.5217 | 1.95 | 14500 | 0.8353 | 0.0 | 5.5167 |
1.3229 | 2.02 | 15000 | 0.7296 | 0.0 | 5.4967 |
0.916 | 2.09 | 15500 | 0.6979 | 0.0 | 5.56 |
0.9075 | 2.15 | 16000 | 0.6797 | 0.0 | 5.5333 |
0.8575 | 2.22 | 16500 | 0.6372 | 0.0 | 5.52 |
0.8702 | 2.29 | 17000 | 0.6288 | 0.0 | 5.4967 |
0.8741 | 2.36 | 17500 | 0.6297 | 0.0 | 5.5033 |
0.8764 | 2.42 | 18000 | 0.6038 | 0.0 | 5.5233 |
0.9152 | 2.49 | 18500 | 0.5853 | 0.0 | 5.4933 |
0.8598 | 2.56 | 19000 | 0.5731 | 0.0 | 5.54 |
0.8586 | 2.63 | 19500 | 0.5558 | 0.0 | 5.5533 |
0.9005 | 2.69 | 20000 | 0.5388 | 0.0 | 5.5233 |
0.889 | 2.76 | 20500 | 0.5269 | 0.0 | 5.5067 |
0.8772 | 2.83 | 21000 | 0.5301 | 0.0 | 5.5333 |
0.8713 | 2.9 | 21500 | 0.5208 | 0.0 | 5.5567 |
0.8962 | 2.96 | 22000 | 0.5182 | 0.0 | 5.5567 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0