Shobhank-iiitdwd
commited on
Commit
•
71efd89
1
Parent(s):
2f09e8b
Update README.md
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ license: cc-by-4.0
|
|
4 |
datasets:
|
5 |
- squad_v2
|
6 |
model-index:
|
7 |
-
- name:
|
8 |
results:
|
9 |
- task:
|
10 |
type: question-answering
|
@@ -43,8 +43,6 @@ This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tune
|
|
43 |
**Downstream-task:** Extractive QA
|
44 |
**Training data:** SQuAD 2.0
|
45 |
**Eval data:** SQuAD 2.0
|
46 |
-
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
|
47 |
-
**Infrastructure**: 4x Tesla v100
|
48 |
|
49 |
## Hyperparameters
|
50 |
|
@@ -58,27 +56,22 @@ lr_schedule = LinearWarmup
|
|
58 |
warmup_proportion = 0.2
|
59 |
doc_stride=128
|
60 |
max_query_length=64
|
61 |
-
```
|
62 |
-
|
63 |
-
## Using a distilled model instead
|
64 |
-
Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model.
|
65 |
|
66 |
## Usage
|
67 |
|
68 |
### In Haystack
|
69 |
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
|
70 |
```python
|
71 |
-
reader = FARMReader(model_name_or_path="
|
72 |
# or
|
73 |
-
reader = TransformersReader(model_name_or_path="
|
74 |
```
|
75 |
-
For a complete example of ``roberta-base-squad2`` being used for Question Answering, check out the [Tutorials in Haystack Documentation](https://haystack.deepset.ai/tutorials/first-qa-system)
|
76 |
-
|
77 |
### In Transformers
|
78 |
```python
|
79 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
80 |
|
81 |
-
model_name = "
|
82 |
|
83 |
# a) Get predictions
|
84 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
@@ -107,39 +100,4 @@ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://works
|
|
107 |
"NoAns_exact": 81.79983179142137,
|
108 |
"NoAns_f1": 81.79983179142137,
|
109 |
"NoAns_total": 5945
|
110 |
-
```
|
111 |
-
|
112 |
-
## Authors
|
113 |
-
**Branden Chan:** branden.chan@deepset.ai
|
114 |
-
**Timo Möller:** timo.moeller@deepset.ai
|
115 |
-
**Malte Pietsch:** malte.pietsch@deepset.ai
|
116 |
-
**Tanay Soni:** tanay.soni@deepset.ai
|
117 |
-
|
118 |
-
## About us
|
119 |
-
|
120 |
-
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
|
121 |
-
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
122 |
-
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
|
123 |
-
</div>
|
124 |
-
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
|
125 |
-
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
|
126 |
-
</div>
|
127 |
-
</div>
|
128 |
-
|
129 |
-
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
|
130 |
-
|
131 |
-
|
132 |
-
Some of our other work:
|
133 |
-
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
|
134 |
-
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
|
135 |
-
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
|
136 |
-
|
137 |
-
## Get in touch and join the Haystack community
|
138 |
-
|
139 |
-
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
|
140 |
-
|
141 |
-
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
142 |
-
|
143 |
-
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
|
144 |
-
|
145 |
-
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
4 |
datasets:
|
5 |
- squad_v2
|
6 |
model-index:
|
7 |
+
- name: Shobhank-iiitdwd/RoBERTA-rrQA
|
8 |
results:
|
9 |
- task:
|
10 |
type: question-answering
|
|
|
43 |
**Downstream-task:** Extractive QA
|
44 |
**Training data:** SQuAD 2.0
|
45 |
**Eval data:** SQuAD 2.0
|
|
|
|
|
46 |
|
47 |
## Hyperparameters
|
48 |
|
|
|
56 |
warmup_proportion = 0.2
|
57 |
doc_stride=128
|
58 |
max_query_length=64
|
59 |
+
``` The distilled model has a comparable prediction quality and runs at twice the speed of the base model.
|
|
|
|
|
|
|
60 |
|
61 |
## Usage
|
62 |
|
63 |
### In Haystack
|
64 |
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
|
65 |
```python
|
66 |
+
reader = FARMReader(model_name_or_path="Shobhank-iiitdwd/RoBERTA-rrQA")
|
67 |
# or
|
68 |
+
reader = TransformersReader(model_name_or_path="Shobhank-iiitdwd/RoBERTA-rrQA",tokenizer="Shobhank-iiitdwd/RoBERTA-rrQA")
|
69 |
```
|
|
|
|
|
70 |
### In Transformers
|
71 |
```python
|
72 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
73 |
|
74 |
+
model_name = "Shobhank-iiitdwd/RoBERTA-rrQA"
|
75 |
|
76 |
# a) Get predictions
|
77 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
|
|
100 |
"NoAns_exact": 81.79983179142137,
|
101 |
"NoAns_f1": 81.79983179142137,
|
102 |
"NoAns_total": 5945
|
103 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|