Shobhank-iiitdwd's picture
Add new SentenceTransformer model.
1d170b9 verified
|
raw
history blame
19.2 kB
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:46453
  - loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-mpnet-base-v2
datasets: []
widget:
  - source_sentence: clinician thinks the patient is homeless
    sentences:
      - '- Ms. ___ was homeless at the time of this admission.'
      - >-
        This is ___ year old single homeless woman, previously diagnosed with
        borderline personality disorder with chronic affective instability,
        reactive mood, impulsivity, SIB (ingesting objects while hospitalized),
        recently discharged from ___ on ___, ___ client, who presented to ___ on
        a ___ with worsening mood, threats of suicide via cutting her legs off,
        as well as thoughts of wanting to hurt _
      - >-
        Patient reports that her apartment is bugged, she has camera in her
        television, and a helicopter is reading minds.
  - source_sentence: assigned a case manager for housing
    sentences:
      - 'Home With Service Facility:'
      - >-
        We consulted social work, psychiatry, and the case managers, who are
        working with the hospital attorneys to acquire safer housing options
        with greater oversight from health care professionals. .
      - Has not established care with
  - source_sentence: has been homeless
    sentences:
      - He reports being homeless, living in an empty garage near his sister.
      - >-
        To complicate matters, patient's main support/roommate will be moving
        out of country soon, so he will no longer be able to live in his
        apartment.
      - 'Axis IV: homelessness'
  - source_sentence: homelessness
    sentences:
      - >-
        Does not identify any acute stressors, but describes no longer being
        able to tolerate being homeless (lack of food/clothing/showers).
      - >-
        Unclear how reliable his group home is administering meds, notably
        nursing is quite limited.
      - >-
        Case management assisted in formulated a plan with ___ that would allow
        the patient's ___ be the first responder when issues regarding her these
        two problems arise.
  - source_sentence: assisted…housing benefits
    sentences:
      - As a result, patient is currently homeless.
      - 'Home With Service Facility:'
      - Patient with multiple admissions in the past several months, homeless.
pipeline_tag: sentence-similarity

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Shobhank-iiitdwd/Clinical_sentence_transformers_mpnet_base_v2")
# Run inference
sentences = [
    'assisted…housing benefits',
    'Home With Service Facility:',
    'Patient with multiple admissions in the past several months, homeless.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 46,453 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 3 tokens
    • mean: 6.64 tokens
    • max: 11 tokens
    • min: 3 tokens
    • mean: 23.81 tokens
    • max: 384 tokens
  • Samples:
    sentence_0 sentence_1
    has been homeless He has a GED level education and previously held a stable job for a ___. However, mother reports he recently quit his job suddenly and is homeless right now after multiple family members kicked him out of their homes.
    gave list of shelters Home With Service Facility:
    assessed housing needs Patient with longstanding history of instrumental suicidal ideation and waxing and waning symptoms of depression and anxiety, SI when his needs, particularly regarding housing, are not being met with documented history of quick retraction of his
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • num_train_epochs: 100
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 100
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Click to expand
Epoch Step Training Loss
0.6887 500 3.5133
1.3774 1000 3.2727
2.0661 1500 3.2238
2.7548 2000 3.1758
3.4435 2500 3.1582
4.1322 3000 3.1385
4.8209 3500 3.1155
5.5096 4000 3.1034
6.1983 4500 3.091
6.8871 5000 3.0768
7.5758 5500 3.065
8.2645 6000 3.0632
8.9532 6500 3.0566
9.6419 7000 3.0433
0.6887 500 3.0536
1.3774 1000 3.0608
2.0661 1500 3.0631
2.7548 2000 3.0644
3.4435 2500 3.0667
4.1322 3000 3.07
4.8209 3500 3.0682
5.5096 4000 3.0718
6.1983 4500 3.0719
6.8871 5000 3.0685
7.5758 5500 3.0723
8.2645 6000 3.0681
8.9532 6500 3.0633
9.6419 7000 3.0642
10.3306 7500 3.0511
11.0193 8000 3.0463
11.7080 8500 3.0301
12.3967 9000 3.0163
13.0854 9500 3.0059
13.7741 10000 2.9845
14.4628 10500 2.9705
15.1515 11000 2.9536
15.8402 11500 2.9263
16.5289 12000 2.9199
17.2176 12500 2.8989
17.9063 13000 2.8818
18.5950 13500 2.8735
19.2837 14000 2.852
19.9725 14500 2.8315
20.6612 15000 2.8095
21.3499 15500 2.7965
22.0386 16000 2.7802
22.7273 16500 2.7527
23.4160 17000 2.7547
24.1047 17500 2.7377
24.7934 18000 2.7035
25.4821 18500 2.7102
26.1708 19000 2.6997
26.8595 19500 2.6548
27.5482 20000 2.6704
28.2369 20500 2.6624
28.9256 21000 2.6306
29.6143 21500 2.6358
30.3030 22000 2.634
30.9917 22500 2.6089
31.6804 23000 2.607
32.3691 23500 2.6246
33.0579 24000 2.5947
33.7466 24500 2.5798
34.4353 25000 2.6025
35.1240 25500 2.5824
35.8127 26000 2.5698
36.5014 26500 2.5711
37.1901 27000 2.5636
37.8788 27500 2.5387
38.5675 28000 2.5472
39.2562 28500 2.5455
39.9449 29000 2.5204
40.6336 29500 2.524
41.3223 30000 2.5246
42.0110 30500 2.5125
42.6997 31000 2.5042
43.3884 31500 2.5165
44.0771 32000 2.5187
44.7658 32500 2.4975
45.4545 33000 2.5048
46.1433 33500 2.521
46.8320 34000 2.4825
47.5207 34500 2.5034
48.2094 35000 2.5049
48.8981 35500 2.4886
49.5868 36000 2.4992
50.2755 36500 2.5099
50.9642 37000 2.489
51.6529 37500 2.4825
52.3416 38000 2.4902
53.0303 38500 2.4815
53.7190 39000 2.4723
54.4077 39500 2.4921
55.0964 40000 2.4763
55.7851 40500 2.4692
56.4738 41000 2.4831
57.1625 41500 2.4705
57.8512 42000 2.4659
58.5399 42500 2.4804
59.2287 43000 2.4582
59.9174 43500 2.4544
60.6061 44000 2.4712
61.2948 44500 2.4478
61.9835 45000 2.4428
62.6722 45500 2.4558
63.3609 46000 2.4428
64.0496 46500 2.4399
64.7383 47000 2.4529
65.4270 47500 2.4374
66.1157 48000 2.4543
66.8044 48500 2.4576
67.4931 49000 2.4426
68.1818 49500 2.4698
68.8705 50000 2.4604
69.5592 50500 2.4515
70.2479 51000 2.4804
70.9366 51500 2.4545
71.6253 52000 2.4523
72.3140 52500 2.4756
73.0028 53000 2.4697
73.6915 53500 2.4536
74.3802 54000 2.4866
75.0689 54500 2.471
75.7576 55000 2.483
76.4463 55500 2.5002
77.1350 56000 2.4849
77.8237 56500 2.4848
78.5124 57000 2.5047
79.2011 57500 2.5143
79.8898 58000 2.4879
80.5785 58500 2.5093
81.2672 59000 2.5247
81.9559 59500 2.4915
82.6446 60000 2.5124
83.3333 60500 2.5056
84.0220 61000 2.4767
84.7107 61500 2.5068
85.3994 62000 2.5173
86.0882 62500 2.4911
86.7769 63000 2.526
87.4656 63500 2.5313
88.1543 64000 2.5312
88.8430 64500 2.5735
89.5317 65000 2.5873
90.2204 65500 2.6395
90.9091 66000 2.7914
91.5978 66500 2.6729
92.2865 67000 2.9846
92.9752 67500 2.9259
93.6639 68000 2.8845
94.3526 68500 2.9906
95.0413 69000 2.9534
95.7300 69500 2.9857
96.4187 70000 3.0559
97.1074 70500 2.9919
97.7961 71000 3.0435
98.4848 71500 3.0534
99.1736 72000 3.0169
99.8623 72500 3.0264

Framework Versions

  • Python: 3.10.11
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.0.1
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}