metadata
base_model: microsoft/mdeberta-v3-base
datasets:
- eriktks/conll2003
language:
- en
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
pipeline_tag: token-classification
tags:
- generated_from_trainer
model-index:
- name: mdeberta
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: eriktks/conll2003
type: eriktks/conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- type: precision
value: 0.9566232899566233
name: Precision
- type: recall
value: 0.9649949511948839
name: Recall
- type: f1
value: 0.9607908847184986
name: F1
- type: accuracy
value: 0.9929130485572991
name: Accuracy
mdeberta-v3-base-conll2003-en
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the eriktks/conll2003 dataset (English split of the CONLL 2003). It achieves the following results on the evaluation set:
- Loss: 0.0342
- Precision: 0.9566
- Recall: 0.9650
- F1: 0.9608
- Accuracy: 0.9929
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 439 | 0.0509 | 0.9303 | 0.9456 | 0.9379 | 0.9890 |
0.1482 | 2.0 | 878 | 0.0359 | 0.9501 | 0.9583 | 0.9542 | 0.9918 |
0.0335 | 3.0 | 1317 | 0.0338 | 0.9530 | 0.9615 | 0.9572 | 0.9924 |
0.0191 | 4.0 | 1756 | 0.0346 | 0.9538 | 0.9635 | 0.9586 | 0.9926 |
0.0137 | 5.0 | 2195 | 0.0342 | 0.9566 | 0.9650 | 0.9608 | 0.9929 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1