metadata
language:
- he
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Large-V2 Hebrew
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
config: he_il
split: train+validation
args: he_il
metrics:
- name: Wer
type: wer
value: 27
Whisper Large-V2 Hebrew
This model is a fine-tuned version of openai/whisper-large-v2 on the google/fleurs he_il dataset. It achieves the following results on the evaluation set:
- Loss: 0.5483
- Wer: 27
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 200
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2