|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- sem_eval_2024_task_2 |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: run1 |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: sem_eval_2024_task_2 |
|
type: sem_eval_2024_task_2 |
|
config: sem_eval_2024_task_2_source |
|
split: validation |
|
args: sem_eval_2024_task_2_source |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 59.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# run1 |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the sem_eval_2024_task_2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3506 |
|
- Rouge1: 59.0 |
|
- Rouge2: 0.0 |
|
- Rougel: 59.0 |
|
- Rougelsum: 58.75 |
|
- Gen Len: 2.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 212 | 0.3327 | 58.0 | 0.0 | 58.0 | 58.0 | 2.0 | |
|
| 0.3828 | 2.0 | 425 | 0.3269 | 59.0 | 0.0 | 59.0 | 59.0 | 2.0 | |
|
| 0.3828 | 3.0 | 637 | 0.3392 | 59.0 | 0.0 | 59.0 | 59.0 | 2.0 | |
|
| 0.3608 | 4.0 | 850 | 0.3264 | 60.5 | 0.0 | 60.5 | 60.5 | 2.0 | |
|
| 0.3608 | 5.0 | 1062 | 0.3293 | 59.0 | 0.0 | 59.0 | 59.0 | 2.0 | |
|
| 0.3494 | 6.0 | 1275 | 0.3324 | 60.5 | 0.0 | 60.5 | 60.5 | 2.0 | |
|
| 0.3494 | 7.0 | 1487 | 0.3448 | 61.0 | 0.0 | 61.0 | 61.0 | 2.0 | |
|
| 0.3328 | 8.0 | 1700 | 0.3462 | 59.5 | 0.0 | 59.5 | 59.5 | 2.0 | |
|
| 0.3328 | 9.0 | 1912 | 0.3491 | 59.5 | 0.0 | 59.5 | 59.5 | 2.0 | |
|
| 0.3328 | 9.98 | 2120 | 0.3506 | 59.0 | 0.0 | 59.0 | 58.75 | 2.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|