run1 / README.md
Shijia's picture
Model save
6f17de4
|
raw
history blame
3.95 kB
---
license: mit
base_model: emilyalsentzer/Bio_ClinicalBERT
tags:
- generated_from_trainer
datasets:
- sem_eval_2024_task_2
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: run1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sem_eval_2024_task_2
type: sem_eval_2024_task_2
config: sem_eval_2024_task_2_source
split: validation
args: sem_eval_2024_task_2_source
metrics:
- name: Accuracy
type: accuracy
value: 0.575
- name: Precision
type: precision
value: 0.5800000000000001
- name: Recall
type: recall
value: 0.575
- name: F1
type: f1
value: 0.5682539682539682
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# run1
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the sem_eval_2024_task_2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2723
- Accuracy: 0.575
- Precision: 0.5800
- Recall: 0.575
- F1: 0.5683
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 0.99 | 53 | 0.6960 | 0.52 | 0.5339 | 0.52 | 0.4652 |
| 0.7039 | 2.0 | 107 | 0.6921 | 0.545 | 0.5451 | 0.5450 | 0.5447 |
| 0.7039 | 2.99 | 160 | 0.6956 | 0.515 | 0.5436 | 0.515 | 0.4198 |
| 0.6979 | 4.0 | 214 | 0.6857 | 0.555 | 0.5587 | 0.555 | 0.5479 |
| 0.6979 | 4.99 | 267 | 0.6924 | 0.51 | 0.7525 | 0.51 | 0.3552 |
| 0.6831 | 6.0 | 321 | 0.6603 | 0.575 | 0.5750 | 0.575 | 0.5750 |
| 0.6831 | 6.99 | 374 | 0.6572 | 0.61 | 0.6116 | 0.6100 | 0.6086 |
| 0.6346 | 8.0 | 428 | 0.6517 | 0.57 | 0.5700 | 0.5700 | 0.5700 |
| 0.6346 | 8.99 | 481 | 0.7185 | 0.58 | 0.5849 | 0.58 | 0.5739 |
| 0.5337 | 10.0 | 535 | 0.8220 | 0.565 | 0.5767 | 0.565 | 0.5478 |
| 0.5337 | 10.99 | 588 | 0.8002 | 0.595 | 0.5958 | 0.595 | 0.5942 |
| 0.4262 | 12.0 | 642 | 0.8661 | 0.595 | 0.5994 | 0.595 | 0.5905 |
| 0.4262 | 12.99 | 695 | 0.9989 | 0.555 | 0.5608 | 0.5550 | 0.5440 |
| 0.3379 | 14.0 | 749 | 1.0688 | 0.56 | 0.5651 | 0.5600 | 0.5512 |
| 0.3379 | 14.99 | 802 | 1.0439 | 0.585 | 0.5865 | 0.585 | 0.5832 |
| 0.2846 | 16.0 | 856 | 1.1091 | 0.575 | 0.5809 | 0.575 | 0.5671 |
| 0.2846 | 16.99 | 909 | 1.2667 | 0.57 | 0.5791 | 0.5700 | 0.5572 |
| 0.228 | 18.0 | 963 | 1.2367 | 0.58 | 0.5858 | 0.58 | 0.5728 |
| 0.228 | 18.99 | 1016 | 1.2373 | 0.585 | 0.5889 | 0.585 | 0.5804 |
| 0.2137 | 19.81 | 1060 | 1.2723 | 0.575 | 0.5800 | 0.575 | 0.5683 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0