|
--- |
|
tags: autotrain |
|
language: en |
|
widget: |
|
- text: "Why is the username the largest part of each card?" |
|
datasets: |
|
- Shenzy2/autotrain-data-NER4DesignTutor |
|
co2_eq_emissions: 0.004032656988228696 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Entity Extraction |
|
- Model ID: 1169643336 |
|
- CO2 Emissions (in grams): 0.004032656988228696 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.677674412727356 |
|
- Accuracy: 0.8129095674967235 |
|
- Precision: 0.4424778761061947 |
|
- Recall: 0.4844961240310077 |
|
- F1: 0.4625346901017577 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Why is the username the largest part of each card?"}' https://api-inference.huggingface.co/models/Shenzy2/NER4DesignTutor |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model = AutoModelForTokenClassification.from_pretrained("Shenzy2/NER4DesignTutor") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Shenzy2/NER4DesignTutor") |
|
|
|
inputs = tokenizer("Why is the username the largest part of each card?", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |