|
|
""" |
|
|
Credits to https://github.com/CompVis/taming-transformers |
|
|
""" |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
class Encoder(nn.Module): |
|
|
def __init__(self, config: dict) -> None: |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.num_resolutions = len(config["ch_mult"]) |
|
|
temb_ch = 0 |
|
|
|
|
|
|
|
|
self.conv_in = torch.nn.Conv2d(config["in_channels"], |
|
|
config["ch"], |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1) |
|
|
|
|
|
curr_res = config["resolution"] |
|
|
in_ch_mult = (1,) + tuple(config["ch_mult"]) |
|
|
self.down = nn.ModuleList() |
|
|
for i_level in range(self.num_resolutions): |
|
|
block = nn.ModuleList() |
|
|
attn = nn.ModuleList() |
|
|
block_in = config["ch"] * in_ch_mult[i_level] |
|
|
block_out = config["ch"] * config["ch_mult"][i_level] |
|
|
for i_block in range(self.config["num_res_blocks"]): |
|
|
block.append(ResnetBlock(in_channels=block_in, |
|
|
out_channels=block_out, |
|
|
temb_channels=temb_ch, |
|
|
dropout=config["dropout"])) |
|
|
block_in = block_out |
|
|
if curr_res in config["attn_resolutions"]: |
|
|
attn.append(AttnBlock(block_in)) |
|
|
down = nn.Module() |
|
|
down.block = block |
|
|
down.attn = attn |
|
|
if i_level != self.num_resolutions - 1: |
|
|
down.downsample = Downsample(block_in, with_conv=True) |
|
|
curr_res = curr_res // 2 |
|
|
self.down.append(down) |
|
|
|
|
|
|
|
|
self.mid = nn.Module() |
|
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
|
out_channels=block_in, |
|
|
temb_channels=temb_ch, |
|
|
dropout=config["dropout"]) |
|
|
self.mid.attn_1 = AttnBlock(block_in) |
|
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
|
out_channels=block_in, |
|
|
temb_channels=temb_ch, |
|
|
dropout=config["dropout"]) |
|
|
|
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
|
config["z_channels"], |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
temb = None |
|
|
|
|
|
|
|
|
hs = [self.conv_in(x)] |
|
|
for i_level in range(self.num_resolutions): |
|
|
for i_block in range(self.config["num_res_blocks"]): |
|
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
|
if len(self.down[i_level].attn) > 0: |
|
|
h = self.down[i_level].attn[i_block](h) |
|
|
hs.append(h) |
|
|
if i_level != self.num_resolutions - 1: |
|
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
|
|
|
h = hs[-1] |
|
|
h = self.mid.block_1(h, temb) |
|
|
h = self.mid.attn_1(h) |
|
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
|
|
|
h = self.norm_out(h) |
|
|
h = nonlinearity(h) |
|
|
h = self.conv_out(h) |
|
|
return h |
|
|
|
|
|
|
|
|
class Decoder(nn.Module): |
|
|
def __init__(self, config: dict) -> None: |
|
|
super().__init__() |
|
|
self.config = config |
|
|
temb_ch = 0 |
|
|
self.num_resolutions = len(config["ch_mult"]) |
|
|
|
|
|
|
|
|
in_ch_mult = (1,) + tuple(config["ch_mult"]) |
|
|
block_in = config["ch"] * config["ch_mult"][self.num_resolutions - 1] |
|
|
curr_res = config["resolution"] // 2 ** (self.num_resolutions - 1) |
|
|
print(f"Tokenizer : shape of latent is {config["z_channels"], curr_res, curr_res}.") |
|
|
|
|
|
|
|
|
self.conv_in = torch.nn.Conv2d(config["z_channels"], |
|
|
block_in, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1) |
|
|
|
|
|
|
|
|
self.mid = nn.Module() |
|
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
|
out_channels=block_in, |
|
|
temb_channels=temb_ch, |
|
|
dropout=config["dropout"]) |
|
|
self.mid.attn_1 = AttnBlock(block_in) |
|
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
|
out_channels=block_in, |
|
|
temb_channels=temb_ch, |
|
|
dropout=config["dropout"]) |
|
|
|
|
|
|
|
|
self.up = nn.ModuleList() |
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
|
block = nn.ModuleList() |
|
|
attn = nn.ModuleList() |
|
|
block_out = config["ch"] * config["ch_mult"][i_level] |
|
|
for i_block in range(config["num_res_blocks"] + 1): |
|
|
block.append(ResnetBlock(in_channels=block_in, |
|
|
out_channels=block_out, |
|
|
temb_channels=temb_ch, |
|
|
dropout=config["dropout"])) |
|
|
block_in = block_out |
|
|
if curr_res in config["attn_resolutions"]: |
|
|
attn.append(AttnBlock(block_in)) |
|
|
up = nn.Module() |
|
|
up.block = block |
|
|
up.attn = attn |
|
|
if i_level != 0: |
|
|
up.upsample = Upsample(block_in, with_conv=True) |
|
|
curr_res = curr_res * 2 |
|
|
self.up.insert(0, up) |
|
|
|
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
|
self.conv_out = torch.nn.Conv2d(block_in, |
|
|
config["out_ch"], |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1) |
|
|
|
|
|
def forward(self, z: torch.Tensor) -> torch.Tensor: |
|
|
temb = None |
|
|
|
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
|
|
|
h = self.mid.block_1(h, temb) |
|
|
h = self.mid.attn_1(h) |
|
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
|
for i_block in range(self.config["num_res_blocks"] + 1): |
|
|
h = self.up[i_level].block[i_block](h, temb) |
|
|
if len(self.up[i_level].attn) > 0: |
|
|
h = self.up[i_level].attn[i_block](h) |
|
|
if i_level != 0: |
|
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
|
|
|
h = self.norm_out(h) |
|
|
h = nonlinearity(h) |
|
|
h = self.conv_out(h) |
|
|
return h |
|
|
|
|
|
|
|
|
def nonlinearity(x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
|
|
|
def Normalize(in_channels: int) -> nn.Module: |
|
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
|
|
|
class Upsample(nn.Module): |
|
|
def __init__(self, in_channels: int, with_conv: bool) -> None: |
|
|
super().__init__() |
|
|
self.with_conv = with_conv |
|
|
if self.with_conv: |
|
|
self.conv = torch.nn.Conv2d(in_channels, |
|
|
in_channels, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
|
if self.with_conv: |
|
|
x = self.conv(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class Downsample(nn.Module): |
|
|
def __init__(self, in_channels: int, with_conv: bool) -> None: |
|
|
super().__init__() |
|
|
self.with_conv = with_conv |
|
|
if self.with_conv: |
|
|
|
|
|
self.conv = torch.nn.Conv2d(in_channels, |
|
|
in_channels, |
|
|
kernel_size=3, |
|
|
stride=2, |
|
|
padding=0) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
if self.with_conv: |
|
|
pad = (0, 1, 0, 1) |
|
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
|
x = self.conv(x) |
|
|
else: |
|
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) |
|
|
return x |
|
|
|
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
|
def __init__(self, *, in_channels: int, out_channels: int = None, conv_shortcut: bool = False, |
|
|
dropout: float, temb_channels: int = 512) -> None: |
|
|
super().__init__() |
|
|
self.in_channels = in_channels |
|
|
out_channels = in_channels if out_channels is None else out_channels |
|
|
self.out_channels = out_channels |
|
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
|
|
self.norm1 = Normalize(in_channels) |
|
|
self.conv1 = torch.nn.Conv2d(in_channels, |
|
|
out_channels, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1) |
|
|
if temb_channels > 0: |
|
|
self.temb_proj = torch.nn.Linear(temb_channels, |
|
|
out_channels) |
|
|
self.norm2 = Normalize(out_channels) |
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
|
self.conv2 = torch.nn.Conv2d(out_channels, |
|
|
out_channels, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1) |
|
|
if self.in_channels != self.out_channels: |
|
|
if self.use_conv_shortcut: |
|
|
self.conv_shortcut = torch.nn.Conv2d(in_channels, |
|
|
out_channels, |
|
|
kernel_size=3, |
|
|
stride=1, |
|
|
padding=1) |
|
|
else: |
|
|
self.nin_shortcut = torch.nn.Conv2d(in_channels, |
|
|
out_channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0) |
|
|
|
|
|
def forward(self, x: torch.Tensor, temb: torch.Tensor) -> torch.Tensor: |
|
|
h = x |
|
|
h = self.norm1(h) |
|
|
h = nonlinearity(h) |
|
|
h = self.conv1(h) |
|
|
|
|
|
if temb is not None: |
|
|
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] |
|
|
|
|
|
h = self.norm2(h) |
|
|
h = nonlinearity(h) |
|
|
h = self.dropout(h) |
|
|
h = self.conv2(h) |
|
|
|
|
|
if self.in_channels != self.out_channels: |
|
|
if self.use_conv_shortcut: |
|
|
x = self.conv_shortcut(x) |
|
|
else: |
|
|
x = self.nin_shortcut(x) |
|
|
|
|
|
return x + h |
|
|
|
|
|
|
|
|
class AttnBlock(nn.Module): |
|
|
def __init__(self, in_channels: int) -> None: |
|
|
super().__init__() |
|
|
self.in_channels = in_channels |
|
|
|
|
|
self.norm = Normalize(in_channels) |
|
|
self.q = torch.nn.Conv2d(in_channels, |
|
|
in_channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0) |
|
|
self.k = torch.nn.Conv2d(in_channels, |
|
|
in_channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0) |
|
|
self.v = torch.nn.Conv2d(in_channels, |
|
|
in_channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0) |
|
|
self.proj_out = torch.nn.Conv2d(in_channels, |
|
|
in_channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0) |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
h_ = x |
|
|
h_ = self.norm(h_) |
|
|
q = self.q(h_) |
|
|
k = self.k(h_) |
|
|
v = self.v(h_) |
|
|
|
|
|
|
|
|
b, c, h, w = q.shape |
|
|
q = q.reshape(b, c, h * w) |
|
|
q = q.permute(0, 2, 1) |
|
|
k = k.reshape(b, c, h * w) |
|
|
w_ = torch.bmm(q, k) |
|
|
w_ = w_ * (int(c) ** (-0.5)) |
|
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
|
|
|
v = v.reshape(b, c, h * w) |
|
|
w_ = w_.permute(0, 2, 1) |
|
|
h_ = torch.bmm(v, w_) |
|
|
h_ = h_.reshape(b, c, h, w) |
|
|
|
|
|
h_ = self.proj_out(h_) |
|
|
|
|
|
return x + h_ |
|
|
|