metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: DIALOGUE_overfit_check
results: []
DIALOGUE_overfit_check
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1840
- Precision: 0.9762
- Recall: 0.9737
- F1: 0.9736
- Accuracy: 0.9737
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.0266 | 0.62 | 30 | 0.5087 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4009 | 1.25 | 60 | 0.1389 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.1301 | 1.88 | 90 | 0.1436 | 0.9637 | 0.9605 | 0.9604 | 0.9605 |
0.0342 | 2.5 | 120 | 0.1055 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0288 | 3.12 | 150 | 0.1395 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0099 | 3.75 | 180 | 0.1259 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0057 | 4.38 | 210 | 0.1315 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0042 | 5.0 | 240 | 0.1338 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0033 | 5.62 | 270 | 0.1373 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0027 | 6.25 | 300 | 0.1403 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0024 | 6.88 | 330 | 0.1457 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.002 | 7.5 | 360 | 0.1483 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0017 | 8.12 | 390 | 0.1483 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0016 | 8.75 | 420 | 0.1503 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0014 | 9.38 | 450 | 0.1535 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0013 | 10.0 | 480 | 0.1546 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0012 | 10.62 | 510 | 0.1576 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0011 | 11.25 | 540 | 0.1593 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.001 | 11.88 | 570 | 0.1672 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0009 | 12.5 | 600 | 0.1686 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0008 | 13.12 | 630 | 0.1696 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0008 | 13.75 | 660 | 0.1696 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0007 | 14.38 | 690 | 0.1702 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0007 | 15.0 | 720 | 0.1711 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0006 | 15.62 | 750 | 0.1716 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0006 | 16.25 | 780 | 0.1726 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0006 | 16.88 | 810 | 0.1731 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0006 | 17.5 | 840 | 0.1744 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0006 | 18.12 | 870 | 0.1762 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0005 | 18.75 | 900 | 0.1773 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0005 | 19.38 | 930 | 0.1777 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0005 | 20.0 | 960 | 0.1781 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0005 | 20.62 | 990 | 0.1785 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 21.25 | 1020 | 0.1795 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 21.88 | 1050 | 0.1801 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 22.5 | 1080 | 0.1805 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 23.12 | 1110 | 0.1812 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 23.75 | 1140 | 0.1818 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 24.38 | 1170 | 0.1821 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 25.0 | 1200 | 0.1824 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 25.62 | 1230 | 0.1827 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 26.25 | 1260 | 0.1831 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 26.88 | 1290 | 0.1833 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 27.5 | 1320 | 0.1836 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 28.12 | 1350 | 0.1838 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 28.75 | 1380 | 0.1839 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 29.38 | 1410 | 0.1840 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
0.0004 | 30.0 | 1440 | 0.1840 | 0.9762 | 0.9737 | 0.9736 | 0.9737 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0