|
--- |
|
base_model: HooshvareLab/bert-base-parsbert-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: Persian-Text-Sentiment-Bert-LORA |
|
results: [] |
|
license: mit |
|
language: |
|
- fa |
|
library_name: peft |
|
pipeline_tag: text-classification |
|
datasets: |
|
- SeyedAli/Persian-Text-Sentiment |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Persian-Text-Sentiment-Bert-LORA |
|
|
|
This model is a Adapter for [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on an unknown dataset in Persian Sentment Analysis Task. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3427 |
|
- Precision: 0.8579 |
|
- Recall: 0.8543 |
|
- F1-score: 0.8540 |
|
- Accuracy: 0.8543 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
This is how to use this model in an example |
|
```python |
|
from peft import PeftModel |
|
from transformers import pipeline |
|
modelname="SeyedAli/Persian-Text-Sentiment-Bert-LORA" |
|
tokenizer=AutoTokenizer.from_pretrained("HooshvareLab/bert-base-parsbert-uncased") |
|
model=AutoModelForSequenceClassification.from_pretrained("HooshvareLab/bert-base-parsbert-uncased") |
|
model = PeftModel.from_pretrained(model, modelname) |
|
pipe = pipeline("text-classification", model=model,tokenizer=tokenizer) |
|
pipe('خیلی کتاب خوبی بود') |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:| |
|
| 0.3939 | 1.0 | 3491 | 0.3835 | 0.8457 | 0.8404 | 0.8398 | 0.8404 | |
|
| 0.3722 | 2.0 | 6982 | 0.3677 | 0.8513 | 0.8457 | 0.8451 | 0.8457 | |
|
| 0.3553 | 3.0 | 10473 | 0.3576 | 0.8539 | 0.8495 | 0.8491 | 0.8495 | |
|
| 0.3618 | 4.0 | 13964 | 0.3525 | 0.8546 | 0.8513 | 0.8509 | 0.8513 | |
|
| 0.3534 | 5.0 | 17455 | 0.3485 | 0.8557 | 0.8521 | 0.8517 | 0.8521 | |
|
| 0.3423 | 6.0 | 20946 | 0.3470 | 0.8562 | 0.8530 | 0.8526 | 0.8530 | |
|
| 0.3455 | 7.0 | 24437 | 0.3453 | 0.8573 | 0.8535 | 0.8531 | 0.8535 | |
|
| 0.347 | 8.0 | 27928 | 0.3428 | 0.8575 | 0.8539 | 0.8535 | 0.8539 | |
|
| 0.344 | 9.0 | 31419 | 0.3429 | 0.8578 | 0.8546 | 0.8542 | 0.8546 | |
|
| 0.335 | 10.0 | 34910 | 0.3427 | 0.8579 | 0.8543 | 0.8540 | 0.8543 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |