metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- DTU54DL/common-accent
metrics:
- wer
- precision
- recall
- f1
model-index:
- name: Whisper Base CA
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Accent
type: DTU54DL/common-accent
metrics:
- name: Wer
type: wer
value: 0.26376410965215386
- name: Precision
type: precision
value: 0.8083025813102722
- name: Recall
type: recall
value: 0.8232867121696472
- name: F1
type: f1
value: 0.8149744272232056
Whisper Base CA
This model is a fine-tuned version of openai/whisper-base on the Common Accent dataset. It achieves the following results on the evaluation set:
- Loss: 0.7230
- Wer Ortho: 30.5998
- Wer: 0.2638
- Cer: 0.1320
- Precision: 0.8083
- Recall: 0.8233
- F1: 0.8150
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|---|---|
0.1367 | 0.8 | 500 | 0.7230 | 30.5998 | 0.2638 | 0.1320 | 0.8083 | 0.8233 | 0.8150 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0