whisper-base-ca / README.md
Setosm's picture
End of training
9395430 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - DTU54DL/common-accent
metrics:
  - wer
  - precision
  - recall
  - f1
model-index:
  - name: Whisper Base CA
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Accent
          type: DTU54DL/common-accent
        metrics:
          - name: Wer
            type: wer
            value: 0.26376410965215386
          - name: Precision
            type: precision
            value: 0.8083025813102722
          - name: Recall
            type: recall
            value: 0.8232867121696472
          - name: F1
            type: f1
            value: 0.8149744272232056

Whisper Base CA

This model is a fine-tuned version of openai/whisper-base on the Common Accent dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7230
  • Wer Ortho: 30.5998
  • Wer: 0.2638
  • Cer: 0.1320
  • Precision: 0.8083
  • Recall: 0.8233
  • F1: 0.8150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer Cer Precision Recall F1
0.1367 0.8 500 0.7230 30.5998 0.2638 0.1320 0.8083 0.8233 0.8150

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0