metadata
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: lmv2-g-w2-300-doc-09-08
results: []
lmv2-g-w2-300-doc-09-08
This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0262
- Control Number Precision: 1.0
- Control Number Recall: 1.0
- Control Number F1: 1.0
- Control Number Number: 17
- Ein Precision: 1.0
- Ein Recall: 0.9833
- Ein F1: 0.9916
- Ein Number: 60
- Employee’s Address Precision: 0.9667
- Employee’s Address Recall: 0.9831
- Employee’s Address F1: 0.9748
- Employee’s Address Number: 59
- Employee’s Name Precision: 0.9833
- Employee’s Name Recall: 1.0
- Employee’s Name F1: 0.9916
- Employee’s Name Number: 59
- Employee’s Ssn Precision: 0.9836
- Employee’s Ssn Recall: 1.0
- Employee’s Ssn F1: 0.9917
- Employee’s Ssn Number: 60
- Employer’s Address Precision: 0.9833
- Employer’s Address Recall: 0.9672
- Employer’s Address F1: 0.9752
- Employer’s Address Number: 61
- Employer’s Name Precision: 0.9833
- Employer’s Name Recall: 0.9833
- Employer’s Name F1: 0.9833
- Employer’s Name Number: 60
- Federal Income Tax Withheld Precision: 1.0
- Federal Income Tax Withheld Recall: 1.0
- Federal Income Tax Withheld F1: 1.0
- Federal Income Tax Withheld Number: 60
- Medicare Tax Withheld Precision: 1.0
- Medicare Tax Withheld Recall: 1.0
- Medicare Tax Withheld F1: 1.0
- Medicare Tax Withheld Number: 60
- Medicare Wages Tips Precision: 1.0
- Medicare Wages Tips Recall: 1.0
- Medicare Wages Tips F1: 1.0
- Medicare Wages Tips Number: 60
- Social Security Tax Withheld Precision: 1.0
- Social Security Tax Withheld Recall: 0.9836
- Social Security Tax Withheld F1: 0.9917
- Social Security Tax Withheld Number: 61
- Social Security Wages Precision: 0.9833
- Social Security Wages Recall: 1.0
- Social Security Wages F1: 0.9916
- Social Security Wages Number: 59
- Wages Tips Precision: 1.0
- Wages Tips Recall: 0.9836
- Wages Tips F1: 0.9917
- Wages Tips Number: 61
- Overall Precision: 0.9905
- Overall Recall: 0.9905
- Overall F1: 0.9905
- Overall Accuracy: 0.9973
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Control Number Precision | Control Number Recall | Control Number F1 | Control Number Number | Ein Precision | Ein Recall | Ein F1 | Ein Number | Employee’s Address Precision | Employee’s Address Recall | Employee’s Address F1 | Employee’s Address Number | Employee’s Name Precision | Employee’s Name Recall | Employee’s Name F1 | Employee’s Name Number | Employee’s Ssn Precision | Employee’s Ssn Recall | Employee’s Ssn F1 | Employee’s Ssn Number | Employer’s Address Precision | Employer’s Address Recall | Employer’s Address F1 | Employer’s Address Number | Employer’s Name Precision | Employer’s Name Recall | Employer’s Name F1 | Employer’s Name Number | Federal Income Tax Withheld Precision | Federal Income Tax Withheld Recall | Federal Income Tax Withheld F1 | Federal Income Tax Withheld Number | Medicare Tax Withheld Precision | Medicare Tax Withheld Recall | Medicare Tax Withheld F1 | Medicare Tax Withheld Number | Medicare Wages Tips Precision | Medicare Wages Tips Recall | Medicare Wages Tips F1 | Medicare Wages Tips Number | Social Security Tax Withheld Precision | Social Security Tax Withheld Recall | Social Security Tax Withheld F1 | Social Security Tax Withheld Number | Social Security Wages Precision | Social Security Wages Recall | Social Security Wages F1 | Social Security Wages Number | Wages Tips Precision | Wages Tips Recall | Wages Tips F1 | Wages Tips Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.7717 | 1.0 | 240 | 0.9856 | 0.0 | 0.0 | 0.0 | 17 | 0.9206 | 0.9667 | 0.9431 | 60 | 0.6824 | 0.9831 | 0.8056 | 59 | 0.2333 | 0.5932 | 0.3349 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.7609 | 0.5738 | 0.6542 | 61 | 0.3654 | 0.3167 | 0.3393 | 60 | 0.0 | 0.0 | 0.0 | 60 | 0.8194 | 0.9833 | 0.8939 | 60 | 0.6064 | 0.95 | 0.7403 | 60 | 0.5050 | 0.8361 | 0.6296 | 61 | 0.0 | 0.0 | 0.0 | 59 | 0.5859 | 0.9508 | 0.725 | 61 | 0.5954 | 0.6649 | 0.6282 | 0.9558 |
0.5578 | 2.0 | 480 | 0.2957 | 0.8462 | 0.6471 | 0.7333 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9048 | 0.9661 | 0.9344 | 59 | 0.8358 | 0.9492 | 0.8889 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8125 | 0.8525 | 0.8320 | 61 | 0.8462 | 0.9167 | 0.8800 | 60 | 0.9672 | 0.9833 | 0.9752 | 60 | 0.9524 | 1.0 | 0.9756 | 60 | 0.9194 | 0.95 | 0.9344 | 60 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9516 | 0.9672 | 0.9593 | 61 | 0.9212 | 0.9512 | 0.9359 | 0.9891 |
0.223 | 3.0 | 720 | 0.1626 | 0.5 | 0.6471 | 0.5641 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8769 | 0.9344 | 0.9048 | 61 | 0.9508 | 0.9667 | 0.9587 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8769 | 0.95 | 0.912 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9516 | 0.9672 | 0.9593 | 61 | 0.9370 | 0.9688 | 0.9526 | 0.9923 |
0.1305 | 4.0 | 960 | 0.1025 | 0.9444 | 1.0 | 0.9714 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9194 | 0.9661 | 0.9421 | 59 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9219 | 0.9672 | 0.944 | 61 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 0.9524 | 1.0 | 0.9756 | 60 | 0.8906 | 0.95 | 0.9194 | 60 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9516 | 0.9672 | 0.9593 | 61 | 0.9511 | 0.9756 | 0.9632 | 0.9947 |
0.0852 | 5.0 | 1200 | 0.0744 | 0.7391 | 1.0 | 0.85 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9344 | 0.9344 | 0.9344 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9365 | 0.9833 | 0.9593 | 60 | 0.9677 | 1.0 | 0.9836 | 60 | 0.95 | 0.95 | 0.9500 | 60 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9626 | 0.9783 | 0.9704 | 0.9953 |
0.0583 | 6.0 | 1440 | 0.0554 | 0.7727 | 1.0 | 0.8718 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9048 | 0.9344 | 0.9194 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 0.9344 | 0.95 | 0.9421 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9677 | 0.9756 | 0.9716 | 0.9957 |
0.0431 | 7.0 | 1680 | 0.0471 | 0.9444 | 1.0 | 0.9714 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9016 | 0.9322 | 0.9167 | 59 | 0.95 | 0.9661 | 0.9580 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8676 | 0.9672 | 0.9147 | 61 | 0.9831 | 0.9667 | 0.9748 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9516 | 0.9833 | 0.9672 | 60 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9831 | 0.9831 | 0.9831 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9625 | 0.9756 | 0.9690 | 0.9947 |
0.0314 | 8.0 | 1920 | 0.0359 | 1.0 | 1.0 | 1.0 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9516 | 0.9672 | 0.9593 | 61 | 1.0 | 0.9667 | 0.9831 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9516 | 0.9833 | 0.9672 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9831 | 0.9831 | 0.9831 | 59 | 0.9672 | 0.9672 | 0.9672 | 61 | 0.9771 | 0.9824 | 0.9797 | 0.9969 |
0.0278 | 9.0 | 2160 | 0.0338 | 0.8947 | 1.0 | 0.9444 | 17 | 0.9833 | 0.9833 | 0.9833 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 1.0 | 1.0 | 1.0 | 60 | 0.9365 | 0.9672 | 0.9516 | 61 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9516 | 0.9833 | 0.9672 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9672 | 0.9672 | 0.9672 | 61 | 0.9705 | 0.9837 | 0.9771 | 0.9965 |
0.0231 | 10.0 | 2400 | 0.0332 | 0.9444 | 1.0 | 0.9714 | 17 | 0.9831 | 0.9667 | 0.9748 | 60 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9048 | 0.9661 | 0.9344 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9667 | 0.9508 | 0.9587 | 61 | 0.9667 | 0.9667 | 0.9667 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9365 | 0.9833 | 0.9593 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9831 | 0.9831 | 0.9831 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9690 | 0.9769 | 0.9730 | 0.9964 |
0.0189 | 11.0 | 2640 | 0.0342 | 1.0 | 1.0 | 1.0 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.8657 | 0.9831 | 0.9206 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8594 | 0.9016 | 0.88 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9516 | 0.9672 | 0.9593 | 61 | 0.964 | 0.9810 | 0.9724 | 0.9958 |
0.0187 | 12.0 | 2880 | 0.0255 | 1.0 | 1.0 | 1.0 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9667 | 0.9508 | 0.9587 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9824 | 0.9851 | 0.9837 | 0.9976 |
0.0126 | 13.0 | 3120 | 0.0257 | 1.0 | 1.0 | 1.0 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9344 | 0.9661 | 0.95 | 59 | 0.8889 | 0.9492 | 0.9180 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8788 | 0.9508 | 0.9134 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9836 | 1.0 | 0.9917 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9508 | 0.9831 | 0.9667 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9652 | 0.9796 | 0.9724 | 0.9971 |
0.012 | 14.0 | 3360 | 0.0227 | 1.0 | 1.0 | 1.0 | 17 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9516 | 1.0 | 0.9752 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9194 | 0.9344 | 0.9268 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 0.9833 | 0.9916 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9784 | 0.9851 | 0.9817 | 0.9977 |
0.0119 | 15.0 | 3600 | 0.0284 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 1.0 | 1.0 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 1.0 | 1.0 | 60 | 0.9167 | 0.9016 | 0.9091 | 61 | 0.9661 | 0.95 | 0.9580 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9810 | 0.9824 | 0.9817 | 0.9965 |
0.0103 | 16.0 | 3840 | 0.0289 | 0.9444 | 1.0 | 0.9714 | 17 | 0.9672 | 0.9833 | 0.9752 | 60 | 0.9344 | 0.9661 | 0.95 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 1.0 | 1.0 | 60 | 0.8088 | 0.9016 | 0.8527 | 61 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9666 | 0.9810 | 0.9737 | 0.9963 |
0.01 | 17.0 | 4080 | 0.0305 | 0.8947 | 1.0 | 0.9444 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9516 | 1.0 | 0.9752 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9355 | 0.9508 | 0.9431 | 61 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.8955 | 1.0 | 0.9449 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9694 | 0.9891 | 0.9792 | 0.9961 |
0.0082 | 18.0 | 4320 | 0.0256 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8636 | 0.9344 | 0.8976 | 61 | 0.9831 | 0.9667 | 0.9748 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9785 | 0.9864 | 0.9824 | 0.9970 |
0.0059 | 19.0 | 4560 | 0.0255 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9355 | 0.9508 | 0.9431 | 61 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9865 | 0.9891 | 0.9878 | 0.9974 |
0.0078 | 20.0 | 4800 | 0.0293 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9508 | 0.9831 | 0.9667 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9 | 0.8852 | 0.8926 | 61 | 0.9661 | 0.95 | 0.9580 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9810 | 0.9810 | 0.9810 | 0.9966 |
0.009 | 21.0 | 5040 | 0.0264 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9206 | 0.9831 | 0.9508 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8889 | 0.9180 | 0.9032 | 61 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9831 | 0.9831 | 0.9831 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9745 | 0.9837 | 0.9791 | 0.9969 |
0.0046 | 22.0 | 5280 | 0.0271 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9355 | 0.9831 | 0.9587 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9032 | 0.9180 | 0.9106 | 61 | 0.9672 | 0.9833 | 0.9752 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9784 | 0.9851 | 0.9817 | 0.9970 |
0.0087 | 23.0 | 5520 | 0.0278 | 0.9444 | 1.0 | 0.9714 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9194 | 0.9661 | 0.9421 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8657 | 0.9508 | 0.9062 | 61 | 0.9836 | 1.0 | 0.9917 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9733 | 0.9878 | 0.9805 | 0.9958 |
0.0054 | 24.0 | 5760 | 0.0276 | 0.9444 | 1.0 | 0.9714 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.95 | 0.9661 | 0.9580 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9355 | 0.9508 | 0.9431 | 61 | 0.9831 | 0.9667 | 0.9748 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9355 | 0.9667 | 0.9508 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9784 | 0.9837 | 0.9811 | 0.9971 |
0.0057 | 25.0 | 6000 | 0.0260 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9667 | 0.9831 | 60 | 0.9077 | 1.0 | 0.9516 | 59 | 0.95 | 0.9661 | 0.9580 | 59 | 0.9677 | 1.0 | 0.9836 | 60 | 0.9508 | 0.9508 | 0.9508 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9771 | 0.9837 | 0.9804 | 0.9971 |
0.0074 | 26.0 | 6240 | 0.0340 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9180 | 0.9492 | 0.9333 | 59 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8906 | 0.9344 | 0.9120 | 61 | 0.9831 | 0.9667 | 0.9748 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 0.9836 | 0.9836 | 61 | 0.9757 | 0.9824 | 0.9790 | 0.9959 |
0.0047 | 27.0 | 6480 | 0.0306 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 1.0 | 1.0 | 60 | 0.8923 | 0.9831 | 0.9355 | 59 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 1.0 | 1.0 | 60 | 0.9016 | 0.9016 | 0.9016 | 61 | 0.9667 | 0.9667 | 0.9667 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.8551 | 1.0 | 0.9219 | 59 | 1.0 | 0.8525 | 0.9204 | 61 | 0.9624 | 0.9715 | 0.9669 | 0.9961 |
0.0052 | 28.0 | 6720 | 0.0262 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9667 | 0.9831 | 0.9748 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9833 | 0.9672 | 0.9752 | 61 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9833 | 1.0 | 0.9916 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9905 | 0.9905 | 0.9905 | 0.9973 |
0.0033 | 29.0 | 6960 | 0.0320 | 0.9444 | 1.0 | 0.9714 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.8406 | 0.9831 | 0.9062 | 59 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.8852 | 0.8852 | 0.8852 | 61 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 0.9667 | 0.9831 | 60 | 1.0 | 1.0 | 1.0 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9365 | 1.0 | 0.9672 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9627 | 0.9796 | 0.9711 | 0.9960 |
0.0048 | 30.0 | 7200 | 0.0215 | 1.0 | 1.0 | 1.0 | 17 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9672 | 1.0 | 0.9833 | 59 | 0.9833 | 1.0 | 0.9916 | 59 | 0.9836 | 1.0 | 0.9917 | 60 | 0.9833 | 0.9672 | 0.9752 | 61 | 1.0 | 0.9833 | 0.9916 | 60 | 0.9833 | 0.9833 | 0.9833 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 1.0 | 1.0 | 60 | 1.0 | 0.9672 | 0.9833 | 61 | 0.9672 | 1.0 | 0.9833 | 59 | 1.0 | 0.9836 | 0.9917 | 61 | 0.9891 | 0.9891 | 0.9891 | 0.9980 |
Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1