SearchUnify-ML commited on
Commit
b9dd81c
1 Parent(s): 0358917

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -2
README.md CHANGED
@@ -10,10 +10,11 @@ inference: false
10
 
11
  # SearchUnify-ML/xgen-7b-8k-open-instruct-gptq
12
 
13
- These are GPTQ 4bit model files for [VMWare's XGEN 7B 8K Open Instruct](https://huggingface.co/VMware/xgen-7b-8k-open-instruct).
14
 
15
- It is the result of quantizing to 4bit using GPTQ-for-LLaMa.
16
 
 
17
 
18
 
19
  # How to use this GPTQ model from Python code
 
10
 
11
  # SearchUnify-ML/xgen-7b-8k-open-instruct-gptq
12
 
13
+ With its industry-first robust LLM Integrations across its suite of products ([Cognitive Search](https://www.searchunify.com/products/cognitive-search/?utm_source=link&utm_medium=ml-model&utm_campaign=hugging-face), [SUVA](https://www.searchunify.com/products/suva/), [Knowbler](https://www.searchunify.com/products/knowbler/?utm_source=link&utm_medium=ml-model&utm_campaign=hugging-face), [Escalation Predictor](https://applications.searchunify.com/escalation-predictor?utm_source=link&utm_medium=ml-model&utm_campaign=hugging-face), [Agent Helper](https://applications.searchunify.com/agent-helper?utm_source=link&utm_medium=ml-model&utm_campaign=hugging-face) and [Community Helper](https://applications.searchunify.com/community-helper?utm_source=link&utm_medium=ml-model&utm_campaign=hugging-face)) coupled with the federated retrieval augmented generation (FRAG) architecture, [SearchUnify's unified cognitive platform](https://www.searchunify.com/?utm_source=link&utm_medium=ml-model&utm_campaign=hugging-face) fetches relevant information or responses to deliver more accurate and contextually appropriate support and self-service experiences.
14
 
15
+ Leveraging the state-of-the-art GPTQ quantization method, SearchUnify optimized the XGen-7B Model for low memory footprint and rapid response generation.
16
 
17
+ These are GPTQ 4bit model files for [VMWare's XGEN 7B 8K Open Instruct](https://huggingface.co/VMware/xgen-7b-8k-open-instruct). It is the result of quantizing to 4bit using GPTQ-for-LLaMa.
18
 
19
 
20
  # How to use this GPTQ model from Python code