SearchUnify-ML
commited on
Commit
•
8011cbf
1
Parent(s):
d31444e
Update README.md
Browse files
README.md
CHANGED
@@ -16,14 +16,65 @@ It is the result of quantising to 4bit using GPTQ-for-LLaMa.
|
|
16 |
The model is open for COMMERCIAL USE.
|
17 |
|
18 |
|
19 |
-
|
20 |
|
21 |
First, make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
|
22 |
|
23 |
#### pip install auto-gptq
|
24 |
|
25 |
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
|
|
|
16 |
The model is open for COMMERCIAL USE.
|
17 |
|
18 |
|
19 |
+
# How to use this GPTQ model from Python code
|
20 |
|
21 |
First, make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
|
22 |
|
23 |
#### pip install auto-gptq
|
24 |
|
25 |
|
26 |
+
<code>
|
27 |
|
28 |
+
from transformers import AutoTokenizer, pipeline, logging
|
29 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
30 |
+
import argparse
|
31 |
+
|
32 |
+
model_name_or_path = "SearchUnify-ML/xgen-7b-8k-open-instruct-gptq"
|
33 |
+
model_basename = "gptq_model-4bit-128g"
|
34 |
+
|
35 |
+
use_triton = False
|
36 |
+
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
|
38 |
+
|
39 |
+
model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
|
40 |
+
model_basename=model_basename,
|
41 |
+
use_safetensors=True,
|
42 |
+
trust_remote_code=False,
|
43 |
+
device="cuda:0",
|
44 |
+
use_triton=use_triton,
|
45 |
+
quantize_config=None)
|
46 |
+
|
47 |
+
# Note: check the prompt template is correct for this model.
|
48 |
+
prompt = "Tell me about AI"
|
49 |
+
prompt_template=f'''### Instruction: {prompt}
|
50 |
+
### Response:'''
|
51 |
+
|
52 |
+
print("\n\n*** Generate:")
|
53 |
+
|
54 |
+
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
|
55 |
+
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
|
56 |
+
print(tokenizer.decode(output[0]))
|
57 |
+
|
58 |
+
# Inference can also be done using transformers' pipeline
|
59 |
+
|
60 |
+
# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
|
61 |
+
logging.set_verbosity(logging.CRITICAL)
|
62 |
+
|
63 |
+
print("*** Pipeline:")
|
64 |
+
pipe = pipeline(
|
65 |
+
"text-generation",
|
66 |
+
model=model,
|
67 |
+
tokenizer=tokenizer,
|
68 |
+
max_new_tokens=1024,
|
69 |
+
temperature=0.3,
|
70 |
+
top_p=0.95,
|
71 |
+
repetition_penalty=1.15
|
72 |
+
)
|
73 |
+
|
74 |
+
print(pipe(prompt_template)[0]['generated_text'])
|
75 |
+
|
76 |
+
|
77 |
+
</code>
|
78 |
|
79 |
|
80 |
|