SeanLee97's picture
Update README.md
93b5216
metadata
library_name: transformers
license: mit
datasets:
  - multi_nli
  - snli
language:
  - en
metrics:
  - spearmanr

AnglE📐: Angle-optimized Text Embeddings

It is Angle 📐, not Angel 👼.

🔥 A New SOTA Model for Semantic Textual Similarity!

Github: https://github.com/SeanLee97/AnglE

https://arxiv.org/abs/2309.12871

PWC PWC PWC PWC PWC PWC PWC

STS Results

Model STS12 STS13 STS14 STS15 STS16 STSBenchmark SICKRelatedness Avg.
SeanLee97/angle-llama-7b-nli-20231027 78.68 90.58 85.49 89.56 86.91 88.92 81.18 85.90
SeanLee97/angle-llama-7b-nli-v2 79.00 90.56 85.79 89.43 87.00 88.97 80.94 85.96
SeanLee97/angle-bert-base-uncased-nli-en-v1 75.09 85.56 80.66 86.44 82.47 85.16 81.23 82.37

Usage

from angle_emb import AnglE

angle = AnglE.from_pretrained('SeanLee97/angle-bert-base-uncased-nli-en-v1', pooling_strategy='cls_avg').cuda()
vec = angle.encode('hello world', to_numpy=True)
print(vec)
vecs = angle.encode(['hello world1', 'hello world2'], to_numpy=True)
print(vecs)

Citation

You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:

@article{li2023angle,
  title={AnglE-Optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}