Update README.md
Browse files
README.md
CHANGED
@@ -75,6 +75,22 @@ By using our released weights, codes, and demos, you agree to and comply with th
|
|
75 |
|
76 |
## Evaluation
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
### Zero-shot CoT Multilingual Math Reasoning
|
79 |
|
80 |
<!--
|
@@ -83,21 +99,16 @@ By using our released weights, codes, and demos, you agree to and comply with th
|
|
83 |
![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png)
|
84 |
-->
|
85 |
|
86 |
-
|
87 |
-
<details>
|
88 |
-
<summary>See details on English and translated GSM8K and MATH with zero-shot reasoning</summary>
|
89 |
-
<br>
|
90 |
-
|
91 |
| Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
|
92 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
93 |
| GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
|
94 |
-
| Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6
|
95 |
| Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | |
|
96 |
-
| Qwen1.5-7B-chat | 56.8 | 15.3 | 40 | 2.7 | 37.7 | 9 | 36.9 | 7.7 | 21.9 |
|
97 |
| SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
|
98 |
| SeaLLM-7B-v2.5 | 78.5 | 34.9 | 51.3 | 22.1 | 72.3 | 30.2 | 71.5 | 30.1 | 62.0 | 28.4
|
99 |
|
100 |
-
|
101 |
|
102 |
Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Vistral](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)).
|
103 |
|
@@ -113,25 +124,10 @@ Baselines were evaluated using their respective chat-template and system prompts
|
|
113 |
| SeaLLM-7B-v2.5 | 58.0 | **64.8**
|
114 |
|
115 |
|
116 |
-
### Multilingual World Knowledge
|
117 |
-
|
118 |
-
|
119 |
-
We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.
|
120 |
-
|
121 |
-
| Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
|
122 |
-
|-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
|
123 |
-
| GPT-3.5 | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
|
124 |
-
| Vistral-7B-chat | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
|
125 |
-
| Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25
|
126 |
-
| SailorLM | Multi | 52.72 | 59.76 | 67.74 | 50.14 | --- | 39.53 | 37.73
|
127 |
-
| SeaLLM-7B-v2 | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52
|
128 |
-
| SeaLLM-7B-v2.5 | Multi | 64.05 | 76.87 | 62.54 | 63.11 | 53.30 | 48.64 | 46.86
|
129 |
-
|
130 |
|
131 |
### Sea-Bench
|
132 |
|
133 |
-
|
134 |
-
|
135 |
|
136 |
|
137 |
### Usage
|
|
|
75 |
|
76 |
## Evaluation
|
77 |
|
78 |
+
|
79 |
+
### Multilingual World Knowledge
|
80 |
+
|
81 |
+
|
82 |
+
We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.
|
83 |
+
|
84 |
+
| Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
|
85 |
+
|-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
|
86 |
+
| GPT-3.5 | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
|
87 |
+
| Vistral-7B-chat | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
|
88 |
+
| Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25
|
89 |
+
| SailorLM | Multi | 52.72 | 59.76 | 67.74 | 50.14 | --- | 39.53 | 37.73
|
90 |
+
| SeaLLM-7B-v2 | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52
|
91 |
+
| SeaLLM-7B-v2.5 | Multi | 64.05 | 76.87 | 62.54 | 63.11 | 53.30 | 48.64 | 46.86
|
92 |
+
|
93 |
+
|
94 |
### Zero-shot CoT Multilingual Math Reasoning
|
95 |
|
96 |
<!--
|
|
|
99 |
![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png)
|
100 |
-->
|
101 |
|
|
|
|
|
|
|
|
|
|
|
102 |
| Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
|
103 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
|
104 |
| GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
|
105 |
+
| Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6.0
|
106 |
| Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | |
|
107 |
+
| Qwen1.5-7B-chat | 56.8 | 15.3 | 40.0 | 2.7 | 37.7 | 9 | 36.9 | 7.7 | 21.9 | 4.7
|
108 |
| SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
|
109 |
| SeaLLM-7B-v2.5 | 78.5 | 34.9 | 51.3 | 22.1 | 72.3 | 30.2 | 71.5 | 30.1 | 62.0 | 28.4
|
110 |
|
111 |
+
|
112 |
|
113 |
Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Vistral](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)).
|
114 |
|
|
|
124 |
| SeaLLM-7B-v2.5 | 58.0 | **64.8**
|
125 |
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
### Sea-Bench
|
129 |
|
130 |
+
![fig_sea_bench_side_by_side.png](fig_sea_bench_side_by_side.png)
|
|
|
131 |
|
132 |
|
133 |
### Usage
|