|
Usage:
|
|
|
|
```python
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
question_template = "<|im_start|>user\nMy LEAN 4 state is:\n```{state}```\nPlease write down the reasoning that leads to the possible next tactic and then predict the tactic to help me prove the theorem.<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
model_name = "ScalableMath/Lean-STaR-plus"
|
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
state = "x : \u211d\nn : \u2115\nh\u2080 : -1 < x\nh\u2081 : 0 < n\n\u22a2 1 + \u2191n * x \u2264 (1 + x) ^ n"
|
|
question = question_template.format(state=state)
|
|
|
|
input_tensor = torch.tensor([tokenizer.encode(question)])
|
|
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=500)
|
|
|
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
print(result)
|
|
```
|
|
|
|
Example Results:
|
|
```
|
|
# State
|
|
|
|
x : ℝ
|
|
n : ℕ
|
|
h₀ : -1 < x
|
|
h₁ : 0 < n
|
|
⊢ 1 + ↑n * x ≤ (1 + x) ^ n
|
|
|
|
# Reasoning
|
|
|
|
To prove the inequality involving the binomial expansion of `(1 + x)^n`, we start by considering the binomial expansion of `1 + x` raised to the power `n`. This expansion will allow us to compare the left-hand side and the right-hand side of the inequality.
|
|
|
|
# Next Tactic
|
|
|
|
have h₂ : x = -1 + (x + 1) := by simp
|
|
``` |