Update README.md
Browse files
README.md
CHANGED
@@ -1,47 +1,64 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
basemodel: meta-llama/Meta-Llama-3-8B-Instruct
|
5 |
+
datasets:
|
6 |
+
- Saxo/total_ko_train_set_1_with_wiki_with_orca
|
7 |
+
language:
|
8 |
+
- ko
|
9 |
+
- en
|
10 |
+
pipeline_tag: text-generation
|
11 |
+
---
|
12 |
+
|
13 |
+
# Model Card for Model ID
|
14 |
+
|
15 |
+
<div align="center">
|
16 |
+
<img src="https://www.linkbricks.com/wp-content/uploads/2022/03/%E1%84%85%E1%85%B5%E1%86%BC%E1%84%8F%E1%85%B3%E1%84%87%E1%85%B3%E1%84%85%E1%85%B5%E1%86%A8%E1%84%89%E1%85%B3%E1%84%85%E1%85%A9%E1%84%80%E1%85%A9-2-1024x804.png" />
|
17 |
+
</div>
|
18 |
+
|
19 |
+
|
20 |
+
AI 와 빅데이터 분석 전문 기업인 Linkbricks의 데이터사이언티스트인 지윤성 박사(Saxo)가 meta-llama/Meta-Llama-3-8B를 베이스모델로 GCP상의 H100-60G 8개를 통해 SFT-DPO 훈련을 한(8000 Tokens) 모델.
|
21 |
+
Accelerate, Deepspeed Zero-3 라이브러리를 사용했으며 Flash Attention 은 Disable 로 설정
|
22 |
+
|
23 |
+
Dr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics, trained the meta-llama/Meta-Llama-3-8B base model on 8 H100-60Gs on GCP for 4 hours of instructional training (8000 Tokens).
|
24 |
+
Accelerate, Deepspeed Zero-3 libraries were used.
|
25 |
+
|
26 |
+
www.linkbricks.com, www.linkbricks.vc
|
27 |
+
|
28 |
+
## Configuration including BitsandBytes
|
29 |
+
---
|
30 |
+
bnb_config = BitsAndBytesConfig(
|
31 |
+
load_in_4bit=True,
|
32 |
+
bnb_4bit_use_double_quant=False,
|
33 |
+
bnb_4bit_quant_type="nf4",
|
34 |
+
bnb_4bit_compute_dtype=torch_dtype
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
args = TrainingArguments(
|
39 |
+
output_dir=project_name,
|
40 |
+
run_name=run_name_str,
|
41 |
+
overwrite_output_dir=True,
|
42 |
+
num_train_epochs=20,
|
43 |
+
per_device_train_batch_size=1,
|
44 |
+
gradient_accumulation_steps=4, #1
|
45 |
+
gradient_checkpointing=True,
|
46 |
+
optim="paged_adamw_32bit",
|
47 |
+
#optim="adamw_8bit",
|
48 |
+
logging_steps=10,
|
49 |
+
save_steps=100,
|
50 |
+
save_strategy="epoch",
|
51 |
+
learning_rate=2e-4, #2e-4
|
52 |
+
weight_decay=0.01,
|
53 |
+
max_grad_norm=1, #0.3
|
54 |
+
max_steps=-1,
|
55 |
+
warmup_ratio=0.1,
|
56 |
+
group_by_length=False,
|
57 |
+
fp16 = not torch.cuda.is_bf16_supported(),
|
58 |
+
bf16 = torch.cuda.is_bf16_supported(),
|
59 |
+
#fp16 = True,
|
60 |
+
lr_scheduler_type="cosine", #"constant",
|
61 |
+
disable_tqdm=False,
|
62 |
+
report_to='wandb',
|
63 |
+
push_to_hub=False
|
64 |
+
)
|