SathwikBalu's picture
SathwikBalu/distilbert-base-uncased-lora-text-classification
623f2e5 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: distilbert-base-uncased
metrics:
  - accuracy
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7678
  • Accuracy: {'accuracy': 0.895}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 125 0.2777 {'accuracy': 0.88}
No log 2.0 250 0.4062 {'accuracy': 0.872}
No log 3.0 375 0.4406 {'accuracy': 0.891}
0.2605 4.0 500 0.4675 {'accuracy': 0.898}
0.2605 5.0 625 0.6199 {'accuracy': 0.89}
0.2605 6.0 750 0.6202 {'accuracy': 0.897}
0.2605 7.0 875 0.7120 {'accuracy': 0.888}
0.0386 8.0 1000 0.7659 {'accuracy': 0.89}
0.0386 9.0 1125 0.7548 {'accuracy': 0.895}
0.0386 10.0 1250 0.7678 {'accuracy': 0.895}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2