finetuned-NER / README.md
Sarthak7777's picture
End of training
f22c3bd
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - xtreme
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: finetuned-NER
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xtreme
          type: xtreme
          config: PAN-X.de
          split: test
          args: PAN-X.de
        metrics:
          - name: Precision
            type: precision
            value: 0.7895773261129475
          - name: Recall
            type: recall
            value: 0.8095615806172484
          - name: F1
            type: f1
            value: 0.7994445829031226
          - name: Accuracy
            type: accuracy
            value: 0.9500133133973742

finetuned-NER

This model is a fine-tuned version of distilbert-base-uncased on the xtreme dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1665
  • Precision: 0.7896
  • Recall: 0.8096
  • F1: 0.7994
  • Accuracy: 0.9500

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 313 0.1728 0.7785 0.7946 0.7864 0.9465
No log 2.0 626 0.1665 0.7896 0.8096 0.7994 0.9500

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1