results_1011 / README.md
SangMoone's picture
SangMoone/beomi-ko-gemma_train_test_33000
a147579 verified
metadata
base_model: beomi/gemma-ko-2b
library_name: peft
license: other
tags:
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: results_1011
    results: []

results_1011

This model is a fine-tuned version of beomi/gemma-ko-2b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.0356 0.08 100 1.8434
1.7068 0.16 200 1.6624
1.6553 0.24 300 1.6477
1.6456 0.32 400 1.6441
1.6403 0.4 500 1.6378
1.6347 0.48 600 1.6315
1.6218 0.56 700 1.6256
1.6259 0.64 800 1.6192
1.6156 0.72 900 1.6116
1.6202 0.8 1000 1.6075
1.6031 0.88 1100 1.6058
1.6018 0.96 1200 1.6031
1.5965 1.04 1300 1.6022
1.5988 1.12 1400 1.6002
1.6043 1.2 1500 1.5978
1.5933 1.28 1600 1.5962
1.5909 1.3600 1700 1.5953
1.6014 1.44 1800 1.5932
1.584 1.52 1900 1.5912
1.5865 1.6 2000 1.5897
1.5871 1.6800 2100 1.5880
1.5838 1.76 2200 1.5865
1.5878 1.8400 2300 1.5850
1.58 1.92 2400 1.5835
1.5819 2.0 2500 1.5812
1.5652 2.08 2600 1.5806
1.573 2.16 2700 1.5796
1.5677 2.24 2800 1.5779
1.572 2.32 2900 1.5764
1.5688 2.4 3000 1.5748
1.5663 2.48 3100 1.5730
1.5669 2.56 3200 1.5719
1.5613 2.64 3300 1.5704
1.564 2.7200 3400 1.5690
1.5619 2.8 3500 1.5681
1.5622 2.88 3600 1.5667
1.5628 2.96 3700 1.5651
1.5514 3.04 3800 1.5645
1.5597 3.12 3900 1.5628
1.5499 3.2 4000 1.5622
1.5436 3.2800 4100 1.5610
1.5521 3.36 4200 1.5598
1.5389 3.44 4300 1.5585
1.5518 3.52 4400 1.5577
1.545 3.6 4500 1.5559
1.5383 3.68 4600 1.5552
1.5338 3.76 4700 1.5538
1.5452 3.84 4800 1.5522
1.5269 3.92 4900 1.5516
1.5342 4.0 5000 1.5507
1.5243 4.08 5100 1.5503
1.5209 4.16 5200 1.5498
1.5337 4.24 5300 1.5487
1.5261 4.32 5400 1.5477
1.5255 4.4 5500 1.5463
1.5342 4.48 5600 1.5459
1.5211 4.5600 5700 1.5447
1.5293 4.64 5800 1.5441
1.5203 4.72 5900 1.5425
1.5171 4.8 6000 1.5421
1.5239 4.88 6100 1.5412
1.5184 4.96 6200 1.5404
1.508 5.04 6300 1.5405
1.5113 5.12 6400 1.5396
1.5035 5.2 6500 1.5385
1.5082 5.28 6600 1.5380
1.5144 5.36 6700 1.5376
1.5052 5.44 6800 1.5367
1.5096 5.52 6900 1.5358
1.5139 5.6 7000 1.5348
1.5026 5.68 7100 1.5344
1.5061 5.76 7200 1.5339
1.5073 5.84 7300 1.5332
1.5082 5.92 7400 1.5323
1.5118 6.0 7500 1.5320
1.4939 6.08 7600 1.5323
1.4986 6.16 7700 1.5322
1.492 6.24 7800 1.5324
1.4889 6.32 7900 1.5309
1.4986 6.4 8000 1.5301
1.5003 6.48 8100 1.5297
1.5059 6.5600 8200 1.5295
1.4961 6.64 8300 1.5291
1.4938 6.72 8400 1.5279
1.5039 6.8 8500 1.5276
1.4892 6.88 8600 1.5272
1.5 6.96 8700 1.5268
1.4944 7.04 8800 1.5270
1.4941 7.12 8900 1.5265
1.4849 7.2 9000 1.5270
1.4924 7.28 9100 1.5261
1.4903 7.36 9200 1.5256
1.4909 7.44 9300 1.5254
1.4884 7.52 9400 1.5253
1.4874 7.6 9500 1.5253
1.4973 7.68 9600 1.5251
1.4835 7.76 9700 1.5247
1.4844 7.84 9800 1.5245
1.4845 7.92 9900 1.5242
1.4857 8.0 10000 1.5239
1.483 8.08 10100 1.5241
1.4875 8.16 10200 1.5238
1.488 8.24 10300 1.5238
1.4816 8.32 10400 1.5236
1.4887 8.4 10500 1.5233
1.4785 8.48 10600 1.5236
1.4802 8.56 10700 1.5232
1.4846 8.64 10800 1.5231
1.4832 8.72 10900 1.5231
1.4821 8.8 11000 1.5229
1.4837 8.88 11100 1.5230
1.4865 8.96 11200 1.5229
1.4855 9.04 11300 1.5228
1.4841 9.12 11400 1.5229
1.4765 9.2 11500 1.5230
1.4795 9.28 11600 1.5228
1.4848 9.36 11700 1.5228
1.4827 9.44 11800 1.5229
1.4883 9.52 11900 1.5228
1.4796 9.6 12000 1.5228
1.4899 9.68 12100 1.5228
1.4852 9.76 12200 1.5227
1.48 9.84 12300 1.5227
1.4823 9.92 12400 1.5227
1.4796 10.0 12500 1.5227

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1