Sandiago21's picture
Librarian Bot: Add base_model information to model (#1)
a193714
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
base_model: openai/whisper-large-v2
model-index:
  - name: whisper-large-v2-greek
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: fleurs
          type: fleurs
          config: el_gr
          split: test
          args: el_gr
        metrics:
          - type: wer
            value: 0.17739223993006523
            name: Wer

whisper-large-v2-greek

This model is a fine-tuned version of openai/whisper-large-v2 on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2734
  • Wer Ortho: 0.2102
  • Wer: 0.1774

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.1809 1.0 274 0.2244 0.2261 0.1947
0.0977 2.0 549 0.2306 0.2204 0.1856
0.0594 3.0 824 0.2332 0.2137 0.1814
0.0454 4.0 1099 0.2667 0.2315 0.1985
0.028 5.0 1374 0.2579 0.2151 0.1822
0.022 6.0 1649 0.2674 0.2188 0.1863
0.0202 6.98 1918 0.2734 0.2102 0.1774

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3