Sandiago21
commited on
Commit
·
325d3f4
1
Parent(s):
004ee3c
update README.md with new instructions to call and run the fine-tuned model
Browse files
README.md
CHANGED
@@ -20,6 +20,7 @@ This repository contains a LLaMA-13B further fine-tuned model on conversations a
|
|
20 |
|
21 |
## Model Details
|
22 |
|
|
|
23 |
|
24 |
### Model Description
|
25 |
|
@@ -95,23 +96,91 @@ def generate_prompt(instruction: str, input_ctxt: str = None) -> str:
|
|
95 |
|
96 |
Use the code below to get started with the model.
|
97 |
|
|
|
|
|
98 |
```python
|
99 |
import torch
|
100 |
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
|
101 |
|
102 |
-
|
|
|
|
|
|
|
103 |
model = LlamaForCausalLM.from_pretrained(
|
104 |
-
|
105 |
load_in_8bit=True,
|
106 |
torch_dtype=torch.float16,
|
107 |
device_map="auto",
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
generation_config = GenerationConfig(
|
110 |
temperature=0.2,
|
111 |
top_p=0.75,
|
112 |
top_k=40,
|
113 |
num_beams=4,
|
114 |
-
max_new_tokens=
|
115 |
)
|
116 |
|
117 |
model.eval()
|
@@ -139,7 +208,7 @@ with torch.no_grad():
|
|
139 |
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
140 |
print(response)
|
141 |
|
142 |
-
>>> The capital city of Greece is Athens and it borders
|
143 |
```
|
144 |
|
145 |
## Training Details
|
|
|
20 |
|
21 |
## Model Details
|
22 |
|
23 |
+
Anyone can use (ask prompts) and play with the model using the pre-existing Jupyter Notebook in the **noteboooks** folder.
|
24 |
|
25 |
### Model Description
|
26 |
|
|
|
96 |
|
97 |
Use the code below to get started with the model.
|
98 |
|
99 |
+
1. You can git clone the repo, which contains also the artifacts for the base model for simplicity and completeness, and run the following code snippet to load the mode:
|
100 |
+
|
101 |
```python
|
102 |
import torch
|
103 |
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
|
104 |
|
105 |
+
MODEL_NAME = "Sandiago21/llama-7b-hf-prompt-answering"
|
106 |
+
|
107 |
+
config = PeftConfig.from_pretrained(MODEL_NAME)
|
108 |
+
|
109 |
model = LlamaForCausalLM.from_pretrained(
|
110 |
+
config.base_model_name_or_path,
|
111 |
load_in_8bit=True,
|
112 |
torch_dtype=torch.float16,
|
113 |
device_map="auto",
|
114 |
)
|
115 |
+
|
116 |
+
tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME)
|
117 |
+
|
118 |
+
model = PeftModel.from_pretrained(model, MODEL_NAME)
|
119 |
+
|
120 |
+
generation_config = GenerationConfig(
|
121 |
+
temperature=0.2,
|
122 |
+
top_p=0.75,
|
123 |
+
top_k=40,
|
124 |
+
num_beams=4,
|
125 |
+
max_new_tokens=32,
|
126 |
+
)
|
127 |
+
|
128 |
+
model.eval()
|
129 |
+
if torch.__version__ >= "2":
|
130 |
+
model = torch.compile(model)
|
131 |
+
```
|
132 |
+
|
133 |
+
### Example of Usage
|
134 |
+
```python
|
135 |
+
instruction = "What is the capital city of Greece and with which countries does Greece border?"
|
136 |
+
input_ctxt = None # For some tasks, you can provide an input context to help the model generate a better response.
|
137 |
+
|
138 |
+
prompt = generate_prompt(instruction, input_ctxt)
|
139 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
140 |
+
input_ids = input_ids.to(model.device)
|
141 |
+
|
142 |
+
with torch.no_grad():
|
143 |
+
outputs = model.generate(
|
144 |
+
input_ids=input_ids,
|
145 |
+
generation_config=generation_config,
|
146 |
+
return_dict_in_generate=True,
|
147 |
+
output_scores=True,
|
148 |
+
)
|
149 |
+
|
150 |
+
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
151 |
+
print(response)
|
152 |
+
|
153 |
+
>>> The capital city of Greece is Athens and it borders Turkey, Bulgaria, Macedonia, Albania, and the Aegean Sea.
|
154 |
+
```
|
155 |
+
|
156 |
+
2. You can also directly call the model from HuggingFace using the following code snippet:
|
157 |
+
|
158 |
+
```python
|
159 |
+
import torch
|
160 |
+
from transformers import GenerationConfig, LlamaTokenizer, LlamaForCausalLM
|
161 |
+
|
162 |
+
MODEL_NAME = "Sandiago21/llama-7b-hf-prompt-answering"
|
163 |
+
BASE_MODEL = "decapoda-research/llama-7b-hf
|
164 |
+
|
165 |
+
config = PeftConfig.from_pretrained(MODEL_NAME)
|
166 |
+
|
167 |
+
model = LlamaForCausalLM.from_pretrained(
|
168 |
+
BASE_MODEL,
|
169 |
+
load_in_8bit=True,
|
170 |
+
torch_dtype=torch.float16,
|
171 |
+
device_map="auto",
|
172 |
+
)
|
173 |
+
|
174 |
+
tokenizer = LlamaTokenizer.from_pretrained(MODEL_NAME)
|
175 |
+
|
176 |
+
model = PeftModel.from_pretrained(model, MODEL_NAME)
|
177 |
+
|
178 |
generation_config = GenerationConfig(
|
179 |
temperature=0.2,
|
180 |
top_p=0.75,
|
181 |
top_k=40,
|
182 |
num_beams=4,
|
183 |
+
max_new_tokens=32,
|
184 |
)
|
185 |
|
186 |
model.eval()
|
|
|
208 |
response = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
209 |
print(response)
|
210 |
|
211 |
+
>>> The capital city of Greece is Athens and it borders Turkey, Bulgaria, Macedonia, Albania, and the Aegean Sea.
|
212 |
```
|
213 |
|
214 |
## Training Details
|