Sandiago21
commited on
Commit
•
8bdbd1b
1
Parent(s):
409b252
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marsyas/gtzan
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: hubert-large-ll60k-finetuned-gtzan
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# hubert-large-ll60k-finetuned-gtzan
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) on the GTZAN dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: nan
|
22 |
+
- Accuracy: 0.1
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 8e-05
|
42 |
+
- train_batch_size: 2
|
43 |
+
- eval_batch_size: 2
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 8
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 18
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
56 |
+
| 2.2369 | 1.0 | 112 | 2.1698 | 0.32 |
|
57 |
+
| 1.9093 | 2.0 | 225 | 1.7851 | 0.34 |
|
58 |
+
| 1.5339 | 3.0 | 337 | 1.4068 | 0.46 |
|
59 |
+
| 1.4127 | 4.0 | 450 | 1.2916 | 0.53 |
|
60 |
+
| 0.991 | 5.0 | 562 | 1.0534 | 0.58 |
|
61 |
+
| 0.8365 | 6.0 | 675 | 0.9250 | 0.67 |
|
62 |
+
| 0.6994 | 7.0 | 787 | 1.0032 | 0.72 |
|
63 |
+
| 1.3372 | 8.0 | 900 | nan | 0.41 |
|
64 |
+
| 4.3377 | 9.0 | 1012 | nan | 0.29 |
|
65 |
+
| 0.0 | 10.0 | 1125 | nan | 0.1 |
|
66 |
+
| 0.0 | 11.0 | 1237 | nan | 0.1 |
|
67 |
+
| 0.0 | 12.0 | 1350 | nan | 0.1 |
|
68 |
+
| 0.0 | 13.0 | 1462 | nan | 0.1 |
|
69 |
+
| 0.0 | 14.0 | 1575 | nan | 0.1 |
|
70 |
+
| 0.0 | 15.0 | 1687 | nan | 0.1 |
|
71 |
+
| 0.0 | 16.0 | 1800 | nan | 0.1 |
|
72 |
+
| 0.0 | 17.0 | 1912 | nan | 0.1 |
|
73 |
+
| 0.0 | 17.92 | 2016 | nan | 0.1 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.30.0.dev0
|
79 |
+
- Pytorch 2.0.1+cu117
|
80 |
+
- Datasets 2.13.1
|
81 |
+
- Tokenizers 0.13.3
|