Update README.md
Browse files
README.md
CHANGED
@@ -55,7 +55,6 @@ Using a fixed threshold of 0.5 to convert the scores to binary predictions for e
|
|
55 |
This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification and metrics are better measured per label.
|
56 |
|
57 |
Optimising the threshold per label to optimise the F1 metric, the metrics (evaluated on the go_emotions test split) are:
|
58 |
-
|
59 |
| | f1 | precision | recall | support | threshold |
|
60 |
| -------------- | ----- | --------- | ------ | ------- | --------- |
|
61 |
| admiration | 0.583 | 0.574 | 0.593 | 504 | 0.30 |
|
|
|
55 |
This is a multi-label, multi-class dataset, so each label is effectively a separate binary classification and metrics are better measured per label.
|
56 |
|
57 |
Optimising the threshold per label to optimise the F1 metric, the metrics (evaluated on the go_emotions test split) are:
|
|
|
58 |
| | f1 | precision | recall | support | threshold |
|
59 |
| -------------- | ----- | --------- | ------ | ------- | --------- |
|
60 |
| admiration | 0.583 | 0.574 | 0.593 | 504 | 0.30 |
|