Update README.md
Browse files
README.md
CHANGED
@@ -87,38 +87,7 @@ Optimising the threshold per label to optimise the F1 metric, the metrics (evalu
|
|
87 |
| surprise | 0.329 | 0.318 | 0.340 | 141 | 0.15 |
|
88 |
| neutral | 0.634 | 0.528 | 0.794 | 1787 | 0.30 |
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
| | f1 | precision | recall | support | threshold |
|
93 |
-
| -------------- | ----- | --------- | ------ | ------- | --------- |
|
94 |
-
| admiration | 0.497 | 0.731 | 0.377 | 504 | 0.5 |
|
95 |
-
| amusement | 0.484 | 0.793 | 0.348 | 264 | 0.5 |
|
96 |
-
| anger | 0.162 | 0.528 | 0.096 | 198 | 0.5 |
|
97 |
-
| annoyance | 0.042 | 0.636 | 0.022 | 320 | 0.5 |
|
98 |
-
| approval | 0.106 | 0.769 | 0.057 | 351 | 0.5 |
|
99 |
-
| caring | 0.182 | 0.500 | 0.111 | 135 | 0.5 |
|
100 |
-
| confusion | 0.170 | 0.652 | 0.098 | 153 | 0.5 |
|
101 |
-
| curiosity | 0.284 | 0.529 | 0.194 | 284 | 0.5 |
|
102 |
-
| desire | 0.236 | 0.481 | 0.157 | 83 | 0.5 |
|
103 |
-
| disappointment | 0.039 | 0.750 | 0.020 | 151 | 0.5 |
|
104 |
-
| disapproval | 0.140 | 0.636 | 0.079 | 267 | 0.5 |
|
105 |
-
| disgust | 0.273 | 0.677 | 0.171 | 123 | 0.5 |
|
106 |
-
| embarrassment | 0.314 | 0.571 | 0.216 | 37 | 0.5 |
|
107 |
-
| excitement | 0.130 | 0.400 | 0.078 | 103 | 0.5 |
|
108 |
-
| fear | 0.527 | 0.667 | 0.436 | 78 | 0.5 |
|
109 |
-
| gratitude | 0.792 | 0.908 | 0.702 | 352 | 0.5 |
|
110 |
-
| grief | 0.385 | 0.250 | 0.833 | 6 | 0.5 |
|
111 |
-
| joy | 0.276 | 0.771 | 0.168 | 161 | 0.5 |
|
112 |
-
| love | 0.606 | 0.800 | 0.487 | 238 | 0.5 |
|
113 |
-
| nervousness | 0.269 | 0.241 | 0.304 | 23 | 0.5 |
|
114 |
-
| optimism | 0.305 | 0.720 | 0.194 | 186 | 0.5 |
|
115 |
-
| pride | 0.375 | 0.375 | 0.375 | 16 | 0.5 |
|
116 |
-
| realization | 0.013 | 0.250 | 0.007 | 145 | 0.5 |
|
117 |
-
| relief | 0.353 | 0.500 | 0.273 | 11 | 0.5 |
|
118 |
-
| remorse | 0.469 | 0.548 | 0.411 | 56 | 0.5 |
|
119 |
-
| sadness | 0.365 | 0.731 | 0.244 | 156 | 0.5 |
|
120 |
-
| surprise | 0.142 | 0.786 | 0.078 | 141 | 0.5 |
|
121 |
-
| neutral | 0.547 | 0.644 | 0.475 | 1787 | 0.5 |
|
122 |
|
123 |
### Use with ONNXRuntime
|
124 |
|
@@ -145,6 +114,8 @@ print(outputs[0])
|
|
145 |
> surprise
|
146 |
print(preds_onnx[0])
|
147 |
> array([[0.97136074, 0.02863926]], dtype=float32)
|
|
|
|
|
148 |
```
|
149 |
|
150 |
### Commentary on the dataset
|
|
|
87 |
| surprise | 0.329 | 0.318 | 0.340 | 141 | 0.15 |
|
88 |
| neutral | 0.634 | 0.528 | 0.794 | 1787 | 0.30 |
|
89 |
|
90 |
+
The thesholds are stored in `thresholds.json`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
### Use with ONNXRuntime
|
93 |
|
|
|
114 |
> surprise
|
115 |
print(preds_onnx[0])
|
116 |
> array([[0.97136074, 0.02863926]], dtype=float32)
|
117 |
+
|
118 |
+
# load thresholds.json and use that (per label) to convert the positive case score to a binary prediction
|
119 |
```
|
120 |
|
121 |
### Commentary on the dataset
|