SamLowe commited on
Commit
2352879
1 Parent(s): c95f7cc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -32
README.md CHANGED
@@ -87,38 +87,7 @@ Optimising the threshold per label to optimise the F1 metric, the metrics (evalu
87
  | surprise | 0.329 | 0.318 | 0.340 | 141 | 0.15 |
88
  | neutral | 0.634 | 0.528 | 0.794 | 1787 | 0.30 |
89
 
90
- Using a fixed threshold of 0.5 to convert the scores to binary predictions for each label, the metrics (evaluated on the go_emotions test split) are:
91
-
92
- | | f1 | precision | recall | support | threshold |
93
- | -------------- | ----- | --------- | ------ | ------- | --------- |
94
- | admiration | 0.497 | 0.731 | 0.377 | 504 | 0.5 |
95
- | amusement | 0.484 | 0.793 | 0.348 | 264 | 0.5 |
96
- | anger | 0.162 | 0.528 | 0.096 | 198 | 0.5 |
97
- | annoyance | 0.042 | 0.636 | 0.022 | 320 | 0.5 |
98
- | approval | 0.106 | 0.769 | 0.057 | 351 | 0.5 |
99
- | caring | 0.182 | 0.500 | 0.111 | 135 | 0.5 |
100
- | confusion | 0.170 | 0.652 | 0.098 | 153 | 0.5 |
101
- | curiosity | 0.284 | 0.529 | 0.194 | 284 | 0.5 |
102
- | desire | 0.236 | 0.481 | 0.157 | 83 | 0.5 |
103
- | disappointment | 0.039 | 0.750 | 0.020 | 151 | 0.5 |
104
- | disapproval | 0.140 | 0.636 | 0.079 | 267 | 0.5 |
105
- | disgust | 0.273 | 0.677 | 0.171 | 123 | 0.5 |
106
- | embarrassment | 0.314 | 0.571 | 0.216 | 37 | 0.5 |
107
- | excitement | 0.130 | 0.400 | 0.078 | 103 | 0.5 |
108
- | fear | 0.527 | 0.667 | 0.436 | 78 | 0.5 |
109
- | gratitude | 0.792 | 0.908 | 0.702 | 352 | 0.5 |
110
- | grief | 0.385 | 0.250 | 0.833 | 6 | 0.5 |
111
- | joy | 0.276 | 0.771 | 0.168 | 161 | 0.5 |
112
- | love | 0.606 | 0.800 | 0.487 | 238 | 0.5 |
113
- | nervousness | 0.269 | 0.241 | 0.304 | 23 | 0.5 |
114
- | optimism | 0.305 | 0.720 | 0.194 | 186 | 0.5 |
115
- | pride | 0.375 | 0.375 | 0.375 | 16 | 0.5 |
116
- | realization | 0.013 | 0.250 | 0.007 | 145 | 0.5 |
117
- | relief | 0.353 | 0.500 | 0.273 | 11 | 0.5 |
118
- | remorse | 0.469 | 0.548 | 0.411 | 56 | 0.5 |
119
- | sadness | 0.365 | 0.731 | 0.244 | 156 | 0.5 |
120
- | surprise | 0.142 | 0.786 | 0.078 | 141 | 0.5 |
121
- | neutral | 0.547 | 0.644 | 0.475 | 1787 | 0.5 |
122
 
123
  ### Use with ONNXRuntime
124
 
@@ -145,6 +114,8 @@ print(outputs[0])
145
  > surprise
146
  print(preds_onnx[0])
147
  > array([[0.97136074, 0.02863926]], dtype=float32)
 
 
148
  ```
149
 
150
  ### Commentary on the dataset
 
87
  | surprise | 0.329 | 0.318 | 0.340 | 141 | 0.15 |
88
  | neutral | 0.634 | 0.528 | 0.794 | 1787 | 0.30 |
89
 
90
+ The thesholds are stored in `thresholds.json`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  ### Use with ONNXRuntime
93
 
 
114
  > surprise
115
  print(preds_onnx[0])
116
  > array([[0.97136074, 0.02863926]], dtype=float32)
117
+
118
+ # load thresholds.json and use that (per label) to convert the positive case score to a binary prediction
119
  ```
120
 
121
  ### Commentary on the dataset