Update README.md
Browse files
README.md
CHANGED
@@ -87,38 +87,7 @@ Optimising the threshold per label to optimise the F1 metric, the metrics (evalu
|
|
87 |
| surprise | 0.301 | 0.235 | 0.418 | 141 | 0.10 |
|
88 |
| neutral | 0.626 | 0.519 | 0.786 | 1787 | 0.30 |
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
| | f1 | precision | recall | support | threshold |
|
93 |
-
| ------------- | ----- | --------- | ------ | ------- | --------- |
|
94 |
-
|admiration | 0.443 | 0.722 | 0.319 | 504 | 0.5 |
|
95 |
-
|amusement | 0.364 | 0.805 | 0.235 | 264 | 0.5 |
|
96 |
-
|anger | 0.100 | 0.478 | 0.056 | 198 | 0.5 |
|
97 |
-
|annoyance | 0.012 | 0.667 | 0.006 | 320 | 0.5 |
|
98 |
-
|approval | 0.082 | 0.882 | 0.043 | 351 | 0.5 |
|
99 |
-
|caring | 0.118 | 0.500 | 0.067 | 135 | 0.5 |
|
100 |
-
|confusion | 0.107 | 0.600 | 0.059 | 153 | 0.5 |
|
101 |
-
|curiosity | 0.242 | 0.550 | 0.155 | 284 | 0.5 |
|
102 |
-
|desire | 0.204 | 0.667 | 0.120 | 83 | 0.5 |
|
103 |
-
|disappointment | 0.026 | 1.000 | 0.013 | 151 | 0.5 |
|
104 |
-
|disapproval | 0.084 | 0.600 | 0.045 | 267 | 0.5 |
|
105 |
-
|disgust | 0.243 | 0.720 | 0.146 | 123 | 0.5 |
|
106 |
-
|embarrassment | 0.217 | 0.556 | 0.135 | 37 | 0.5 |
|
107 |
-
|excitement | 0.037 | 0.333 | 0.019 | 103 | 0.5 |
|
108 |
-
|fear | 0.466 | 0.711 | 0.346 | 78 | 0.5 |
|
109 |
-
|gratitude | 0.757 | 0.915 | 0.645 | 352 | 0.5 |
|
110 |
-
|grief | 0.286 | 0.200 | 0.500 | 6 | 0.5 |
|
111 |
-
|joy | 0.197 | 0.818 | 0.112 | 161 | 0.5 |
|
112 |
-
|love | 0.519 | 0.805 | 0.382 | 238 | 0.5 |
|
113 |
-
|nervousness | 0.293 | 0.333 | 0.261 | 23 | 0.5 |
|
114 |
-
|optimism | 0.260 | 0.784 | 0.156 | 186 | 0.5 |
|
115 |
-
|pride | 0.444 | 0.545 | 0.375 | 16 | 0.5 |
|
116 |
-
|realization | 0.014 | 0.500 | 0.007 | 145 | 0.5 |
|
117 |
-
|relief | 0.154 | 0.500 | 0.091 | 11 | 0.5 |
|
118 |
-
|remorse | 0.449 | 0.606 | 0.357 | 56 | 0.5 |
|
119 |
-
|sadness | 0.297 | 0.744 | 0.186 | 156 | 0.5 |
|
120 |
-
|surprise | 0.042 | 1.000 | 0.021 | 141 | 0.5 |
|
121 |
-
|neutral | 0.528 | 0.649 | 0.445 | 1787 | 0.5 |
|
122 |
|
123 |
### Use with ONNXRuntime
|
124 |
|
@@ -145,6 +114,8 @@ print(outputs[0])
|
|
145 |
> surprise
|
146 |
print(preds_onnx[0])
|
147 |
> array([[0.97136074, 0.02863926]], dtype=float32)
|
|
|
|
|
148 |
```
|
149 |
|
150 |
### Commentary on the dataset
|
|
|
87 |
| surprise | 0.301 | 0.235 | 0.418 | 141 | 0.10 |
|
88 |
| neutral | 0.626 | 0.519 | 0.786 | 1787 | 0.30 |
|
89 |
|
90 |
+
The thesholds are stored in `thresholds.json`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
### Use with ONNXRuntime
|
93 |
|
|
|
114 |
> surprise
|
115 |
print(preds_onnx[0])
|
116 |
> array([[0.97136074, 0.02863926]], dtype=float32)
|
117 |
+
|
118 |
+
# load thresholds.json and use that (per label) to convert the positive case score to a binary prediction
|
119 |
```
|
120 |
|
121 |
### Commentary on the dataset
|