Upload multi_turn_xlam.ipynb
Browse files- example/multi_turn_xlam.ipynb +459 -0
example/multi_turn_xlam.ipynb
ADDED
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "ce4a9ccf-4bd6-43fb-a24d-b6a7da401a96",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## Load xLAM model"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "b1351d81-4502-4b65-b88a-464acd0e80f8",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import torch \n",
|
19 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
|
20 |
+
"torch.random.manual_seed(0) \n",
|
21 |
+
"\n",
|
22 |
+
"model_name = \"Salesforce/xLAM-7b-r\"\n",
|
23 |
+
"model = AutoModelForCausalLM.from_pretrained(model_name, device_map=\"auto\", torch_dtype=\"auto\", trust_remote_code=True)\n",
|
24 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name) "
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "markdown",
|
29 |
+
"id": "2cdd5bae-da43-4713-9956-360f1f3a9721",
|
30 |
+
"metadata": {},
|
31 |
+
"source": [
|
32 |
+
"## Build the prompt"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 1,
|
38 |
+
"id": "e138e9f6-0543-427c-bce6-b4f14765a040",
|
39 |
+
"metadata": {
|
40 |
+
"tags": []
|
41 |
+
},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"import json\n",
|
45 |
+
"\n",
|
46 |
+
"# Please use our provided instruction prompt for best performance\n",
|
47 |
+
"task_instruction = \"\"\"\n",
|
48 |
+
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\"\"\".strip()\n",
|
49 |
+
"\n",
|
50 |
+
"format_instruction = \"\"\"\n",
|
51 |
+
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
|
52 |
+
"tool_calls an empty list \"[]\".\n",
|
53 |
+
"```\n",
|
54 |
+
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
|
55 |
+
"```\n",
|
56 |
+
"\"\"\".strip()\n",
|
57 |
+
"\n",
|
58 |
+
"get_weather_api = {\n",
|
59 |
+
" \"name\": \"get_weather\",\n",
|
60 |
+
" \"description\": \"Get the current weather for a location\",\n",
|
61 |
+
" \"parameters\": {\n",
|
62 |
+
" \"type\": \"object\",\n",
|
63 |
+
" \"properties\": {\n",
|
64 |
+
" \"location\": {\n",
|
65 |
+
" \"type\": \"string\",\n",
|
66 |
+
" \"description\": \"The city and state, e.g. San Francisco, New York\"\n",
|
67 |
+
" },\n",
|
68 |
+
" \"unit\": {\n",
|
69 |
+
" \"type\": \"string\",\n",
|
70 |
+
" \"enum\": [\"celsius\", \"fahrenheit\"],\n",
|
71 |
+
" \"description\": \"The unit of temperature to return\"\n",
|
72 |
+
" }\n",
|
73 |
+
" },\n",
|
74 |
+
" \"required\": [\"location\"]\n",
|
75 |
+
" }\n",
|
76 |
+
"}\n",
|
77 |
+
"\n",
|
78 |
+
"search_api = {\n",
|
79 |
+
" \"name\": \"search\",\n",
|
80 |
+
" \"description\": \"Search for information on the internet\",\n",
|
81 |
+
" \"parameters\": {\n",
|
82 |
+
" \"type\": \"object\",\n",
|
83 |
+
" \"properties\": {\n",
|
84 |
+
" \"query\": {\n",
|
85 |
+
" \"type\": \"string\",\n",
|
86 |
+
" \"description\": \"The search query, e.g. 'latest news on AI'\"\n",
|
87 |
+
" }\n",
|
88 |
+
" },\n",
|
89 |
+
" \"required\": [\"query\"]\n",
|
90 |
+
" }\n",
|
91 |
+
"}\n",
|
92 |
+
"\n",
|
93 |
+
"openai_format_tools = [get_weather_api, search_api]\n",
|
94 |
+
"\n",
|
95 |
+
"# Define the input query and available tools\n",
|
96 |
+
"query = \"What's the weather like in New York in fahrenheit?\"\n",
|
97 |
+
"\n",
|
98 |
+
"# Helper function to convert openai format tools to our more concise xLAM format\n",
|
99 |
+
"def convert_to_xlam_tool(tools):\n",
|
100 |
+
" ''''''\n",
|
101 |
+
" if isinstance(tools, dict):\n",
|
102 |
+
" return {\n",
|
103 |
+
" \"name\": tools[\"name\"],\n",
|
104 |
+
" \"description\": tools[\"description\"],\n",
|
105 |
+
" \"parameters\": {k: v for k, v in tools[\"parameters\"].get(\"properties\", {}).items()}\n",
|
106 |
+
" }\n",
|
107 |
+
" elif isinstance(tools, list):\n",
|
108 |
+
" return [convert_to_xlam_tool(tool) for tool in tools]\n",
|
109 |
+
" else:\n",
|
110 |
+
" return tools\n",
|
111 |
+
"\n",
|
112 |
+
"def build_conversation_history_prompt(conversation_history: str):\n",
|
113 |
+
" parsed_history = []\n",
|
114 |
+
" for step_data in conversation_history:\n",
|
115 |
+
" parsed_history.append({\n",
|
116 |
+
" \"step_id\": step_data[\"step_id\"],\n",
|
117 |
+
" \"thought\": step_data[\"thought\"],\n",
|
118 |
+
" \"tool_calls\": step_data[\"tool_calls\"],\n",
|
119 |
+
" \"next_observation\": step_data[\"next_observation\"],\n",
|
120 |
+
" \"user_input\": step_data['user_input']\n",
|
121 |
+
" })\n",
|
122 |
+
" \n",
|
123 |
+
" history_string = json.dumps(parsed_history)\n",
|
124 |
+
" return f\"\\n[BEGIN OF HISTORY STEPS]\\n{history_string}\\n[END OF HISTORY STEPS]\\n\"\n",
|
125 |
+
" \n",
|
126 |
+
" \n",
|
127 |
+
"# Helper function to build the input prompt for our model\n",
|
128 |
+
"def build_prompt(task_instruction: str, format_instruction: str, tools: list, query: str, conversation_history: list):\n",
|
129 |
+
" prompt = f\"[BEGIN OF TASK INSTRUCTION]\\n{task_instruction}\\n[END OF TASK INSTRUCTION]\\n\\n\"\n",
|
130 |
+
" prompt += f\"[BEGIN OF AVAILABLE TOOLS]\\n{json.dumps(xlam_format_tools)}\\n[END OF AVAILABLE TOOLS]\\n\\n\"\n",
|
131 |
+
" prompt += f\"[BEGIN OF FORMAT INSTRUCTION]\\n{format_instruction}\\n[END OF FORMAT INSTRUCTION]\\n\\n\"\n",
|
132 |
+
" prompt += f\"[BEGIN OF QUERY]\\n{query}\\n[END OF QUERY]\\n\\n\"\n",
|
133 |
+
" \n",
|
134 |
+
" if len(conversation_history) > 0: prompt += build_conversation_history_prompt(conversation_history)\n",
|
135 |
+
" return prompt\n",
|
136 |
+
"\n",
|
137 |
+
"\n",
|
138 |
+
" \n",
|
139 |
+
"# Build the input and start the inference\n",
|
140 |
+
"xlam_format_tools = convert_to_xlam_tool(openai_format_tools)\n",
|
141 |
+
"\n",
|
142 |
+
"conversation_history = []\n",
|
143 |
+
"content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)\n",
|
144 |
+
"\n",
|
145 |
+
"messages=[\n",
|
146 |
+
" { 'role': 'user', 'content': content}\n",
|
147 |
+
"]\n"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": 2,
|
153 |
+
"id": "ff7bccd5-fa04-4fbe-92b3-13f58914da4d",
|
154 |
+
"metadata": {
|
155 |
+
"tags": []
|
156 |
+
},
|
157 |
+
"outputs": [
|
158 |
+
{
|
159 |
+
"name": "stdout",
|
160 |
+
"output_type": "stream",
|
161 |
+
"text": [
|
162 |
+
"[BEGIN OF TASK INSTRUCTION]\n",
|
163 |
+
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\n",
|
164 |
+
"[END OF TASK INSTRUCTION]\n",
|
165 |
+
"\n",
|
166 |
+
"[BEGIN OF AVAILABLE TOOLS]\n",
|
167 |
+
"[{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, New York\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}, {\"name\": \"search\", \"description\": \"Search for information on the internet\", \"parameters\": {\"query\": {\"type\": \"string\", \"description\": \"The search query, e.g. 'latest news on AI'\"}}}]\n",
|
168 |
+
"[END OF AVAILABLE TOOLS]\n",
|
169 |
+
"\n",
|
170 |
+
"[BEGIN OF FORMAT INSTRUCTION]\n",
|
171 |
+
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
|
172 |
+
"tool_calls an empty list \"[]\".\n",
|
173 |
+
"```\n",
|
174 |
+
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
|
175 |
+
"```\n",
|
176 |
+
"[END OF FORMAT INSTRUCTION]\n",
|
177 |
+
"\n",
|
178 |
+
"[BEGIN OF QUERY]\n",
|
179 |
+
"What's the weather like in New York in fahrenheit?\n",
|
180 |
+
"[END OF QUERY]\n",
|
181 |
+
"\n",
|
182 |
+
"\n"
|
183 |
+
]
|
184 |
+
}
|
185 |
+
],
|
186 |
+
"source": [
|
187 |
+
"print(content)"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "markdown",
|
192 |
+
"id": "a5fb0006-9f5d-4d79-a8cd-819bad627441",
|
193 |
+
"metadata": {},
|
194 |
+
"source": [
|
195 |
+
"## Get the model output (agent_action)"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"id": "cbe56588-c786-4913-9062-373a22a92e08",
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
|
206 |
+
"\n",
|
207 |
+
"# tokenizer.eos_token_id is the id of <|EOT|> token\n",
|
208 |
+
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
|
209 |
+
"agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n"
|
210 |
+
]
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"cell_type": "markdown",
|
214 |
+
"id": "b20ed2ae-86f6-489b-ad54-fe7ea911667b",
|
215 |
+
"metadata": {},
|
216 |
+
"source": [
|
217 |
+
"For demo purpose, we use an example agent_action"
|
218 |
+
]
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"cell_type": "code",
|
222 |
+
"execution_count": 3,
|
223 |
+
"id": "ab20c084-44fa-403d-92a5-1b8ced72e9be",
|
224 |
+
"metadata": {
|
225 |
+
"tags": []
|
226 |
+
},
|
227 |
+
"outputs": [],
|
228 |
+
"source": [
|
229 |
+
"agent_action = \"\"\"{\"thought\": \"\", \"tool_calls\": [{\"name\": \"get_weather\", \"arguments\": {\"location\": \"New York\"}}]}\n",
|
230 |
+
"\"\"\".strip()"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "markdown",
|
235 |
+
"id": "1cd4d8e4-ee6b-499e-b75f-a48df7848a60",
|
236 |
+
"metadata": {},
|
237 |
+
"source": [
|
238 |
+
"### Add follow-up question"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": 4,
|
244 |
+
"id": "825649ba-2691-43a2-b3d8-7baf8b66d46e",
|
245 |
+
"metadata": {},
|
246 |
+
"outputs": [],
|
247 |
+
"source": [
|
248 |
+
"def parse_agent_action(agent_action: str):\n",
|
249 |
+
" \"\"\"\n",
|
250 |
+
" Given an agent's action, parse it to add to conversation history\n",
|
251 |
+
" \"\"\"\n",
|
252 |
+
" try: parsed_agent_action_json = json.loads(agent_action)\n",
|
253 |
+
" except: return \"\", []\n",
|
254 |
+
" \n",
|
255 |
+
" if \"thought\" not in parsed_agent_action_json.keys(): thought = \"\"\n",
|
256 |
+
" else: thought = parsed_agent_action_json[\"thought\"]\n",
|
257 |
+
" \n",
|
258 |
+
" if \"tool_calls\" not in parsed_agent_action_json.keys(): tool_calls = []\n",
|
259 |
+
" else: tool_calls = parsed_agent_action_json[\"tool_calls\"]\n",
|
260 |
+
" \n",
|
261 |
+
" return thought, tool_calls\n",
|
262 |
+
"\n",
|
263 |
+
"def update_conversation_history(conversation_history: list, agent_action: str, environment_response: str, user_input: str):\n",
|
264 |
+
" \"\"\"\n",
|
265 |
+
" Update the conversation history list based on the new agent_action, environment_response, and/or user_input\n",
|
266 |
+
" \"\"\"\n",
|
267 |
+
" thought, tool_calls = parse_agent_action(agent_action)\n",
|
268 |
+
" new_step_data = {\n",
|
269 |
+
" \"step_id\": len(conversation_history) + 1,\n",
|
270 |
+
" \"thought\": thought,\n",
|
271 |
+
" \"tool_calls\": tool_calls,\n",
|
272 |
+
" \"next_observation\": environment_response,\n",
|
273 |
+
" \"user_input\": user_input,\n",
|
274 |
+
" }\n",
|
275 |
+
" \n",
|
276 |
+
" conversation_history.append(new_step_data)\n",
|
277 |
+
"\n",
|
278 |
+
"def get_environment_response(agent_action: str):\n",
|
279 |
+
" \"\"\"\n",
|
280 |
+
" Get the environment response for the agent_action\n",
|
281 |
+
" \"\"\"\n",
|
282 |
+
" # TODO: add custom implementation here\n",
|
283 |
+
" error_message, response_message = \"\", \"Sunny, 81 degrees\"\n",
|
284 |
+
" return {\"error\": error_message, \"response\": response_message}\n",
|
285 |
+
"\n"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "markdown",
|
290 |
+
"id": "051e6aff-c21b-4dcb-9eb8-c34154d90c39",
|
291 |
+
"metadata": {},
|
292 |
+
"source": [
|
293 |
+
"1. **Get the next state after agent's response:**\n",
|
294 |
+
" The next 2 lines are examples of getting environment response and user_input.\n",
|
295 |
+
" It is depended on particular usage, we can have either one or both of those."
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": 5,
|
301 |
+
"id": "649a8e9d-9757-408c-9214-0590556c2db4",
|
302 |
+
"metadata": {
|
303 |
+
"tags": []
|
304 |
+
},
|
305 |
+
"outputs": [],
|
306 |
+
"source": [
|
307 |
+
"environment_response = get_environment_response(agent_action)\n",
|
308 |
+
"user_input = \"Now, search on the Internet for cute puppies\""
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "markdown",
|
313 |
+
"id": "9c9c9418-1c54-4381-81d1-7f3834037739",
|
314 |
+
"metadata": {},
|
315 |
+
"source": [
|
316 |
+
"2. After we got environment_response and (or) user_input, we want to add to our conversation history"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": 6,
|
322 |
+
"id": "bcfe89f3-8237-41bf-b92c-7c7568366042",
|
323 |
+
"metadata": {
|
324 |
+
"tags": []
|
325 |
+
},
|
326 |
+
"outputs": [
|
327 |
+
{
|
328 |
+
"data": {
|
329 |
+
"text/plain": [
|
330 |
+
"[{'step_id': 1,\n",
|
331 |
+
" 'thought': '',\n",
|
332 |
+
" 'tool_calls': [{'name': 'get_weather',\n",
|
333 |
+
" 'arguments': {'location': 'New York'}}],\n",
|
334 |
+
" 'next_observation': {'error': '', 'response': 'Sunny, 81 degrees'},\n",
|
335 |
+
" 'user_input': 'Now, search on the Internet for cute puppies'}]"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
"execution_count": 6,
|
339 |
+
"metadata": {},
|
340 |
+
"output_type": "execute_result"
|
341 |
+
}
|
342 |
+
],
|
343 |
+
"source": [
|
344 |
+
"update_conversation_history(conversation_history, agent_action, environment_response, user_input)\n",
|
345 |
+
"conversation_history"
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "markdown",
|
350 |
+
"id": "23ba97c6-2356-49e8-a07b-0e664b7f505c",
|
351 |
+
"metadata": {},
|
352 |
+
"source": [
|
353 |
+
"3. We now can build the prompt with the updated history, and prepare the inputs for the LLM"
|
354 |
+
]
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"cell_type": "code",
|
358 |
+
"execution_count": 7,
|
359 |
+
"id": "ed204b3a-3be5-431b-b355-facaf31309d2",
|
360 |
+
"metadata": {
|
361 |
+
"tags": []
|
362 |
+
},
|
363 |
+
"outputs": [],
|
364 |
+
"source": [
|
365 |
+
"content = build_prompt(task_instruction, format_instruction, xlam_format_tools, query, conversation_history)\n",
|
366 |
+
"messages=[\n",
|
367 |
+
" { 'role': 'user', 'content': content}\n",
|
368 |
+
"]\n"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"execution_count": 8,
|
374 |
+
"id": "8af843aa-6a47-4938-a455-567ea0cccce3",
|
375 |
+
"metadata": {
|
376 |
+
"tags": []
|
377 |
+
},
|
378 |
+
"outputs": [
|
379 |
+
{
|
380 |
+
"name": "stdout",
|
381 |
+
"output_type": "stream",
|
382 |
+
"text": [
|
383 |
+
"[BEGIN OF TASK INSTRUCTION]\n",
|
384 |
+
"Based on the previous context and API request history, generate an API request or a response as an AI assistant.\n",
|
385 |
+
"[END OF TASK INSTRUCTION]\n",
|
386 |
+
"\n",
|
387 |
+
"[BEGIN OF AVAILABLE TOOLS]\n",
|
388 |
+
"[{\"name\": \"get_weather\", \"description\": \"Get the current weather for a location\", \"parameters\": {\"location\": {\"type\": \"string\", \"description\": \"The city and state, e.g. San Francisco, New York\"}, \"unit\": {\"type\": \"string\", \"enum\": [\"celsius\", \"fahrenheit\"], \"description\": \"The unit of temperature to return\"}}}, {\"name\": \"search\", \"description\": \"Search for information on the internet\", \"parameters\": {\"query\": {\"type\": \"string\", \"description\": \"The search query, e.g. 'latest news on AI'\"}}}]\n",
|
389 |
+
"[END OF AVAILABLE TOOLS]\n",
|
390 |
+
"\n",
|
391 |
+
"[BEGIN OF FORMAT INSTRUCTION]\n",
|
392 |
+
"The output should be of the JSON format, which specifies a list of generated function calls. The example format is as follows, please make sure the parameter type is correct. If no function call is needed, please make \n",
|
393 |
+
"tool_calls an empty list \"[]\".\n",
|
394 |
+
"```\n",
|
395 |
+
"{\"thought\": \"the thought process, or an empty string\", \"tool_calls\": [{\"name\": \"api_name1\", \"arguments\": {\"argument1\": \"value1\", \"argument2\": \"value2\"}}]}\n",
|
396 |
+
"```\n",
|
397 |
+
"[END OF FORMAT INSTRUCTION]\n",
|
398 |
+
"\n",
|
399 |
+
"[BEGIN OF QUERY]\n",
|
400 |
+
"What's the weather like in New York in fahrenheit?\n",
|
401 |
+
"[END OF QUERY]\n",
|
402 |
+
"\n",
|
403 |
+
"\n",
|
404 |
+
"[BEGIN OF HISTORY STEPS]\n",
|
405 |
+
"[{\"step_id\": 1, \"thought\": \"\", \"tool_calls\": [{\"name\": \"get_weather\", \"arguments\": {\"location\": \"New York\"}}], \"next_observation\": {\"error\": \"\", \"response\": \"Sunny, 81 degrees\"}, \"user_input\": \"Now, search on the Internet for cute puppies\"}]\n",
|
406 |
+
"[END OF HISTORY STEPS]\n",
|
407 |
+
"\n"
|
408 |
+
]
|
409 |
+
}
|
410 |
+
],
|
411 |
+
"source": [
|
412 |
+
"print(content)"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "markdown",
|
417 |
+
"id": "71f76a10-a152-49d7-aa6f-3060cc49b935",
|
418 |
+
"metadata": {},
|
419 |
+
"source": [
|
420 |
+
"## Get the model output for follow-up question"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"cell_type": "code",
|
425 |
+
"execution_count": null,
|
426 |
+
"id": "30af06fd-4aa7-4550-af39-3a77b5951882",
|
427 |
+
"metadata": {},
|
428 |
+
"outputs": [],
|
429 |
+
"source": [
|
430 |
+
"inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors=\"pt\").to(model.device)\n",
|
431 |
+
"# 5. Generate the outputs & decode\n",
|
432 |
+
"# tokenizer.eos_token_id is the id of <|EOT|> token\n",
|
433 |
+
"outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)\n",
|
434 |
+
"agent_action = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)\n"
|
435 |
+
]
|
436 |
+
}
|
437 |
+
],
|
438 |
+
"metadata": {
|
439 |
+
"kernelspec": {
|
440 |
+
"display_name": "Python 3 (ipykernel) (Local)",
|
441 |
+
"language": "python",
|
442 |
+
"name": "python3"
|
443 |
+
},
|
444 |
+
"language_info": {
|
445 |
+
"codemirror_mode": {
|
446 |
+
"name": "ipython",
|
447 |
+
"version": 3
|
448 |
+
},
|
449 |
+
"file_extension": ".py",
|
450 |
+
"mimetype": "text/x-python",
|
451 |
+
"name": "python",
|
452 |
+
"nbconvert_exporter": "python",
|
453 |
+
"pygments_lexer": "ipython3",
|
454 |
+
"version": "3.10.13"
|
455 |
+
}
|
456 |
+
},
|
457 |
+
"nbformat": 4,
|
458 |
+
"nbformat_minor": 5
|
459 |
+
}
|