- README.md +113 -0
- config.json +22 -0
- generation_config.json +6 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +330 -0
- tokenization_codegen25.py +245 -0
- tokenizer_config.json +12 -0
README.md
CHANGED
@@ -1,3 +1,116 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
|
5 |
+
# CodeGen2.5-7B-mono
|
6 |
+
|
7 |
+
Title: [**CodeGen2.5: Small, but mighty**](https://blog.salesforceairesearch.com/codegen25)
|
8 |
+
|
9 |
+
Authors: [Erik Nijkamp](https://eriknijkamp.com)\*, [Hiroaki Hayashi](https://hiroakih.me)\*, Yingbo Zhou, Caiming Xiong
|
10 |
+
|
11 |
+
(\* equal contribution)
|
12 |
+
|
13 |
+
## Model description
|
14 |
+
|
15 |
+
[CodeGen2.5](https://github.com/salesforce/CodeGen) is a family of autoregressive language models for **program synthesis**.
|
16 |
+
|
17 |
+
Building upon [CodeGen2](https://arxiv.org/abs/2305.02309), the model is trained on [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata) for 1.4T tokens, achieving competitive results compared to StarCoderBase-15.5B with less than half the size.
|
18 |
+
|
19 |
+
Like CodeGen2, this model is capable of infilling, and supports multiple programming languages.
|
20 |
+
|
21 |
+
We then further train on Python, then on instruction data. We release all the models as follows:
|
22 |
+
|
23 |
+
* **CodeGen2.5-7B-multi**: Trained on StarCoderData. Licensed under Apache-2.0.
|
24 |
+
* **CodeGen2.5-7B-mono** (this repo): Further trained on additional Python tokens. Licensed under Apache-2.0.
|
25 |
+
* **CodeGen2.5-7B-instruct**: Further trained from CodeGen2.5-7B-mono on instruction data. *Research purposes only*.
|
26 |
+
|
27 |
+
## How to use
|
28 |
+
|
29 |
+
This model can be easily loaded using the `AutoModelForCausalLM` functionality.
|
30 |
+
|
31 |
+
### Pre-requisite
|
32 |
+
|
33 |
+
Please install OpenAI `tiktoken` for the tokenizer.
|
34 |
+
|
35 |
+
```bash
|
36 |
+
pip install tiktoken==0.4.0
|
37 |
+
```
|
38 |
+
|
39 |
+
### Causal sampling (code autocompletion)
|
40 |
+
|
41 |
+
For regular causal sampling, simply generate completions given the context:
|
42 |
+
```python
|
43 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen25-7b-mono", trust_remote_code=True)
|
45 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen25-7b-mono")
|
46 |
+
|
47 |
+
text = "def hello_world():"
|
48 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
49 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
50 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
|
51 |
+
```
|
52 |
+
|
53 |
+
### Infill sampling
|
54 |
+
|
55 |
+
For **infill** sampling, we follow the CodeGen2 format:
|
56 |
+
|
57 |
+
* `<mask_N>`: N-th span to be masked. In practice, use `<mask_1>` to where you want to sample infill.
|
58 |
+
* `<sep>`: Separator token between the suffix and the infilled sample. See below.
|
59 |
+
* `<eom>`: "End-Of-Mask" token that model will output at the end of infilling. You may use this token to truncate the output.
|
60 |
+
|
61 |
+
For example, if we want to generate infill for the following cursor position of a function:
|
62 |
+
```python
|
63 |
+
def hello_world():
|
64 |
+
|
|
65 |
+
return name
|
66 |
+
```
|
67 |
+
we construct an input to the model by
|
68 |
+
|
69 |
+
1. Inserting `<mask_1>` token in place of cursor position
|
70 |
+
2. Append `<sep>` token to indicate the boundary
|
71 |
+
3. Insert another `<mask_1>` to indicate which mask we want to infill.
|
72 |
+
|
73 |
+
The final snippet looks as follows:
|
74 |
+
|
75 |
+
```python
|
76 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen25-7b-mono")
|
78 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2k-7b-mono")
|
79 |
+
|
80 |
+
|
81 |
+
def format(prefix, suffix):
|
82 |
+
return prefix + "<mask_1>" + suffix + "<|endoftext|>" + "<sep>" + "<mask_1>"
|
83 |
+
|
84 |
+
|
85 |
+
prefix = "def hello_world():\n "
|
86 |
+
suffix = " return name"
|
87 |
+
text = format(prefix, suffix)
|
88 |
+
input_ids = tokenizer(text, return_tensors="pt").input_ids
|
89 |
+
generated_ids = model.generate(input_ids, max_length=128)
|
90 |
+
print(tokenizer.decode(generated_ids[0], skip_special_tokens=False)[len(text):])
|
91 |
+
```
|
92 |
+
|
93 |
+
You might want to truncate the model output with `<eom>`.
|
94 |
+
|
95 |
+
## Evaluation results
|
96 |
+
|
97 |
+
We evaluate our models on HumanEval and HumanEval-Infill.
|
98 |
+
Please refer to the [blog](https://blog.salesforceairesearch.com/codegen25) for more details.
|
99 |
+
|
100 |
+
## Intended use and limitations
|
101 |
+
|
102 |
+
As an autoregressive language model, CodeGen2.5 is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them.
|
103 |
+
However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well.
|
104 |
+
|
105 |
+
## BibTeX entry and citation info
|
106 |
+
|
107 |
+
Please cite CodeGen2 paper:
|
108 |
+
|
109 |
+
```bibtex
|
110 |
+
@article{Nijkamp2023codegen2,
|
111 |
+
title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages},
|
112 |
+
author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo},
|
113 |
+
journal={arXiv preprint},
|
114 |
+
year={2023}
|
115 |
+
}
|
116 |
+
```
|
config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LlamaForCausalLM"
|
4 |
+
],
|
5 |
+
"bos_token_id": 50256,
|
6 |
+
"eos_token_id": 50256,
|
7 |
+
"hidden_act": "silu",
|
8 |
+
"hidden_size": 4096,
|
9 |
+
"initializer_range": 0.02,
|
10 |
+
"intermediate_size": 11008,
|
11 |
+
"max_position_embeddings": 2048,
|
12 |
+
"model_type": "llama",
|
13 |
+
"num_attention_heads": 32,
|
14 |
+
"num_hidden_layers": 32,
|
15 |
+
"pad_token_id": 0,
|
16 |
+
"rms_norm_eps": 1e-06,
|
17 |
+
"tie_word_embeddings": false,
|
18 |
+
"torch_dtype": "float32",
|
19 |
+
"transformers_version": "4.29.2",
|
20 |
+
"use_cache": true,
|
21 |
+
"vocab_size": 51200
|
22 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.29.2"
|
6 |
+
}
|
pytorch_model-00001-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28a387422c7c4a3b974030edeb0ddbf267d6c38da955dae8eedaaa3f8a5f40e9
|
3 |
+
size 9945097125
|
pytorch_model-00002-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44dad4590c8e3278a286441872569ad1451afc10f816288ac5c8ee68cdbc27b4
|
3 |
+
size 9961910848
|
pytorch_model-00003-of-00003.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ea2ac153a38f30aa2bae240ec91dcbebbaf2dc1889738fb05fcd19f6bc316ce
|
3 |
+
size 7675918907
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 27582816256
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00003.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00003.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
268 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
269 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
270 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
271 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
272 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
273 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
274 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
275 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
276 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
277 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
278 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
279 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
280 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
281 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
282 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
283 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
284 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
285 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
286 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
287 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
288 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
289 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
290 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
291 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
292 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
293 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
294 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
295 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
296 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
297 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
298 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
299 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
300 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
301 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
302 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
303 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
304 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
305 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
306 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
307 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
308 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
309 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
310 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
311 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
312 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
313 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
314 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
315 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
316 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
317 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
318 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
319 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
320 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
321 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
322 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
323 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
324 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
325 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
326 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00003.bin",
|
327 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
328 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
329 |
+
}
|
330 |
+
}
|
tokenization_codegen25.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, salesforce.com, inc.
|
2 |
+
# All rights reserved.
|
3 |
+
# SPDX-License-Identifier: Apache-2.0
|
4 |
+
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
|
5 |
+
"""Tokenization classes for CodeGen2.5."""
|
6 |
+
|
7 |
+
from typing import List, Optional
|
8 |
+
|
9 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
try:
|
13 |
+
import tiktoken
|
14 |
+
except ModuleNotFoundError as e:
|
15 |
+
raise ModuleNotFoundError("CodeGen2.5 requires the installation of tiktoken. Please install it via `pip install tiktoken`.") from e
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__)
|
19 |
+
|
20 |
+
MAX_MODEL_INPUT_SIZES = {
|
21 |
+
"Salesforce/codegen25-7b-multi": 2048,
|
22 |
+
"Salesforce/codegen25-7b-mono": 2048,
|
23 |
+
"Salesforce/codegen25-7b-instruct": 2048,
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
|
28 |
+
if not add_special:
|
29 |
+
return tiktoken.get_encoding(base)
|
30 |
+
|
31 |
+
def include_whitespace(n_min=2, n_max=20):
|
32 |
+
whitespaces = [" " * n for n in reversed(range(n_min, n_max))]
|
33 |
+
return whitespaces
|
34 |
+
|
35 |
+
def include_tabs(n_min=2, n_max=20):
|
36 |
+
tabs = ["\t" * n for n in reversed(range(n_min, n_max))]
|
37 |
+
return tabs
|
38 |
+
|
39 |
+
def include_fim_tokens():
|
40 |
+
fim_tokens = [
|
41 |
+
"<fim_prefix>",
|
42 |
+
"<fim_middle>",
|
43 |
+
"<fim_suffix>",
|
44 |
+
"<fim_pad>",
|
45 |
+
"<filename>",
|
46 |
+
"<gh_stars>",
|
47 |
+
"<issue_start>",
|
48 |
+
"<issue_comment>",
|
49 |
+
"<issue_closed>",
|
50 |
+
"<jupyter_start>",
|
51 |
+
"<jupyter_text>",
|
52 |
+
"<jupyter_code>",
|
53 |
+
"<jupyter_output>",
|
54 |
+
"<empty_output>",
|
55 |
+
"<commit_before>",
|
56 |
+
"<commit_msg>",
|
57 |
+
"<commit_after>",
|
58 |
+
"<reponame>"
|
59 |
+
]
|
60 |
+
return fim_tokens
|
61 |
+
|
62 |
+
def include_codegen2_tokens():
|
63 |
+
tokens = []
|
64 |
+
tokens += [f"<dummy_{i}>" for i in range(4)]
|
65 |
+
tokens.append("<sep>") # 50317
|
66 |
+
tokens.append("<eom>") # 50318
|
67 |
+
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
|
68 |
+
return tokens
|
69 |
+
|
70 |
+
add_whitespaces = include_whitespace(n_min=2, n_max=32)
|
71 |
+
add_tabs = include_tabs(n_min=2, n_max=10)
|
72 |
+
fim_tokens = include_fim_tokens()
|
73 |
+
codegen2_tokens = include_codegen2_tokens()
|
74 |
+
|
75 |
+
tokenizer = tiktoken.get_encoding(base)
|
76 |
+
|
77 |
+
idx = tokenizer.n_vocab
|
78 |
+
|
79 |
+
bpe_ranks = tokenizer._mergeable_ranks
|
80 |
+
|
81 |
+
for wsp in add_whitespaces:
|
82 |
+
bpe_ranks[bytes(wsp, 'ascii')] = idx
|
83 |
+
idx += 1
|
84 |
+
for t in add_tabs:
|
85 |
+
bpe_ranks[bytes(t, 'ascii')] = idx
|
86 |
+
idx += 1
|
87 |
+
|
88 |
+
special_tokens = dict()
|
89 |
+
|
90 |
+
for sp in fim_tokens:
|
91 |
+
special_tokens[sp] = idx
|
92 |
+
idx += 1
|
93 |
+
for sp in codegen2_tokens:
|
94 |
+
special_tokens[sp] = idx
|
95 |
+
idx += 1
|
96 |
+
|
97 |
+
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
|
98 |
+
special_tokens[pad_token] = idx
|
99 |
+
idx += 1
|
100 |
+
# In production, load the arguments directly instead of accessing private attributes
|
101 |
+
# See openai_public.py for examples of arguments for specific encodings
|
102 |
+
enc = tiktoken.Encoding(
|
103 |
+
# If you're changing the set of special tokens, make sure to use a different name
|
104 |
+
# It should be clear from the name what behaviour to expect.
|
105 |
+
name=base.replace("base", "im"),
|
106 |
+
pat_str=tokenizer._pat_str,
|
107 |
+
mergeable_ranks=bpe_ranks,
|
108 |
+
special_tokens={
|
109 |
+
**tokenizer._special_tokens,
|
110 |
+
**special_tokens
|
111 |
+
}
|
112 |
+
)
|
113 |
+
return enc
|
114 |
+
|
115 |
+
|
116 |
+
class CodeGen25Tokenizer(PreTrainedTokenizer):
|
117 |
+
"""
|
118 |
+
Construct a CodeGen2.5 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
119 |
+
Args:
|
120 |
+
vocab_file (`str`):
|
121 |
+
Path to the vocabulary file.
|
122 |
+
"""
|
123 |
+
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
|
124 |
+
model_input_names = ["input_ids", "attention_mask"]
|
125 |
+
|
126 |
+
def __init__(
|
127 |
+
self,
|
128 |
+
pad_token=None,
|
129 |
+
eos_token="<|endoftext|>",
|
130 |
+
add_eos_token=False,
|
131 |
+
add_special_tokens=True,
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
135 |
+
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
136 |
+
super().__init__(
|
137 |
+
pad_token=pad_token_added,
|
138 |
+
eos_token=eos_token_added,
|
139 |
+
add_eos_token=add_eos_token,
|
140 |
+
add_special_tokens=add_special_tokens,
|
141 |
+
**kwargs,
|
142 |
+
)
|
143 |
+
self.add_eos_token = add_eos_token
|
144 |
+
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
|
145 |
+
|
146 |
+
@property
|
147 |
+
def vocab_size(self):
|
148 |
+
"""Returns vocab size"""
|
149 |
+
return self.encoder.n_vocab
|
150 |
+
|
151 |
+
def get_vocab(self):
|
152 |
+
"""Returns vocab as a dict"""
|
153 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
154 |
+
return vocab
|
155 |
+
|
156 |
+
def _tokenize(self, text, **kwargs):
|
157 |
+
"""Returns a tokenized string."""
|
158 |
+
return self.encoder.encode(text, allowed_special="all")
|
159 |
+
|
160 |
+
def _convert_token_to_id(self, token):
|
161 |
+
"""Converts a token (str) in an id using the vocab."""
|
162 |
+
if isinstance(token, str):
|
163 |
+
return self.encoder.encode_single_token(token)
|
164 |
+
else:
|
165 |
+
return token
|
166 |
+
|
167 |
+
def _convert_id_to_token(self, index):
|
168 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
169 |
+
return self.encoder.decode_single_token_bytes(index).decode("utf-8")
|
170 |
+
|
171 |
+
def _decode(self, token_ids: List[int], skip_special_tokens: bool = False, **kwargs):
|
172 |
+
if skip_special_tokens:
|
173 |
+
token_ids = [t for t in token_ids if t not in self.all_special_ids]
|
174 |
+
return self.encoder.decode(token_ids)
|
175 |
+
|
176 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
|
177 |
+
"""Build model inputs from a sequence by appending eos_token_id."""
|
178 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
179 |
+
|
180 |
+
output = token_ids_0 + eos_token_id
|
181 |
+
|
182 |
+
if token_ids_1 is not None:
|
183 |
+
output = output + token_ids_1 + eos_token_id
|
184 |
+
|
185 |
+
return output
|
186 |
+
|
187 |
+
def get_special_tokens_mask(
|
188 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
189 |
+
already_has_special_tokens: bool = False
|
190 |
+
) -> List[int]:
|
191 |
+
"""
|
192 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
193 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
194 |
+
Args:
|
195 |
+
token_ids_0 (`List[int]`):
|
196 |
+
List of IDs.
|
197 |
+
token_ids_1 (`List[int]`, *optional*):
|
198 |
+
Optional second list of IDs for sequence pairs.
|
199 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
200 |
+
Whether the token list is already formatted with special tokens for the model.
|
201 |
+
Returns:
|
202 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
203 |
+
"""
|
204 |
+
if already_has_special_tokens:
|
205 |
+
return super().get_special_tokens_mask(
|
206 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
207 |
+
)
|
208 |
+
|
209 |
+
eos_token_id = [1] if self.add_eos_token else []
|
210 |
+
|
211 |
+
if token_ids_1 is None:
|
212 |
+
return ([0] * len(token_ids_0)) + eos_token_id
|
213 |
+
return ([0] * len(token_ids_0)) + eos_token_id + ([0] * len(token_ids_1)) + eos_token_id
|
214 |
+
|
215 |
+
def create_token_type_ids_from_sequences(
|
216 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
217 |
+
) -> List[int]:
|
218 |
+
"""
|
219 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
220 |
+
sequence pair mask has the following format:
|
221 |
+
```
|
222 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
223 |
+
| first sequence | second sequence |
|
224 |
+
```
|
225 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
226 |
+
Args:
|
227 |
+
token_ids_0 (`List[int]`):
|
228 |
+
List of ids.
|
229 |
+
token_ids_1 (`List[int]`, *optional*):
|
230 |
+
Optional second list of IDs for sequence pairs.
|
231 |
+
Returns:
|
232 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
233 |
+
"""
|
234 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
235 |
+
|
236 |
+
output = [0] * len(token_ids_0 + eos_token_id)
|
237 |
+
|
238 |
+
if token_ids_1 is not None:
|
239 |
+
output += [1] * len(token_ids_1 + eos_token_id)
|
240 |
+
|
241 |
+
return output
|
242 |
+
|
243 |
+
# has no vocab file
|
244 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None):
|
245 |
+
return ()
|
tokenizer_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_eos_token": false,
|
3 |
+
"add_special_tokens": true,
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 1000000000000000019884624838656,
|
7 |
+
"pad_token": null,
|
8 |
+
"tokenizer_class": "CodeGen25Tokenizer",
|
9 |
+
"auto_map": {
|
10 |
+
"AutoTokenizer": ["tokenization_codegen25.CodeGen25Tokenizer", null]
|
11 |
+
}
|
12 |
+
}
|