|
|
|
import sys |
|
import torch |
|
import logging |
|
import speechbrain as sb |
|
from pathlib import Path |
|
import os |
|
import torchaudio |
|
from hyperpyyaml import load_hyperpyyaml |
|
from speechbrain.tokenizers.SentencePiece import SentencePiece |
|
from speechbrain.utils.data_utils import undo_padding |
|
from speechbrain.utils.distributed import run_on_main |
|
|
|
"""Recipe for training a sequence-to-sequence ASR system with CommonVoice. |
|
The system employs a wav2vec2 encoder and a CTC decoder. |
|
Decoding is performed with greedy decoding (will be extended to beam search). |
|
|
|
To run this recipe, do the following: |
|
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml |
|
|
|
With the default hyperparameters, the system employs a pretrained wav2vec2 encoder. |
|
The wav2vec2 model is pretrained following the model given in the hprams file. |
|
It may be dependent on the language. |
|
|
|
The neural network is trained with CTC on sub-word units estimated with |
|
Byte Pairwise Encoding (BPE). |
|
|
|
The experiment file is flexible enough to support a large variety of |
|
different systems. By properly changing the parameter files, you can try |
|
different encoders, decoders, tokens (e.g, characters instead of BPE), |
|
training languages (all CommonVoice languages), and many |
|
other possible variations. |
|
|
|
Authors |
|
* Titouan Parcollet 2021 |
|
""" |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
class ASR(sb.core.Brain): |
|
def compute_forward(self, batch, stage): |
|
"""Forward computations from the waveform batches to the output probabilities.""" |
|
|
|
batch = batch.to(self.device) |
|
wavs, wav_lens = batch.sig |
|
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) |
|
if stage == sb.Stage.TRAIN: |
|
if hasattr(self.hparams, "augmentation"): |
|
wavs = self.hparams.augmentation(wavs, wav_lens) |
|
|
|
|
|
feats = self.modules.wav2vec2(wavs, wav_lens) |
|
x = self.modules.enc(feats) |
|
logits = self.modules.ctc_lin(x) |
|
p_ctc = self.hparams.log_softmax(logits) |
|
|
|
return p_ctc, wav_lens |
|
|
|
def compute_objectives(self, predictions, batch, stage): |
|
"""Computes the loss (CTC) given predictions and targets.""" |
|
|
|
p_ctc, wav_lens = predictions |
|
|
|
ids = batch.id |
|
tokens, tokens_lens = batch.tokens |
|
|
|
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens) |
|
|
|
if stage != sb.Stage.TRAIN: |
|
predicted_tokens = sb.decoders.ctc_greedy_decode( |
|
p_ctc, wav_lens, blank_id=self.hparams.blank_index |
|
) |
|
|
|
if self.hparams.use_language_modelling: |
|
predicted_words = [] |
|
for logs in p_ctc: |
|
text = decoder.decode(logs.detach().cpu().numpy()) |
|
predicted_words.append(text.split(" ")) |
|
else: |
|
predicted_words = [ |
|
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ") |
|
for utt_seq in predicted_tokens |
|
] |
|
|
|
target_words = [wrd.split(" ") for wrd in batch.wrd] |
|
|
|
self.wer_metric.append(ids, predicted_words, target_words) |
|
self.cer_metric.append(ids, predicted_words, target_words) |
|
|
|
return loss |
|
|
|
def fit_batch(self, batch): |
|
"""Train the parameters given a single batch in input""" |
|
should_step = self.step % self.grad_accumulation_factor == 0 |
|
|
|
|
|
|
|
if self.auto_mix_prec: |
|
with torch.cuda.amp.autocast(): |
|
with self.no_sync(): |
|
outputs = self.compute_forward(batch, sb.Stage.TRAIN) |
|
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) |
|
with self.no_sync(not should_step): |
|
self.scaler.scale( |
|
loss / self.grad_accumulation_factor |
|
).backward() |
|
if should_step: |
|
|
|
if not self.hparams.wav2vec2.freeze: |
|
self.scaler.unscale_(self.wav2vec_optimizer) |
|
self.scaler.unscale_(self.model_optimizer) |
|
if self.check_gradients(loss): |
|
if not self.hparams.wav2vec2.freeze: |
|
if self.optimizer_step >= self.hparams.warmup_steps: |
|
self.scaler.step(self.wav2vec_optimizer) |
|
self.scaler.step(self.model_optimizer) |
|
self.scaler.update() |
|
self.zero_grad() |
|
self.optimizer_step += 1 |
|
else: |
|
|
|
|
|
with self.no_sync(): |
|
outputs = self.compute_forward(batch, sb.Stage.TRAIN) |
|
|
|
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN) |
|
|
|
with self.no_sync(not should_step): |
|
(loss / self.grad_accumulation_factor).backward() |
|
if should_step: |
|
if self.check_gradients(loss): |
|
if not self.hparams.wav2vec2.freeze: |
|
if self.optimizer_step >= self.hparams.warmup_steps: |
|
self.wav2vec_optimizer.step() |
|
self.model_optimizer.step() |
|
self.zero_grad() |
|
self.optimizer_step += 1 |
|
|
|
self.on_fit_batch_end(batch, outputs, loss, should_step) |
|
return loss.detach().cpu() |
|
|
|
def evaluate_batch(self, batch, stage): |
|
"""Computations needed for validation/test batches""" |
|
predictions = self.compute_forward(batch, stage=stage) |
|
with torch.no_grad(): |
|
loss = self.compute_objectives(predictions, batch, stage=stage) |
|
return loss.detach() |
|
|
|
def on_stage_start(self, stage, epoch): |
|
"""Gets called at the beginning of each epoch""" |
|
if stage != sb.Stage.TRAIN: |
|
self.cer_metric = self.hparams.cer_computer() |
|
self.wer_metric = self.hparams.error_rate_computer() |
|
|
|
def on_stage_end(self, stage, stage_loss, epoch): |
|
"""Gets called at the end of an epoch.""" |
|
|
|
stage_stats = {"loss": stage_loss} |
|
if stage == sb.Stage.TRAIN: |
|
self.train_stats = stage_stats |
|
else: |
|
stage_stats["CER"] = self.cer_metric.summarize("error_rate") |
|
stage_stats["WER"] = self.wer_metric.summarize("error_rate") |
|
|
|
|
|
if stage == sb.Stage.VALID: |
|
old_lr_model, new_lr_model = self.hparams.lr_annealing_model( |
|
stage_stats["loss"] |
|
) |
|
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec( |
|
stage_stats["loss"] |
|
) |
|
sb.nnet.schedulers.update_learning_rate( |
|
self.model_optimizer, new_lr_model |
|
) |
|
if not self.hparams.wav2vec2.freeze: |
|
sb.nnet.schedulers.update_learning_rate( |
|
self.wav2vec_optimizer, new_lr_wav2vec |
|
) |
|
self.hparams.train_logger.log_stats( |
|
stats_meta={ |
|
"epoch": epoch, |
|
"lr_model": old_lr_model, |
|
"lr_wav2vec": old_lr_wav2vec, |
|
}, |
|
train_stats=self.train_stats, |
|
valid_stats=stage_stats, |
|
) |
|
self.checkpointer.save_and_keep_only( |
|
meta={"WER": stage_stats["WER"]}, min_keys=["WER"], |
|
) |
|
elif stage == sb.Stage.TEST: |
|
self.hparams.train_logger.log_stats( |
|
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, |
|
test_stats=stage_stats, |
|
) |
|
with open(self.hparams.wer_file, "w") as w: |
|
self.wer_metric.write_stats(w) |
|
|
|
def init_optimizers(self): |
|
"Initializes the wav2vec2 optimizer and model optimizer" |
|
|
|
|
|
if not self.hparams.wav2vec2.freeze: |
|
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class( |
|
self.modules.wav2vec2.parameters() |
|
) |
|
if self.checkpointer is not None: |
|
self.checkpointer.add_recoverable( |
|
"wav2vec_opt", self.wav2vec_optimizer |
|
) |
|
|
|
self.model_optimizer = self.hparams.model_opt_class( |
|
self.hparams.model.parameters() |
|
) |
|
|
|
if self.checkpointer is not None: |
|
self.checkpointer.add_recoverable("modelopt", self.model_optimizer) |
|
|
|
def zero_grad(self, set_to_none=False): |
|
if not self.hparams.wav2vec2.freeze: |
|
self.wav2vec_optimizer.zero_grad(set_to_none) |
|
self.model_optimizer.zero_grad(set_to_none) |
|
|
|
|
|
|
|
def dataio_prepare(hparams): |
|
"""This function prepares the datasets to be used in the brain class. |
|
It also defines the data processing pipeline through user-defined functions.""" |
|
|
|
|
|
data_folder = hparams["data_folder"] |
|
|
|
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv( |
|
csv_path=hparams["train_csv"], replacements={"data_root": data_folder}, |
|
) |
|
|
|
if hparams["sorting"] == "ascending": |
|
|
|
train_data = train_data.filtered_sorted( |
|
sort_key="duration", |
|
key_max_value={"duration": hparams["avoid_if_longer_than"]}, |
|
) |
|
|
|
hparams["dataloader_options"]["shuffle"] = False |
|
|
|
elif hparams["sorting"] == "descending": |
|
train_data = train_data.filtered_sorted( |
|
sort_key="duration", |
|
reverse=True, |
|
key_max_value={"duration": hparams["avoid_if_longer_than"]}, |
|
) |
|
|
|
hparams["dataloader_options"]["shuffle"] = False |
|
|
|
elif hparams["sorting"] == "random": |
|
pass |
|
|
|
else: |
|
raise NotImplementedError( |
|
"sorting must be random, ascending or descending" |
|
) |
|
|
|
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv( |
|
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder}, |
|
) |
|
|
|
valid_data = valid_data.filtered_sorted(sort_key="duration") |
|
test_datasets = {} |
|
for csv_file in hparams["test_csv"]: |
|
name = Path(csv_file).stem |
|
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv( |
|
csv_path=csv_file, replacements={"data_root": data_folder} |
|
) |
|
test_datasets[name] = test_datasets[name].filtered_sorted( |
|
sort_key="duration" |
|
) |
|
|
|
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()] |
|
|
|
|
|
|
|
@sb.utils.data_pipeline.takes("wav") |
|
@sb.utils.data_pipeline.provides("sig") |
|
def audio_pipeline(wav): |
|
info = torchaudio.info(wav) |
|
sig = sb.dataio.dataio.read_audio(wav) |
|
resampled = torchaudio.transforms.Resample( |
|
info.sample_rate, hparams["sample_rate"], |
|
)(sig) |
|
return resampled |
|
|
|
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline) |
|
label_encoder = sb.dataio.encoder.CTCTextEncoder() |
|
|
|
|
|
@sb.utils.data_pipeline.takes("wrd") |
|
@sb.utils.data_pipeline.provides( |
|
"wrd", "char_list", "tokens_list", "tokens" |
|
) |
|
def text_pipeline(wrd): |
|
yield wrd |
|
char_list = list(wrd) |
|
yield char_list |
|
tokens_list = label_encoder.encode_sequence(char_list) |
|
yield tokens_list |
|
tokens = torch.LongTensor(tokens_list) |
|
yield tokens |
|
|
|
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) |
|
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt") |
|
special_labels = { |
|
"blank_label": hparams["blank_index"], |
|
"unk_label": hparams["unk_index"] |
|
} |
|
label_encoder.load_or_create( |
|
path=lab_enc_file, |
|
from_didatasets=[train_data], |
|
output_key="char_list", |
|
special_labels=special_labels, |
|
sequence_input=True, |
|
) |
|
|
|
|
|
sb.dataio.dataset.set_output_keys( |
|
datasets, ["id", "sig", "wrd", "char_list", "tokens"], |
|
) |
|
return train_data, valid_data,test_datasets, label_encoder |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:]) |
|
with open(hparams_file) as fin: |
|
hparams = load_hyperpyyaml(fin, overrides) |
|
|
|
|
|
|
|
sb.utils.distributed.ddp_init_group(run_opts) |
|
|
|
|
|
|
|
sb.create_experiment_directory( |
|
experiment_directory=hparams["output_folder"], |
|
hyperparams_to_save=hparams_file, |
|
overrides=overrides, |
|
) |
|
|
|
|
|
|
|
|
|
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(hparams) |
|
if hparams["use_language_modelling"]: |
|
print("using langauge_modeeling") |
|
from pyctcdecode import build_ctcdecoder |
|
ind2lab = label_encoder.ind2lab |
|
print(ind2lab) |
|
labels = [ind2lab[x] for x in range(len(ind2lab))] |
|
labels = [""] + labels[1:-1] + ["1"] |
|
|
|
print(labels) |
|
decoder = build_ctcdecoder( |
|
labels, |
|
kenlm_model_path=hparams["ngram_lm_path"], |
|
alpha=0.5, |
|
beta=1.0, |
|
) |
|
|
|
asr_brain = ASR( |
|
modules=hparams["modules"], |
|
hparams=hparams, |
|
run_opts=run_opts, |
|
checkpointer=hparams["checkpointer"], |
|
) |
|
|
|
|
|
asr_brain.tokenizer = label_encoder |
|
|
|
|
|
asr_brain.fit( |
|
asr_brain.hparams.epoch_counter, |
|
train_data, |
|
valid_data, |
|
train_loader_kwargs=hparams["dataloader_options"], |
|
valid_loader_kwargs=hparams["test_dataloader_options"], |
|
) |
|
|
|
|
|
for k in test_datasets.keys(): |
|
asr_brain.hparams.wer_file = os.path.join( |
|
hparams["output_folder"], "wer_{}.txt".format(k) |
|
) |
|
asr_brain.evaluate( |
|
test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"] |
|
) |
|
|
|
|