first commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- EnglishCV/common_voice_prepare.py +410 -0
- EnglishCV/results/final_cs/hyperparams.yaml +144 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/CKPT.yaml +4 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/brain.ckpt +3 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/counter.ckpt +3 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/dataloader-TRAIN.ckpt +3 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/model.ckpt +3 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/modelopt.ckpt +3 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/scheduler_encoder.ckpt +3 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/scheduler_model.ckpt +3 -0
- EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/tokenizer.ckpt +3 -0
- EnglishCV/results/final_cs/save/label_encoder.txt +80 -0
- EnglishCV/results/final_cs/train_mixer.py +756 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/hyperparams.yaml +190 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/29_char.model +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/29_char.vocab +28 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/CKPT.yaml +4 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/brain.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/counter.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/dataloader-TRAIN.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/model.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/modelopt.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/scheduler_model.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/scheduler_wav2vec.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/wav2vec2.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/wav2vec_opt.ckpt +3 -0
- EnglishCV/results/wav2vec2_ctc_en/1234/train_with_wav2vec.py +388 -0
- EnglishCV/train_en_with_wav2vec.yaml +184 -0
- EnglishCV/train_with_wav2vec.py +388 -0
- README.md +18 -0
- TunisianASR/README.md +21 -0
- TunisianASR/outdomain.arpa +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/hyperparams.yaml +194 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/CKPT.yaml +4 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/brain.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/counter.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/dataloader-TRAIN.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/model.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/modelopt.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/scheduler_model.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/scheduler_wav2vec.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/wav2vec2.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/wav2vec_opt.ckpt +3 -0
- TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/label_encoder.txt +44 -0
- TunisianASR/train_semi.yaml +175 -0
- TunisianASR/train_with_wavlm.py +399 -0
- arpas/everything.arpa +3 -0
- asr-wav2vec2-commonvoice-fr/README.md +130 -0
- asr-wav2vec2-commonvoice-fr/asr.ckpt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.arpa filter=lfs diff=lfs merge=lfs -text
|
EnglishCV/common_voice_prepare.py
ADDED
@@ -0,0 +1,410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Data preparation.
|
3 |
+
Download: https://voice.mozilla.org/en/datasets
|
4 |
+
Author
|
5 |
+
------
|
6 |
+
Titouan Parcollet
|
7 |
+
Luca Della Libera 2022
|
8 |
+
Pooneh Mousavi 2022
|
9 |
+
"""
|
10 |
+
|
11 |
+
from dataclasses import dataclass
|
12 |
+
import os
|
13 |
+
import csv
|
14 |
+
import re
|
15 |
+
import logging
|
16 |
+
import torchaudio
|
17 |
+
from tqdm import tqdm
|
18 |
+
import unicodedata
|
19 |
+
import functools
|
20 |
+
torchaudio.set_audio_backend("soundfile")
|
21 |
+
from speechbrain.utils.parallel import parallel_map
|
22 |
+
from speechbrain.dataio.dataio import read_audio_info
|
23 |
+
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def prepare_common_voice(
|
28 |
+
data_folder,
|
29 |
+
save_folder,
|
30 |
+
train_tsv_file=None,
|
31 |
+
dev_tsv_file=None,
|
32 |
+
test_tsv_file=None,
|
33 |
+
accented_letters=False,
|
34 |
+
language="en",
|
35 |
+
skip_prep=False,
|
36 |
+
):
|
37 |
+
"""
|
38 |
+
Prepares the csv files for the Mozilla Common Voice dataset.
|
39 |
+
Download: https://voice.mozilla.org/en/datasets
|
40 |
+
Arguments
|
41 |
+
---------
|
42 |
+
data_folder : str
|
43 |
+
Path to the folder where the original Common Voice dataset is stored.
|
44 |
+
This path should include the lang: /datasets/CommonVoice/<language>/
|
45 |
+
save_folder : str
|
46 |
+
The directory where to store the csv files.
|
47 |
+
train_tsv_file : str, optional
|
48 |
+
Path to the Train Common Voice .tsv file (cs)
|
49 |
+
dev_tsv_file : str, optional
|
50 |
+
Path to the Dev Common Voice .tsv file (cs)
|
51 |
+
test_tsv_file : str, optional
|
52 |
+
Path to the Test Common Voice .tsv file (cs)
|
53 |
+
accented_letters : bool, optional
|
54 |
+
Defines if accented letters will be kept as individual letters or
|
55 |
+
transformed to the closest non-accented letters.
|
56 |
+
language: str
|
57 |
+
Specify the language for text normalization.
|
58 |
+
skip_prep: bool
|
59 |
+
If True, skip data preparation.
|
60 |
+
Example
|
61 |
+
-------
|
62 |
+
>>> from recipes.CommonVoice.common_voice_prepare import prepare_common_voice
|
63 |
+
>>> data_folder = '/datasets/CommonVoice/en'
|
64 |
+
>>> save_folder = 'exp/CommonVoice_exp'
|
65 |
+
>>> train_tsv_file = '/datasets/CommonVoice/en/train.tsv'
|
66 |
+
>>> dev_tsv_file = '/datasets/CommonVoice/en/dev.tsv'
|
67 |
+
>>> test_tsv_file = '/datasets/CommonVoice/en/test.tsv'
|
68 |
+
>>> accented_letters = False
|
69 |
+
>>> duration_threshold = 10
|
70 |
+
>>> prepare_common_voice( \
|
71 |
+
data_folder, \
|
72 |
+
save_folder, \
|
73 |
+
train_tsv_file, \
|
74 |
+
dev_tsv_file, \
|
75 |
+
test_tsv_file, \
|
76 |
+
accented_letters, \
|
77 |
+
language="en" \
|
78 |
+
)
|
79 |
+
"""
|
80 |
+
|
81 |
+
if skip_prep:
|
82 |
+
return
|
83 |
+
|
84 |
+
# If not specified point toward standard location w.r.t CommonVoice tree
|
85 |
+
if train_tsv_file is None:
|
86 |
+
train_tsv_file = data_folder + "/train.tsv"
|
87 |
+
else:
|
88 |
+
train_tsv_file = train_tsv_file
|
89 |
+
|
90 |
+
if dev_tsv_file is None:
|
91 |
+
dev_tsv_file = data_folder + "/dev.tsv"
|
92 |
+
else:
|
93 |
+
dev_tsv_file = dev_tsv_file
|
94 |
+
|
95 |
+
if test_tsv_file is None:
|
96 |
+
test_tsv_file = data_folder + "/test.tsv"
|
97 |
+
else:
|
98 |
+
test_tsv_file = test_tsv_file
|
99 |
+
|
100 |
+
# Setting the save folder
|
101 |
+
if not os.path.exists(save_folder):
|
102 |
+
os.makedirs(save_folder)
|
103 |
+
|
104 |
+
# Setting ouput files
|
105 |
+
save_csv_train = save_folder + "/train.csv"
|
106 |
+
save_csv_dev = save_folder + "/dev.csv"
|
107 |
+
save_csv_test = save_folder + "/test.csv"
|
108 |
+
|
109 |
+
# If csv already exists, we skip the data preparation
|
110 |
+
if skip(save_csv_train, save_csv_dev, save_csv_test):
|
111 |
+
|
112 |
+
msg = "%s already exists, skipping data preparation!" % (save_csv_train)
|
113 |
+
logger.info(msg)
|
114 |
+
|
115 |
+
msg = "%s already exists, skipping data preparation!" % (save_csv_dev)
|
116 |
+
logger.info(msg)
|
117 |
+
|
118 |
+
msg = "%s already exists, skipping data preparation!" % (save_csv_test)
|
119 |
+
logger.info(msg)
|
120 |
+
|
121 |
+
return
|
122 |
+
|
123 |
+
# Additional checks to make sure the data folder contains Common Voice
|
124 |
+
check_commonvoice_folders(data_folder)
|
125 |
+
# Creating csv files for {train, dev, test} data
|
126 |
+
file_pairs = zip(
|
127 |
+
[train_tsv_file, dev_tsv_file, test_tsv_file],
|
128 |
+
[save_csv_train, save_csv_dev, save_csv_test],
|
129 |
+
)
|
130 |
+
for tsv_file, save_csv in file_pairs:
|
131 |
+
create_csv(
|
132 |
+
tsv_file, save_csv, data_folder, accented_letters, language,
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
def skip(save_csv_train, save_csv_dev, save_csv_test):
|
137 |
+
"""
|
138 |
+
Detects if the Common Voice data preparation has been already done.
|
139 |
+
If the preparation has been done, we can skip it.
|
140 |
+
Returns
|
141 |
+
-------
|
142 |
+
bool
|
143 |
+
if True, the preparation phase can be skipped.
|
144 |
+
if False, it must be done.
|
145 |
+
"""
|
146 |
+
|
147 |
+
# Checking folders and save options
|
148 |
+
skip = False
|
149 |
+
|
150 |
+
if (
|
151 |
+
os.path.isfile(save_csv_train)
|
152 |
+
and os.path.isfile(save_csv_dev)
|
153 |
+
and os.path.isfile(save_csv_test)
|
154 |
+
):
|
155 |
+
skip = True
|
156 |
+
|
157 |
+
return skip
|
158 |
+
|
159 |
+
|
160 |
+
@dataclass
|
161 |
+
class CVRow:
|
162 |
+
snt_id: str
|
163 |
+
duration: float
|
164 |
+
mp3_path: str
|
165 |
+
spk_id: str
|
166 |
+
words: str
|
167 |
+
|
168 |
+
|
169 |
+
def process_line(line, data_folder, language, accented_letters):
|
170 |
+
# Path is at indice 1 in Common Voice tsv files. And .mp3 files
|
171 |
+
# are located in datasets/lang/clips/
|
172 |
+
mp3_path = data_folder + "/clips/" + line.split("\t")[1]
|
173 |
+
file_name = mp3_path.split(".")[-2].split("/")[-1]
|
174 |
+
spk_id = line.split("\t")[0]
|
175 |
+
snt_id = file_name
|
176 |
+
|
177 |
+
# Setting torchaudio backend to sox-io (needed to read mp3 files)
|
178 |
+
"""
|
179 |
+
if torchaudio.get_audio_backend() != "sox_io":
|
180 |
+
logger.warning("This recipe needs the sox-io backend of torchaudio")
|
181 |
+
logger.warning("The torchaudio backend is changed to sox_io")
|
182 |
+
torchaudio.set_audio_backend("sox_io")
|
183 |
+
"""
|
184 |
+
# Reading the signal (to retrieve duration in seconds)
|
185 |
+
if os.path.isfile(mp3_path):
|
186 |
+
info = read_audio_info(mp3_path)
|
187 |
+
else:
|
188 |
+
msg = "\tError loading: %s" % (str(len(file_name)))
|
189 |
+
logger.info(msg)
|
190 |
+
return None
|
191 |
+
|
192 |
+
duration = info.num_frames / info.sample_rate
|
193 |
+
|
194 |
+
# Getting transcript
|
195 |
+
words = line.split("\t")[2]
|
196 |
+
|
197 |
+
# Unicode Normalization
|
198 |
+
words = unicode_normalisation(words)
|
199 |
+
|
200 |
+
# !! Language specific cleaning !!
|
201 |
+
words = language_specific_preprocess(language, words)
|
202 |
+
|
203 |
+
# Remove accents if specified
|
204 |
+
if not accented_letters:
|
205 |
+
words = strip_accents(words)
|
206 |
+
words = words.replace("'", " ")
|
207 |
+
words = words.replace("’", " ")
|
208 |
+
|
209 |
+
# Remove multiple spaces
|
210 |
+
words = re.sub(" +", " ", words)
|
211 |
+
|
212 |
+
# Remove spaces at the beginning and the end of the sentence
|
213 |
+
words = words.lstrip().rstrip()
|
214 |
+
|
215 |
+
# Getting chars
|
216 |
+
chars = words.replace(" ", "_")
|
217 |
+
chars = " ".join([char for char in chars][:])
|
218 |
+
|
219 |
+
# Remove too short sentences (or empty):
|
220 |
+
if language in ["ja", "ch"]:
|
221 |
+
if len(chars) < 3:
|
222 |
+
return None
|
223 |
+
else:
|
224 |
+
if len(words.split(" ")) < 3:
|
225 |
+
return None
|
226 |
+
|
227 |
+
# Composition of the csv_line
|
228 |
+
return CVRow(snt_id, duration, mp3_path, spk_id, words)
|
229 |
+
|
230 |
+
|
231 |
+
def create_csv(
|
232 |
+
orig_tsv_file, csv_file, data_folder, accented_letters=False, language="en"
|
233 |
+
):
|
234 |
+
"""
|
235 |
+
Creates the csv file given a list of wav files.
|
236 |
+
Arguments
|
237 |
+
---------
|
238 |
+
orig_tsv_file : str
|
239 |
+
Path to the Common Voice tsv file (standard file).
|
240 |
+
data_folder : str
|
241 |
+
Path of the CommonVoice dataset.
|
242 |
+
accented_letters : bool, optional
|
243 |
+
Defines if accented letters will be kept as individual letters or
|
244 |
+
transformed to the closest non-accented letters.
|
245 |
+
Returns
|
246 |
+
-------
|
247 |
+
None
|
248 |
+
"""
|
249 |
+
|
250 |
+
# Check if the given files exists
|
251 |
+
if not os.path.isfile(orig_tsv_file):
|
252 |
+
msg = "\t%s doesn't exist, verify your dataset!" % (orig_tsv_file)
|
253 |
+
logger.info(msg)
|
254 |
+
raise FileNotFoundError(msg)
|
255 |
+
|
256 |
+
# We load and skip the header
|
257 |
+
loaded_csv = open(orig_tsv_file, "r").readlines()[1:]
|
258 |
+
nb_samples = len(loaded_csv)
|
259 |
+
|
260 |
+
msg = "Preparing CSV files for %s samples ..." % (str(nb_samples))
|
261 |
+
logger.info(msg)
|
262 |
+
|
263 |
+
# Adding some Prints
|
264 |
+
msg = "Creating csv lists in %s ..." % (csv_file)
|
265 |
+
logger.info(msg)
|
266 |
+
|
267 |
+
# Process and write lines
|
268 |
+
total_duration = 0.0
|
269 |
+
|
270 |
+
line_processor = functools.partial(
|
271 |
+
process_line,
|
272 |
+
data_folder=data_folder,
|
273 |
+
language=language,
|
274 |
+
accented_letters=accented_letters,
|
275 |
+
)
|
276 |
+
|
277 |
+
# Stream into a .tmp file, and rename it to the real path at the end.
|
278 |
+
csv_file_tmp = csv_file + ".tmp"
|
279 |
+
|
280 |
+
with open(csv_file_tmp, mode="w", encoding="utf-8") as csv_f:
|
281 |
+
csv_writer = csv.writer(
|
282 |
+
csv_f, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL
|
283 |
+
)
|
284 |
+
|
285 |
+
csv_writer.writerow(["ID", "duration", "wav", "spk_id", "wrd"])
|
286 |
+
for line in tqdm(loaded_csv) :
|
287 |
+
|
288 |
+
row = line_processor(line)
|
289 |
+
if row is not None :
|
290 |
+
total_duration += row.duration
|
291 |
+
csv_writer.writerow(
|
292 |
+
[
|
293 |
+
row.snt_id,
|
294 |
+
str(row.duration),
|
295 |
+
row.mp3_path,
|
296 |
+
row.spk_id,
|
297 |
+
row.words,
|
298 |
+
]
|
299 |
+
)
|
300 |
+
|
301 |
+
os.replace(csv_file_tmp, csv_file)
|
302 |
+
|
303 |
+
# Final prints
|
304 |
+
msg = "%s successfully created!" % (csv_file)
|
305 |
+
logger.info(msg)
|
306 |
+
msg = "Number of samples: %s " % (str(len(loaded_csv)))
|
307 |
+
logger.info(msg)
|
308 |
+
msg = "Total duration: %s Hours" % (str(round(total_duration / 3600, 2)))
|
309 |
+
logger.info(msg)
|
310 |
+
|
311 |
+
|
312 |
+
def language_specific_preprocess(language, words):
|
313 |
+
# !! Language specific cleaning !!
|
314 |
+
# Important: feel free to specify the text normalization
|
315 |
+
# corresponding to your alphabet.
|
316 |
+
|
317 |
+
if language in ["en", "fr", "it", "rw"]:
|
318 |
+
words = re.sub(
|
319 |
+
"[^’'A-Za-z0-9À-ÖØ-öø-ÿЀ-ӿéæœâçèàûî]+", " ", words
|
320 |
+
).upper()
|
321 |
+
|
322 |
+
if language == "de":
|
323 |
+
# this replacement helps preserve the case of ß
|
324 |
+
# (and helps retain solitary occurrences of SS)
|
325 |
+
# since python's upper() converts ß to SS.
|
326 |
+
words = words.replace("ß", "0000ß0000")
|
327 |
+
words = re.sub("[^’'A-Za-z0-9öÖäÄüÜß]+", " ", words).upper()
|
328 |
+
words = words.replace("'", " ")
|
329 |
+
words = words.replace("’", " ")
|
330 |
+
words = words.replace(
|
331 |
+
"0000SS0000", "ß"
|
332 |
+
) # replace 0000SS0000 back to ß as its initial presence in the corpus
|
333 |
+
|
334 |
+
if language == "fr":
|
335 |
+
# Replace J'y D'hui etc by J_ D_hui
|
336 |
+
words = words.replace("'", " ")
|
337 |
+
words = words.replace("’", " ")
|
338 |
+
|
339 |
+
elif language == "ar":
|
340 |
+
HAMZA = "\u0621"
|
341 |
+
ALEF_MADDA = "\u0622"
|
342 |
+
ALEF_HAMZA_ABOVE = "\u0623"
|
343 |
+
letters = (
|
344 |
+
"ابتةثجحخدذرزژشسصضطظعغفقكلمنهويىءآأؤإئ"
|
345 |
+
+ HAMZA
|
346 |
+
+ ALEF_MADDA
|
347 |
+
+ ALEF_HAMZA_ABOVE
|
348 |
+
)
|
349 |
+
words = re.sub("[^" + letters + " ]+", "", words).upper()
|
350 |
+
elif language == "fa":
|
351 |
+
HAMZA = "\u0621"
|
352 |
+
ALEF_MADDA = "\u0622"
|
353 |
+
ALEF_HAMZA_ABOVE = "\u0623"
|
354 |
+
letters = (
|
355 |
+
"ابپتةثجحخچدذرزژسشصضطظعغفقگکلمنهویىءآأؤإئ"
|
356 |
+
+ HAMZA
|
357 |
+
+ ALEF_MADDA
|
358 |
+
+ ALEF_HAMZA_ABOVE
|
359 |
+
)
|
360 |
+
words = re.sub("[^" + letters + " ]+", "", words).upper()
|
361 |
+
elif language == "ga-IE":
|
362 |
+
# Irish lower() is complicated, but upper() is nondeterministic, so use lowercase
|
363 |
+
def pfxuc(a):
|
364 |
+
return len(a) >= 2 and a[0] in "tn" and a[1] in "AEIOUÁÉÍÓÚ"
|
365 |
+
|
366 |
+
def galc(w):
|
367 |
+
return w.lower() if not pfxuc(w) else w[0] + "-" + w[1:].lower()
|
368 |
+
|
369 |
+
words = re.sub("[^-A-Za-z'ÁÉÍÓÚáéíóú]+", " ", words)
|
370 |
+
words = " ".join(map(galc, words.split(" ")))
|
371 |
+
elif language == "es":
|
372 |
+
# Fix the following error in dataset large:
|
373 |
+
# KeyError: 'The item En noviembre lanzaron Queen Elizabeth , coproducida por Foreign Noi$e . requires replacements which were not supplied.'
|
374 |
+
words = words.replace("$", "s")
|
375 |
+
return words
|
376 |
+
|
377 |
+
|
378 |
+
def check_commonvoice_folders(data_folder):
|
379 |
+
"""
|
380 |
+
Check if the data folder actually contains the Common Voice dataset.
|
381 |
+
If not, raises an error.
|
382 |
+
Returns
|
383 |
+
-------
|
384 |
+
None
|
385 |
+
Raises
|
386 |
+
------
|
387 |
+
FileNotFoundError
|
388 |
+
If data folder doesn't contain Common Voice dataset.
|
389 |
+
"""
|
390 |
+
files_str = "/clips"
|
391 |
+
# Checking clips
|
392 |
+
if not os.path.exists(data_folder + files_str):
|
393 |
+
err_msg = (
|
394 |
+
"the folder %s does not exist (it is expected in "
|
395 |
+
"the Common Voice dataset)" % (data_folder + files_str)
|
396 |
+
)
|
397 |
+
raise FileNotFoundError(err_msg)
|
398 |
+
|
399 |
+
|
400 |
+
def unicode_normalisation(text):
|
401 |
+
return str(text)
|
402 |
+
|
403 |
+
|
404 |
+
def strip_accents(text):
|
405 |
+
text = (
|
406 |
+
unicodedata.normalize("NFD", text)
|
407 |
+
.encode("ascii", "ignore")
|
408 |
+
.decode("utf-8")
|
409 |
+
)
|
410 |
+
return str(text)
|
EnglishCV/results/final_cs/hyperparams.yaml
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2023-09-08 from:
|
2 |
+
# /gpfsssd/scratch/rech/nou/uzn19yk/switched_data/stac.yaml
|
3 |
+
# yamllint disable
|
4 |
+
# Generated 2023-08-03 from:
|
5 |
+
# /home/salah/new_tunisian_model/hparams/train_tunisian_withwavlm.yaml
|
6 |
+
# yamllint disable
|
7 |
+
# ################################
|
8 |
+
# Model: wav2vec2 + DNN + CTC
|
9 |
+
# Augmentation: SpecAugment
|
10 |
+
# Authors: Titouan Parcollet 2021
|
11 |
+
# ################################
|
12 |
+
|
13 |
+
seed: 1994
|
14 |
+
__set_seed: !!python/object/apply:torch.manual_seed [1234]
|
15 |
+
output_folder: results/non_semi_final_stac
|
16 |
+
wer_file: results/non_semi_final_stac/wer.txt
|
17 |
+
save_folder: results/non_semi_final_stac/save
|
18 |
+
train_log: results/non_semi_final_stac/train_log.txt
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
# Data files
|
23 |
+
data_folder: junk # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
|
24 |
+
train_tsv_file: junk/train.tsv # Standard CommonVoice .tsv files
|
25 |
+
dev_tsv_file: junk/dev.tsv # Standard CommonVoice .tsv files
|
26 |
+
test_tsv_file: junk/test.tsv # Standard CommonVoice .tsv files
|
27 |
+
accented_letters: true
|
28 |
+
|
29 |
+
csv_folder: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean/
|
30 |
+
train_csv: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean//train.csv
|
31 |
+
valid_csv: /gpfsscratch/rech/nou/uzn19yk/switched_data/extended_clean//dev.csv
|
32 |
+
test_csv:
|
33 |
+
- all_tests/cs_test.csv
|
34 |
+
- all_tests/stac_test.csv
|
35 |
+
|
36 |
+
# We remove utterance slonger than 10s in the train/dev/test sets as
|
37 |
+
# longer sentences certainly correspond to "open microphones".
|
38 |
+
avoid_if_longer_than: 13.0
|
39 |
+
avoid_if_shorter_than: 0.5
|
40 |
+
|
41 |
+
# Training parameters
|
42 |
+
number_of_epochs: 20
|
43 |
+
lr: 0.0002
|
44 |
+
lr_weights: 0.01
|
45 |
+
sorting: ascending
|
46 |
+
auto_mix_prec: false
|
47 |
+
sample_rate: 16000
|
48 |
+
language_modelling: true
|
49 |
+
ngram_lm_path:
|
50 |
+
/gpfsstore/rech/nou/uzn19yk/switched_code_tunisian/train/tunisian_asr/arpas/pluslanguages_everything.arpa
|
51 |
+
|
52 |
+
# With data_parallel batch_size is split into N jobs
|
53 |
+
# With DDP batch_size is multiplied by N jobs
|
54 |
+
# Must be 3 per GPU to fit 32GB of VRAM
|
55 |
+
batch_size: 3
|
56 |
+
test_batch_size: 4
|
57 |
+
|
58 |
+
# Dataloader options
|
59 |
+
dataloader_options:
|
60 |
+
batch_size: 3
|
61 |
+
num_workers: 6
|
62 |
+
|
63 |
+
test_dataloader_options:
|
64 |
+
batch_size: 4
|
65 |
+
num_workers: 6
|
66 |
+
|
67 |
+
# Model parameters
|
68 |
+
activation: !name:torch.nn.Sigmoid
|
69 |
+
dnn_layers: 1
|
70 |
+
dnn_neurons: 768
|
71 |
+
freeze_encoder: true
|
72 |
+
|
73 |
+
# Outputs
|
74 |
+
output_neurons: 76 # BPE size, index(blank/eos/bos) = 0
|
75 |
+
|
76 |
+
# Functions and classes
|
77 |
+
#
|
78 |
+
epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter
|
79 |
+
limit: 20
|
80 |
+
|
81 |
+
encoder_dim: 3217
|
82 |
+
enc: &id001 !new:speechbrain.nnet.RNN.LSTM
|
83 |
+
input_shape: [null, null, 3217]
|
84 |
+
num_layers: 2
|
85 |
+
bidirectional: true
|
86 |
+
dropout: 0.2
|
87 |
+
hidden_size: 1024
|
88 |
+
|
89 |
+
ctc_lin: &id002 !new:speechbrain.nnet.linear.Linear
|
90 |
+
|
91 |
+
input_size: 2048
|
92 |
+
n_neurons: 76
|
93 |
+
|
94 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
95 |
+
apply_log: true
|
96 |
+
|
97 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
98 |
+
blank_index: 0
|
99 |
+
|
100 |
+
modules:
|
101 |
+
enc: *id001
|
102 |
+
ctc_lin: *id002
|
103 |
+
model: &id003 !new:torch.nn.ModuleList
|
104 |
+
- [*id001, *id002]
|
105 |
+
model_opt_class: !name:torch.optim.Adam
|
106 |
+
lr: 0.0002
|
107 |
+
|
108 |
+
weights_opt_class: !name:torch.optim.Adam
|
109 |
+
lr: 0.01
|
110 |
+
|
111 |
+
lr_annealing_model: &id004 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
112 |
+
initial_value: 0.0002
|
113 |
+
improvement_threshold: 0.0025
|
114 |
+
annealing_factor: 0.8
|
115 |
+
patient: 0
|
116 |
+
|
117 |
+
lr_annealing_weights: &id005 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
118 |
+
initial_value: 0.01
|
119 |
+
improvement_threshold: 0.0025
|
120 |
+
annealing_factor: 0.9
|
121 |
+
patient: 0
|
122 |
+
|
123 |
+
label_encoder: &id007 !new:speechbrain.dataio.encoder.CTCTextEncoder
|
124 |
+
|
125 |
+
|
126 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
127 |
+
checkpoints_dir: results/non_semi_final_stac/save
|
128 |
+
recoverables:
|
129 |
+
model: *id003
|
130 |
+
scheduler_model: *id004
|
131 |
+
scheduler_encoder: *id005
|
132 |
+
counter: *id006
|
133 |
+
tokenizer: *id007
|
134 |
+
blank_index: 0
|
135 |
+
unk_index: 1
|
136 |
+
|
137 |
+
|
138 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
139 |
+
save_file: results/non_semi_final_stac/train_log.txt
|
140 |
+
|
141 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
142 |
+
|
143 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
144 |
+
split_tokens: true
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/CKPT.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# yamllint disable
|
2 |
+
WER: 51.292116454039906
|
3 |
+
end-of-epoch: true
|
4 |
+
unixtime: 1694130018.9642384
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/brain.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5c026fe6fa51700406bd476e131950c797b0b3bacb3daae0854e85689bb4cf9
|
3 |
+
size 50
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/counter.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5ca38f748a1d6eaf726b8a42fb575c3c71f1864a8143301782de13da2d9202b
|
3 |
+
size 2
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/dataloader-TRAIN.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7e1edcac43af8cea1439d222314af06354ae31da6a3d90b8cc6bcebc5c8e397
|
3 |
+
size 4
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da683a8efa5709a06af9b258452c243da841780a0a7942c196c472a3e21e5010
|
3 |
+
size 240389017
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/modelopt.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:416feb314443cf839f4425fc382e555dec90e3dea26fa52b75e4ac1b702c5078
|
3 |
+
size 480787579
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/scheduler_encoder.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e2efd50f0cf28a080e2625fdd8a1852c669841537cdc0a57fce60bc6c1eec11
|
3 |
+
size 515
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/scheduler_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cec54cc9236fa7aa965b397675d24299b973675cc0c6345de038fc70e51629ab
|
3 |
+
size 703
|
EnglishCV/results/final_cs/save/CKPT+2023-09-08+01-40-18+00/tokenizer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21080a140faeb4f39fad188aaf081914ec782be9c4320d6415e8822709e18017
|
3 |
+
size 39
|
EnglishCV/results/final_cs/save/label_encoder.txt
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'و' => 74
|
2 |
+
'ي' => 1
|
3 |
+
'ن' => 2
|
4 |
+
' ' => 3
|
5 |
+
'م' => 4
|
6 |
+
'ش' => 5
|
7 |
+
'ل' => 6
|
8 |
+
'س' => 7
|
9 |
+
'ت' => 8
|
10 |
+
'ا' => 9
|
11 |
+
'د' => 10
|
12 |
+
'ر' => 11
|
13 |
+
'ى' => 12
|
14 |
+
'ب' => 13
|
15 |
+
'ح' => 14
|
16 |
+
'ط' => 15
|
17 |
+
'ع' => 16
|
18 |
+
'ك' => 17
|
19 |
+
'ف' => 18
|
20 |
+
'ق' => 19
|
21 |
+
'ذ' => 20
|
22 |
+
'ث' => 21
|
23 |
+
'ج' => 22
|
24 |
+
'ة' => 23
|
25 |
+
'غ' => 24
|
26 |
+
'o' => 25
|
27 |
+
'k' => 26
|
28 |
+
'b' => 27
|
29 |
+
'n' => 28
|
30 |
+
'خ' => 29
|
31 |
+
'ه' => 30
|
32 |
+
'v' => 31
|
33 |
+
'i' => 32
|
34 |
+
'l' => 33
|
35 |
+
'à' => 34
|
36 |
+
'ص' => 35
|
37 |
+
'ض' => 36
|
38 |
+
'a' => 37
|
39 |
+
'u' => 38
|
40 |
+
't' => 39
|
41 |
+
'm' => 40
|
42 |
+
'q' => 41
|
43 |
+
'e' => 42
|
44 |
+
'd' => 43
|
45 |
+
'c' => 44
|
46 |
+
'p' => 45
|
47 |
+
'r' => 46
|
48 |
+
'أ' => 47
|
49 |
+
'إ' => 48
|
50 |
+
's' => 49
|
51 |
+
'j' => 50
|
52 |
+
'ز' => 51
|
53 |
+
'ء' => 52
|
54 |
+
'h' => 53
|
55 |
+
'f' => 54
|
56 |
+
'آ' => 55
|
57 |
+
'ئ' => 56
|
58 |
+
'ؤ' => 57
|
59 |
+
'ظ' => 58
|
60 |
+
'y' => 59
|
61 |
+
'é' => 60
|
62 |
+
"'" => 61
|
63 |
+
'z' => 62
|
64 |
+
'x' => 63
|
65 |
+
'w' => 64
|
66 |
+
'g' => 65
|
67 |
+
'è' => 66
|
68 |
+
'û' => 67
|
69 |
+
'ç' => 68
|
70 |
+
'ê' => 69
|
71 |
+
'ô' => 70
|
72 |
+
'ù' => 71
|
73 |
+
'î' => 72
|
74 |
+
'â' => 73
|
75 |
+
'<blank>' => 0
|
76 |
+
1 => 75
|
77 |
+
================
|
78 |
+
'starting_index' => 0
|
79 |
+
'unk_label' => 1
|
80 |
+
'blank_label' => '<blank>'
|
EnglishCV/results/final_cs/train_mixer.py
ADDED
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
import logging
|
7 |
+
import speechbrain as sb
|
8 |
+
from speechbrain.utils.distributed import run_on_main
|
9 |
+
from hyperpyyaml import load_hyperpyyaml
|
10 |
+
from pathlib import Path
|
11 |
+
import torchaudio.transforms as T
|
12 |
+
from cv_train import ASRCV
|
13 |
+
import torchaudio
|
14 |
+
import numpy as np
|
15 |
+
import kenlm
|
16 |
+
from pyctcdecode import build_ctcdecoder
|
17 |
+
import re
|
18 |
+
|
19 |
+
# Commented out IPython magic to ensure Python compatibility.
|
20 |
+
# %cd /content/drive/MyDrive/tunisian_corpora/tunisian_without_wavlm
|
21 |
+
#hparams_file, run_opts, overrides = sb.parse_arguments(["/gpfsstore/rech/nou/uzn19yk/switched_code_tunisian/train/tunisian_asr/hparams/train_semi.yaml"])
|
22 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(["semi_supervised_test_tunisian.yaml"])
|
23 |
+
|
24 |
+
# If distributed_launch=True then
|
25 |
+
# create ddp_group with the right communication protocol
|
26 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
27 |
+
|
28 |
+
with open(hparams_file) as fin:
|
29 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
30 |
+
|
31 |
+
# Create experiment directory
|
32 |
+
sb.create_experiment_directory(
|
33 |
+
experiment_directory=hparams["output_folder"],
|
34 |
+
hyperparams_to_save=hparams_file,
|
35 |
+
overrides=overrides,
|
36 |
+
)
|
37 |
+
# Dataset prep (parsing Librispeech)
|
38 |
+
|
39 |
+
def dataio_prepare(hparams):
|
40 |
+
"""This function prepares the datasets to be used in the brain class.
|
41 |
+
It also defines the data processing pipeline through user-defined functions."""
|
42 |
+
|
43 |
+
# 1. Define datasets
|
44 |
+
data_folder = hparams["data_folder"]
|
45 |
+
|
46 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
47 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
48 |
+
)
|
49 |
+
|
50 |
+
if hparams["sorting"] == "ascending":
|
51 |
+
# we sort training data to speed up training and get better results.
|
52 |
+
train_data = train_data.filtered_sorted(
|
53 |
+
sort_key="duration",
|
54 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
55 |
+
)
|
56 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
57 |
+
hparams["dataloader_options"]["shuffle"] = False
|
58 |
+
|
59 |
+
elif hparams["sorting"] == "descending":
|
60 |
+
train_data = train_data.filtered_sorted(
|
61 |
+
sort_key="duration",
|
62 |
+
reverse=True,
|
63 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
64 |
+
)
|
65 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
66 |
+
hparams["dataloader_options"]["shuffle"] = False
|
67 |
+
|
68 |
+
elif hparams["sorting"] == "random":
|
69 |
+
pass
|
70 |
+
|
71 |
+
else:
|
72 |
+
raise NotImplementedError(
|
73 |
+
"sorting must be random, ascending or descending"
|
74 |
+
)
|
75 |
+
|
76 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
77 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
78 |
+
)
|
79 |
+
# We also sort the validation data so it is faster to validate
|
80 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
81 |
+
test_datasets = {}
|
82 |
+
for csv_file in hparams["test_csv"]:
|
83 |
+
name = Path(csv_file).stem
|
84 |
+
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
85 |
+
csv_path=csv_file, replacements={"data_root": data_folder}
|
86 |
+
)
|
87 |
+
test_datasets[name] = test_datasets[name].filtered_sorted(
|
88 |
+
sort_key="duration"
|
89 |
+
)
|
90 |
+
|
91 |
+
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
|
92 |
+
|
93 |
+
|
94 |
+
# 2. Define audio pipeline:
|
95 |
+
@sb.utils.data_pipeline.takes("wav")
|
96 |
+
@sb.utils.data_pipeline.provides("sig")
|
97 |
+
def audio_pipeline(wav):
|
98 |
+
info = torchaudio.info(wav)
|
99 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
100 |
+
if len(sig.shape)>1 :
|
101 |
+
sig = torch.mean(sig, dim=1)
|
102 |
+
resampled = torchaudio.transforms.Resample(
|
103 |
+
info.sample_rate, hparams["sample_rate"],
|
104 |
+
)(sig)
|
105 |
+
return resampled
|
106 |
+
|
107 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
108 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
109 |
+
|
110 |
+
# 3. Define text pipeline:
|
111 |
+
@sb.utils.data_pipeline.takes("wrd")
|
112 |
+
@sb.utils.data_pipeline.provides(
|
113 |
+
"wrd", "char_list", "tokens_list", "tokens"
|
114 |
+
)
|
115 |
+
def text_pipeline(wrd):
|
116 |
+
yield wrd
|
117 |
+
char_list = list(wrd)
|
118 |
+
yield char_list
|
119 |
+
tokens_list = label_encoder.encode_sequence(char_list)
|
120 |
+
yield tokens_list
|
121 |
+
tokens = torch.LongTensor(tokens_list)
|
122 |
+
yield tokens
|
123 |
+
|
124 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
125 |
+
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
|
126 |
+
special_labels = {
|
127 |
+
"blank_label": hparams["blank_index"],
|
128 |
+
"unk_label": hparams["unk_index"]
|
129 |
+
}
|
130 |
+
label_encoder.load_or_create(
|
131 |
+
path=lab_enc_file,
|
132 |
+
from_didatasets=[train_data],
|
133 |
+
output_key="char_list",
|
134 |
+
special_labels=special_labels,
|
135 |
+
sequence_input=True,
|
136 |
+
)
|
137 |
+
|
138 |
+
# 4. Set output:
|
139 |
+
sb.dataio.dataset.set_output_keys(
|
140 |
+
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
|
141 |
+
)
|
142 |
+
return train_data, valid_data,test_datasets, label_encoder
|
143 |
+
|
144 |
+
class ASR(sb.core.Brain):
|
145 |
+
def compute_forward(self, batch, stage):
|
146 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
147 |
+
|
148 |
+
batch = batch.to(self.device)
|
149 |
+
wavs, wav_lens = batch.sig
|
150 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
151 |
+
|
152 |
+
if stage == sb.Stage.TRAIN:
|
153 |
+
if hasattr(self.hparams, "augmentation"):
|
154 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
155 |
+
|
156 |
+
# Forward pass
|
157 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
158 |
+
x = self.modules.enc(feats)
|
159 |
+
logits = self.modules.ctc_lin(x)
|
160 |
+
p_ctc = self.hparams.log_softmax(logits)
|
161 |
+
|
162 |
+
return p_ctc, wav_lens
|
163 |
+
|
164 |
+
def custom_encode(self,wavs,wav_lens) :
|
165 |
+
wavs = wavs.to(self.device)
|
166 |
+
if(wav_lens is not None): wav_lens.to(self.device)
|
167 |
+
|
168 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
169 |
+
x = self.modules.enc(feats)
|
170 |
+
logits = self.modules.ctc_lin(x)
|
171 |
+
p_ctc = self.hparams.log_softmax(logits)
|
172 |
+
|
173 |
+
return feats,p_ctc
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
def compute_objectives(self, predictions, batch, stage):
|
178 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
179 |
+
|
180 |
+
p_ctc, wav_lens = predictions
|
181 |
+
|
182 |
+
ids = batch.id
|
183 |
+
tokens, tokens_lens = batch.tokens
|
184 |
+
|
185 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
186 |
+
|
187 |
+
if stage != sb.Stage.TRAIN:
|
188 |
+
predicted_tokens = sb.decoders.ctc_greedy_decode(
|
189 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
190 |
+
)
|
191 |
+
# Decode token terms to words
|
192 |
+
if self.hparams.use_language_modelling:
|
193 |
+
predicted_words = []
|
194 |
+
for logs in p_ctc:
|
195 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
196 |
+
predicted_words.append(text.split(" "))
|
197 |
+
else:
|
198 |
+
predicted_words = [
|
199 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
200 |
+
for utt_seq in predicted_tokens
|
201 |
+
]
|
202 |
+
# Convert indices to words
|
203 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
204 |
+
|
205 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
206 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
207 |
+
|
208 |
+
return loss
|
209 |
+
|
210 |
+
def fit_batch(self, batch):
|
211 |
+
"""Train the parameters given a single batch in input"""
|
212 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
213 |
+
# Managing automatic mixed precision
|
214 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
215 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
216 |
+
if self.auto_mix_prec:
|
217 |
+
with torch.cuda.amp.autocast():
|
218 |
+
with self.no_sync():
|
219 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
220 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
221 |
+
with self.no_sync(not should_step):
|
222 |
+
self.scaler.scale(
|
223 |
+
loss / self.grad_accumulation_factor
|
224 |
+
).backward()
|
225 |
+
if should_step:
|
226 |
+
|
227 |
+
if not self.hparams.wav2vec2.freeze:
|
228 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
229 |
+
self.scaler.unscale_(self.model_optimizer)
|
230 |
+
if self.check_gradients(loss):
|
231 |
+
if not self.hparams.wav2vec2.freeze:
|
232 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
233 |
+
self.scaler.step(self.wav2vec_optimizer)
|
234 |
+
self.scaler.step(self.model_optimizer)
|
235 |
+
self.scaler.update()
|
236 |
+
self.zero_grad()
|
237 |
+
self.optimizer_step += 1
|
238 |
+
else:
|
239 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
240 |
+
# on the forward pass
|
241 |
+
with self.no_sync():
|
242 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
243 |
+
|
244 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
245 |
+
|
246 |
+
with self.no_sync(not should_step):
|
247 |
+
(loss / self.grad_accumulation_factor).backward()
|
248 |
+
if should_step:
|
249 |
+
if self.check_gradients(loss):
|
250 |
+
if not self.hparams.wav2vec2.freeze:
|
251 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
252 |
+
self.wav2vec_optimizer.step()
|
253 |
+
self.model_optimizer.step()
|
254 |
+
self.zero_grad()
|
255 |
+
self.optimizer_step += 1
|
256 |
+
|
257 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
258 |
+
return loss.detach().cpu()
|
259 |
+
|
260 |
+
def evaluate_batch(self, batch, stage):
|
261 |
+
"""Computations needed for validation/test batches"""
|
262 |
+
predictions = self.compute_forward(batch, stage=stage)
|
263 |
+
with torch.no_grad():
|
264 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
265 |
+
return loss.detach()
|
266 |
+
|
267 |
+
def on_stage_start(self, stage, epoch):
|
268 |
+
"""Gets called at the beginning of each epoch"""
|
269 |
+
if stage != sb.Stage.TRAIN:
|
270 |
+
self.cer_metric = self.hparams.cer_computer()
|
271 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
272 |
+
|
273 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
274 |
+
"""Gets called at the end of an epoch."""
|
275 |
+
# Compute/store important stats
|
276 |
+
stage_stats = {"loss": stage_loss}
|
277 |
+
if stage == sb.Stage.TRAIN:
|
278 |
+
self.train_stats = stage_stats
|
279 |
+
else:
|
280 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
281 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
282 |
+
|
283 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
284 |
+
if stage == sb.Stage.VALID:
|
285 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
286 |
+
stage_stats["loss"]
|
287 |
+
)
|
288 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
289 |
+
stage_stats["loss"]
|
290 |
+
)
|
291 |
+
sb.nnet.schedulers.update_learning_rate(
|
292 |
+
self.model_optimizer, new_lr_model
|
293 |
+
)
|
294 |
+
if not self.hparams.wav2vec2.freeze:
|
295 |
+
sb.nnet.schedulers.update_learning_rate(
|
296 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
297 |
+
)
|
298 |
+
self.hparams.train_logger.log_stats(
|
299 |
+
stats_meta={
|
300 |
+
"epoch": epoch,
|
301 |
+
"lr_model": old_lr_model,
|
302 |
+
"lr_wav2vec": old_lr_wav2vec,
|
303 |
+
},
|
304 |
+
train_stats=self.train_stats,
|
305 |
+
valid_stats=stage_stats,
|
306 |
+
)
|
307 |
+
self.checkpointer.save_and_keep_only(
|
308 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
309 |
+
)
|
310 |
+
elif stage == sb.Stage.TEST:
|
311 |
+
self.hparams.train_logger.log_stats(
|
312 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
313 |
+
test_stats=stage_stats,
|
314 |
+
)
|
315 |
+
with open(self.hparams.wer_file, "w") as w:
|
316 |
+
self.wer_metric.write_stats(w)
|
317 |
+
|
318 |
+
def init_optimizers(self):
|
319 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
320 |
+
|
321 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
322 |
+
if not self.hparams.wav2vec2.freeze:
|
323 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
324 |
+
self.modules.wav2vec2.parameters()
|
325 |
+
)
|
326 |
+
if self.checkpointer is not None:
|
327 |
+
self.checkpointer.add_recoverable(
|
328 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
329 |
+
)
|
330 |
+
|
331 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
332 |
+
self.hparams.model.parameters()
|
333 |
+
)
|
334 |
+
|
335 |
+
if self.checkpointer is not None:
|
336 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
337 |
+
|
338 |
+
def zero_grad(self, set_to_none=False):
|
339 |
+
if not self.hparams.wav2vec2.freeze:
|
340 |
+
self.wav2vec_optimizer.zero_grad(set_to_none)
|
341 |
+
self.model_optimizer.zero_grad(set_to_none)
|
342 |
+
|
343 |
+
|
344 |
+
"""
|
345 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
346 |
+
|
347 |
+
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(
|
348 |
+
hparams
|
349 |
+
)
|
350 |
+
|
351 |
+
|
352 |
+
# We dynamicaly add the tokenizer to our brain class.
|
353 |
+
# NB: This tokenizer corresponds to the one used for the LM!!
|
354 |
+
"""
|
355 |
+
from speechbrain.pretrained import EncoderASR,EncoderDecoderASR
|
356 |
+
french_asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr").cuda()
|
357 |
+
#french_asr_model = "r"
|
358 |
+
|
359 |
+
cvhparams_file, cvrun_opts, cvoverrides = sb.parse_arguments(["en_cv.yaml"])
|
360 |
+
with open(cvhparams_file) as cvfin:
|
361 |
+
cvhparams = load_hyperpyyaml(cvfin, cvoverrides)
|
362 |
+
english_asr_model = ASRCV(
|
363 |
+
modules=cvhparams["modules"],
|
364 |
+
hparams=cvhparams,
|
365 |
+
run_opts=cvrun_opts,
|
366 |
+
checkpointer=cvhparams["checkpointer"],
|
367 |
+
)
|
368 |
+
english_asr_model.checkpointer.recover_if_possible()
|
369 |
+
asr_brain = ASR(
|
370 |
+
modules=hparams["modules"],
|
371 |
+
hparams=hparams,
|
372 |
+
run_opts=run_opts,
|
373 |
+
checkpointer=hparams["checkpointer"],
|
374 |
+
)
|
375 |
+
asr_brain.checkpointer.recover_if_possible()
|
376 |
+
asr_brain.modules.eval()
|
377 |
+
english_asr_model.modules.eval()
|
378 |
+
french_asr_model.mods.eval()
|
379 |
+
"""
|
380 |
+
asr_brain.tokenizer = label_encoder
|
381 |
+
|
382 |
+
# Testing
|
383 |
+
real = True
|
384 |
+
if real :
|
385 |
+
for k in test_datasets.keys(): # keys are test_clean, test_other etc
|
386 |
+
asr_brain.hparams.wer_file = os.path.join(
|
387 |
+
hparams["output_folder"], "wer_{}.txt".format(k)
|
388 |
+
)
|
389 |
+
asr_brain.evaluate(
|
390 |
+
test_datasets[k], test_loader_kwargs=hparams["dataloader_options"]
|
391 |
+
)
|
392 |
+
"""
|
393 |
+
|
394 |
+
"""
|
395 |
+
from torch.nn.utils.rnn import pad_sequence
|
396 |
+
def load_paths(wavs_path):
|
397 |
+
waveforms = []
|
398 |
+
for path in wavs_path :
|
399 |
+
waveform, _ = torchaudio.load(path)
|
400 |
+
waveforms.append(waveform.squeeze(0))
|
401 |
+
# normalize array length to the bigger arrays by pading with 0's
|
402 |
+
padded_arrays = pad_sequence(waveforms, batch_first=True)
|
403 |
+
return torch.tensor(padded_arrays)
|
404 |
+
|
405 |
+
waveform = load_paths(["/content/drive/MyDrive/tunisian_corpora/tunisian_without_wavlm/samples/Salah10.wav","/content/drive/MyDrive/tunisian_corpora/tunisian_without_wavlm/samples/Salah10.wav"])
|
406 |
+
embeddings, posteriogram = asr_brain.custom_encode(waveform,None)
|
407 |
+
print(embeddings.shape)
|
408 |
+
print(posteriogram.shape)
|
409 |
+
"""
|
410 |
+
|
411 |
+
from speechbrain.pretrained import EncoderASR,EncoderDecoderASR
|
412 |
+
import torchaudio
|
413 |
+
import speechbrain as sb
|
414 |
+
import torch
|
415 |
+
from torch.nn.utils.rnn import pad_sequence
|
416 |
+
import torch
|
417 |
+
import speechbrain as sb
|
418 |
+
import numpy as np
|
419 |
+
import torch.optim as optim
|
420 |
+
import torch.nn as nn
|
421 |
+
|
422 |
+
# Commented out IPython magic to ensure Python compatibility.
|
423 |
+
# %ls
|
424 |
+
|
425 |
+
#UTILS FUNCTIOJNS
|
426 |
+
def get_size_dimensions(arr):
|
427 |
+
size_dimensions = []
|
428 |
+
while isinstance(arr, list):
|
429 |
+
size_dimensions.append(len(arr))
|
430 |
+
arr = arr[0]
|
431 |
+
return size_dimensions
|
432 |
+
|
433 |
+
def scale_array(batch,n):
|
434 |
+
scaled_batch = []
|
435 |
+
|
436 |
+
for array in batch:
|
437 |
+
if(n < len(array)): raise ValueError("Cannot scale Array down")
|
438 |
+
|
439 |
+
repeat = round(n/len(array))+1
|
440 |
+
scaled_length_array= []
|
441 |
+
|
442 |
+
for i in array:
|
443 |
+
for j in range(repeat) :
|
444 |
+
if(len(scaled_length_array) == n): break
|
445 |
+
scaled_length_array.append(i)
|
446 |
+
|
447 |
+
scaled_batch.append(scaled_length_array)
|
448 |
+
|
449 |
+
return torch.tensor(scaled_batch)
|
450 |
+
|
451 |
+
|
452 |
+
def load_paths(wavs_path):
|
453 |
+
waveforms = []
|
454 |
+
for path in wavs_path :
|
455 |
+
waveform, _ = torchaudio.load(path)
|
456 |
+
waveforms.append(waveform.squeeze(0))
|
457 |
+
# normalize array length to the bigger arrays by pading with 0's
|
458 |
+
padded_arrays = pad_sequence(waveforms, batch_first=True)
|
459 |
+
return torch.tensor(padded_arrays)
|
460 |
+
|
461 |
+
|
462 |
+
|
463 |
+
def word_to_vec(input_string):
|
464 |
+
mapping= {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6, 'g': 7, 'h': 8, 'i': 9, 'j': 10, 'k': 11, 'l': 12, 'm': 13, 'n': 14, 'o': 15, 'p': 16, 'q': 17, 'r': 18, 's': 19, 't': 20, 'u': 21, 'v': 22, 'w': 23, 'x': 24, 'y': 25, 'z': 26, 'ا': 27, 'ب': 28, 'ت': 29, 'ث': 30, 'ج': 31, 'ح': 32, 'خ': 33, 'د': 34, 'ذ': 35, 'ر': 36, 'ز': 37, 'س': 38, 'ش': 39, 'ص': 40, 'ض': 41, 'ط': 42, 'ظ': 43, 'ع': 44, 'غ': 45, 'ف': 46, 'ق': 47, 'ك': 48, 'ل': 49, 'م': 50, 'ن': 51, 'ه': 52, 'و': 53, 'ي': 54,' ':55}
|
465 |
+
|
466 |
+
numbers = [mapping[word] for word in input_string if word in mapping]
|
467 |
+
return numbers
|
468 |
+
|
469 |
+
device = 'cuda'
|
470 |
+
verbose = 0
|
471 |
+
#FLOW LEVEL FUNCTIONS
|
472 |
+
def merge_strategy(embeddings1, embeddings2, embeddings3,post1, post2,post3):
|
473 |
+
|
474 |
+
|
475 |
+
post1 = post1.to(device)
|
476 |
+
post2 = post2.to(device)
|
477 |
+
post3 = post3.to(device)
|
478 |
+
embeddings1 = embeddings1.to(device)
|
479 |
+
embeddings2 = embeddings2.to(device)
|
480 |
+
embeddings3 = embeddings3.to(device)
|
481 |
+
|
482 |
+
posteriograms_merged = torch.cat((post1,post2,post3),dim=2)
|
483 |
+
embeddings_merged = torch.cat((embeddings1,embeddings2,embeddings3),dim=2)
|
484 |
+
|
485 |
+
if(verbose !=0):
|
486 |
+
print('MERGED POST ',posteriograms_merged.shape)
|
487 |
+
print('MERGED emb ',embeddings_merged.shape)
|
488 |
+
|
489 |
+
return torch.cat((posteriograms_merged,embeddings_merged),dim=2).to(device)
|
490 |
+
|
491 |
+
def decode(model,wavs,wav_lens):
|
492 |
+
|
493 |
+
with torch.no_grad():
|
494 |
+
wav_lens = wav_lens.to(model.device)
|
495 |
+
encoder_out = model.encode_batch(wavs, wav_lens)
|
496 |
+
predictions = model.decoding_function(encoder_out, wav_lens)
|
497 |
+
return predictions
|
498 |
+
|
499 |
+
def middle_layer(batch, lens):
|
500 |
+
|
501 |
+
tn_embeddings, tn_posteriogram = asr_brain.custom_encode(batch,None)
|
502 |
+
|
503 |
+
fr_embeddings = french_asr_model.mods.encoder.wav2vec2(batch)
|
504 |
+
fr_posteriogram =french_asr_model.encode_batch(batch,lens)
|
505 |
+
en_embeddings = english_asr_model.modules.wav2vec2(batch, lens)
|
506 |
+
x = english_asr_model.modules.enc(en_embeddings)
|
507 |
+
en_posteriogram = english_asr_model.modules.ctc_lin(x)
|
508 |
+
#scores, en_posteriogram = english_asr_model.mods.decoder(en_embeddings ,lens)
|
509 |
+
if(verbose !=0):
|
510 |
+
print('[EMBEDDINGS] FR:',fr_embeddings.shape, "EN:",en_embeddings.shape, "TN:", tn_embeddings.shape)
|
511 |
+
print('[POSTERIOGRAM] FR:',fr_posteriogram.shape, "EN:",en_posteriogram.shape,"TN:",tn_posteriogram.shape)
|
512 |
+
|
513 |
+
|
514 |
+
bilangual_sample = merge_strategy(fr_embeddings,en_embeddings,tn_embeddings,fr_posteriogram,en_posteriogram,tn_posteriogram)
|
515 |
+
return bilangual_sample
|
516 |
+
|
517 |
+
class Mixer(sb.core.Brain):
|
518 |
+
|
519 |
+
def compute_forward(self, batch, stage):
|
520 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
521 |
+
wavs, wav_lens = batch.sig
|
522 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
523 |
+
|
524 |
+
if stage == sb.Stage.TRAIN:
|
525 |
+
if hasattr(self.hparams, "augmentation"):
|
526 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
527 |
+
|
528 |
+
multi_langual_feats = middle_layer(wavs, wav_lens)
|
529 |
+
multi_langual_feats= multi_langual_feats.to(device)
|
530 |
+
feats, _ = self.modules.enc(multi_langual_feats)
|
531 |
+
logits = self.modules.ctc_lin(feats)
|
532 |
+
p_ctc = self.hparams.log_softmax(logits)
|
533 |
+
|
534 |
+
if stage!= sb.Stage.TRAIN:
|
535 |
+
p_tokens = sb.decoders.ctc_greedy_decode(
|
536 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
537 |
+
)
|
538 |
+
else :
|
539 |
+
p_tokens = None
|
540 |
+
return p_ctc, wav_lens, p_tokens
|
541 |
+
|
542 |
+
def compute_objectives(self, predictions, batch, stage):
|
543 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
544 |
+
|
545 |
+
p_ctc, wav_lens , predicted_tokens= predictions
|
546 |
+
|
547 |
+
ids = batch.id
|
548 |
+
tokens, tokens_lens = batch.tokens
|
549 |
+
|
550 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
551 |
+
|
552 |
+
|
553 |
+
if stage == sb.Stage.VALID:
|
554 |
+
predicted_words = [
|
555 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
556 |
+
for utt_seq in predicted_tokens
|
557 |
+
]
|
558 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
559 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
560 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
561 |
+
if stage ==sb.Stage.TEST :
|
562 |
+
if self.hparams.language_modelling:
|
563 |
+
predicted_words = []
|
564 |
+
for logs in p_ctc:
|
565 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
566 |
+
predicted_words.append(text.split(" "))
|
567 |
+
else :
|
568 |
+
predicted_words = [
|
569 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
570 |
+
for utt_seq in predicted_tokens
|
571 |
+
]
|
572 |
+
|
573 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
574 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
575 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
576 |
+
|
577 |
+
return loss
|
578 |
+
|
579 |
+
def fit_batch(self, batch):
|
580 |
+
"""Train the parameters given a single batch in input"""
|
581 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
582 |
+
# Managing automatic mixed precision
|
583 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
584 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
585 |
+
if self.auto_mix_prec:
|
586 |
+
with torch.cuda.amp.autocast():
|
587 |
+
with self.no_sync():
|
588 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
589 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
590 |
+
with self.no_sync(not should_step):
|
591 |
+
self.scaler.scale(
|
592 |
+
loss / self.grad_accumulation_factor
|
593 |
+
).backward()
|
594 |
+
if should_step:
|
595 |
+
|
596 |
+
|
597 |
+
self.scaler.unscale_(self.model_optimizer)
|
598 |
+
if self.check_gradients(loss):
|
599 |
+
self.scaler.step(self.model_optimizer)
|
600 |
+
self.scaler.update()
|
601 |
+
self.zero_grad()
|
602 |
+
self.optimizer_step += 1
|
603 |
+
else:
|
604 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
605 |
+
# on the forward pass
|
606 |
+
with self.no_sync():
|
607 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
608 |
+
|
609 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
610 |
+
|
611 |
+
with self.no_sync(not should_step):
|
612 |
+
(loss / self.grad_accumulation_factor).backward()
|
613 |
+
if should_step:
|
614 |
+
if self.check_gradients(loss):
|
615 |
+
self.model_optimizer.step()
|
616 |
+
self.zero_grad()
|
617 |
+
self.optimizer_step += 1
|
618 |
+
|
619 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
620 |
+
return loss.detach().cpu()
|
621 |
+
|
622 |
+
def evaluate_batch(self, batch, stage):
|
623 |
+
"""Computations needed for validation/test batches"""
|
624 |
+
predictions = self.compute_forward(batch, stage=stage)
|
625 |
+
with torch.no_grad():
|
626 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
627 |
+
return loss.detach()
|
628 |
+
|
629 |
+
def on_stage_start(self, stage, epoch):
|
630 |
+
"""Gets called at the beginning of each epoch"""
|
631 |
+
if stage != sb.Stage.TRAIN:
|
632 |
+
self.cer_metric = self.hparams.cer_computer()
|
633 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
634 |
+
|
635 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
636 |
+
"""Gets called at the end of an epoch."""
|
637 |
+
# Compute/store important stats
|
638 |
+
stage_stats = {"loss": stage_loss}
|
639 |
+
if stage == sb.Stage.TRAIN:
|
640 |
+
self.train_stats = stage_stats
|
641 |
+
else:
|
642 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
643 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
644 |
+
|
645 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
646 |
+
if stage == sb.Stage.VALID:
|
647 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
648 |
+
stage_stats["loss"]
|
649 |
+
)
|
650 |
+
sb.nnet.schedulers.update_learning_rate(
|
651 |
+
self.model_optimizer, new_lr_model
|
652 |
+
)
|
653 |
+
self.hparams.train_logger.log_stats(
|
654 |
+
stats_meta={
|
655 |
+
"epoch": epoch,
|
656 |
+
"lr_model": old_lr_model,
|
657 |
+
},
|
658 |
+
train_stats=self.train_stats,
|
659 |
+
valid_stats=stage_stats,
|
660 |
+
)
|
661 |
+
self.checkpointer.save_and_keep_only(
|
662 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
663 |
+
)
|
664 |
+
elif stage == sb.Stage.TEST:
|
665 |
+
self.hparams.train_logger.log_stats(
|
666 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
667 |
+
test_stats=stage_stats,
|
668 |
+
)
|
669 |
+
with open(self.hparams.wer_file, "w") as w:
|
670 |
+
self.wer_metric.write_stats(w)
|
671 |
+
|
672 |
+
def init_optimizers(self):
|
673 |
+
|
674 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
675 |
+
self.hparams.model.parameters()
|
676 |
+
)
|
677 |
+
|
678 |
+
if self.checkpointer is not None:
|
679 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
680 |
+
|
681 |
+
def zero_grad(self, set_to_none=False):
|
682 |
+
|
683 |
+
self.model_optimizer.zero_grad(set_to_none)
|
684 |
+
|
685 |
+
|
686 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
687 |
+
|
688 |
+
# If distributed_launch=True then
|
689 |
+
# create ddp_group with the right communication protocol
|
690 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
691 |
+
|
692 |
+
with open(hparams_file) as fin:
|
693 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
694 |
+
|
695 |
+
# Create experiment directory
|
696 |
+
sb.create_experiment_directory(
|
697 |
+
experiment_directory=hparams["output_folder"],
|
698 |
+
hyperparams_to_save=hparams_file,
|
699 |
+
overrides=overrides,
|
700 |
+
)
|
701 |
+
def read_labels_file(labels_file):
|
702 |
+
with open(labels_file, "r",encoding="utf-8") as lf:
|
703 |
+
lines = lf.read().splitlines()
|
704 |
+
division = "==="
|
705 |
+
numbers = {}
|
706 |
+
for line in lines :
|
707 |
+
if division in line :
|
708 |
+
break
|
709 |
+
string, number = line.split("=>")
|
710 |
+
number = int(number)
|
711 |
+
string = string[1:-2]
|
712 |
+
numbers[number] = string
|
713 |
+
return [numbers[x] for x in range(len(numbers))]
|
714 |
+
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(
|
715 |
+
hparams
|
716 |
+
)
|
717 |
+
|
718 |
+
|
719 |
+
labels = read_labels_file(os.path.join(hparams["save_folder"], "label_encoder.txt"))
|
720 |
+
labels = [""] + labels[1:-1] + ["1"]
|
721 |
+
if hparams["language_modelling"]:
|
722 |
+
decoder = build_ctcdecoder(
|
723 |
+
labels,
|
724 |
+
kenlm_model_path=hparams["ngram_lm_path"], # either .arpa or .bin file
|
725 |
+
alpha=0.5, # tuned on a val set
|
726 |
+
beta=1, # tuned on a val set
|
727 |
+
)
|
728 |
+
|
729 |
+
|
730 |
+
|
731 |
+
|
732 |
+
mixer = Mixer(
|
733 |
+
modules=hparams["modules"],
|
734 |
+
hparams=hparams,
|
735 |
+
run_opts=run_opts,
|
736 |
+
checkpointer=hparams["checkpointer"],
|
737 |
+
)
|
738 |
+
mixer.tokenizer = label_encoder
|
739 |
+
|
740 |
+
|
741 |
+
mixer.fit(
|
742 |
+
mixer.hparams.epoch_counter,
|
743 |
+
train_data,
|
744 |
+
valid_data,
|
745 |
+
train_loader_kwargs=hparams["dataloader_options"],
|
746 |
+
valid_loader_kwargs=hparams["test_dataloader_options"],
|
747 |
+
)
|
748 |
+
print(test_datasets.keys())
|
749 |
+
for k in test_datasets.keys(): # keys are test_clean, test_other etc
|
750 |
+
mixer.hparams.wer_file = os.path.join(
|
751 |
+
hparams["output_folder"], "wer_{}.txt".format(k)
|
752 |
+
)
|
753 |
+
mixer.evaluate(
|
754 |
+
test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"]
|
755 |
+
)
|
756 |
+
|
EnglishCV/results/wav2vec2_ctc_en/1234/hyperparams.yaml
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2023-09-06 from:
|
2 |
+
# /gpfsdswork/projects/rech/nou/uzn19yk/final_forke/speechbrain-3/recipes/CommonVoice/ASR/CTC/hparams/train_en_with_wav2vec.yaml
|
3 |
+
# yamllint disable
|
4 |
+
# ################################
|
5 |
+
# Model: wav2vec2 + DNN + CTC
|
6 |
+
# Augmentation: SpecAugment
|
7 |
+
# Authors: Titouan Parcollet 2021
|
8 |
+
# ################################
|
9 |
+
|
10 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
11 |
+
seed: 1234
|
12 |
+
__set_seed: !!python/object/apply:torch.manual_seed [1234]
|
13 |
+
output_folder: results/wav2vec2_ctc_en/1234
|
14 |
+
wer_file: results/wav2vec2_ctc_en/1234/wer.txt
|
15 |
+
save_folder: results/wav2vec2_ctc_en/1234/save
|
16 |
+
train_log: results/wav2vec2_ctc_en/1234/train_log.txt
|
17 |
+
|
18 |
+
# URL for the biggest Fairseq english wav2vec2 model.
|
19 |
+
wav2vec2_hub: facebook/wav2vec2-large-lv60
|
20 |
+
wav2vec2_folder: results/wav2vec2_ctc_en/1234/save/wav2vec2_checkpoint
|
21 |
+
|
22 |
+
# Data files
|
23 |
+
data_folder:
|
24 |
+
/gpfsscratch/rech/nou/uzn19yk/download/cv-corpus-12.0-2022-12-07/en/cv-corpus-12.0-2022-12-07/en # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
|
25 |
+
train_tsv_file:
|
26 |
+
/gpfsscratch/rech/nou/uzn19yk/download/cv-corpus-12.0-2022-12-07/en/cv-corpus-12.0-2022-12-07/en/train.tsv # Standard CommonVoice .tsv files
|
27 |
+
dev_tsv_file:
|
28 |
+
/gpfsscratch/rech/nou/uzn19yk/download/cv-corpus-12.0-2022-12-07/en/cv-corpus-12.0-2022-12-07/en/dev.tsv # Standard CommonVoice .tsv files
|
29 |
+
test_tsv_file:
|
30 |
+
/gpfsscratch/rech/nou/uzn19yk/download/cv-corpus-12.0-2022-12-07/en/cv-corpus-12.0-2022-12-07/en/test.tsv # Standard CommonVoice .tsv files
|
31 |
+
accented_letters: false
|
32 |
+
language: en # use 'it' for Italian, 'rw' for Kinyarwanda, 'en' for english
|
33 |
+
train_csv: results/wav2vec2_ctc_en/1234/save/train.csv
|
34 |
+
valid_csv: results/wav2vec2_ctc_en/1234/save/dev.csv
|
35 |
+
test_csv: results/wav2vec2_ctc_en/1234/save/test.csv
|
36 |
+
skip_prep: false # Skip data preparation
|
37 |
+
|
38 |
+
# We remove utterance slonger than 10s in the train/dev/test sets as
|
39 |
+
# longer sentences certainly correspond to "open microphones".
|
40 |
+
avoid_if_longer_than: 10.0
|
41 |
+
|
42 |
+
# Training parameters
|
43 |
+
number_of_epochs: 10
|
44 |
+
lr: 1.0
|
45 |
+
lr_wav2vec: 0.0001
|
46 |
+
sorting: ascending
|
47 |
+
auto_mix_prec: false
|
48 |
+
sample_rate: 16000
|
49 |
+
ckpt_interval_minutes: 30 # save checkpoint every N min
|
50 |
+
|
51 |
+
# With data_parallel batch_size is split into N jobs
|
52 |
+
# With DDP batch_size is multiplied by N jobs
|
53 |
+
# Must be 8 per GPU to fit 32GB of VRAM
|
54 |
+
batch_size: 8
|
55 |
+
test_batch_size: 4
|
56 |
+
|
57 |
+
dataloader_options:
|
58 |
+
batch_size: 8
|
59 |
+
num_workers: 6
|
60 |
+
test_dataloader_options:
|
61 |
+
batch_size: 4
|
62 |
+
num_workers: 6
|
63 |
+
|
64 |
+
# BPE parameters
|
65 |
+
token_type: char # ["unigram", "bpe", "char"]
|
66 |
+
character_coverage: 1.0
|
67 |
+
|
68 |
+
# Model parameters
|
69 |
+
# activation: !name:torch.nn.LeakyReLU
|
70 |
+
wav2vec_output_dim: 1024
|
71 |
+
dnn_neurons: 1024
|
72 |
+
freeze_wav2vec: false
|
73 |
+
freeze_feature_extractor: true
|
74 |
+
dropout: 0.15
|
75 |
+
warmup_steps: 500
|
76 |
+
|
77 |
+
# Outputs
|
78 |
+
output_neurons: 29 # BPE size, index(blank/eos/bos) = 0
|
79 |
+
|
80 |
+
# Decoding parameters
|
81 |
+
# Be sure that the bos and eos index match with the BPEs ones
|
82 |
+
blank_index: 0
|
83 |
+
bos_index: 1
|
84 |
+
eos_index: 2
|
85 |
+
|
86 |
+
#
|
87 |
+
# Functions and classes
|
88 |
+
#
|
89 |
+
epoch_counter: &id007 !new:speechbrain.utils.epoch_loop.EpochCounter
|
90 |
+
|
91 |
+
limit: 10
|
92 |
+
|
93 |
+
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
94 |
+
sample_rate: 16000
|
95 |
+
speeds: [95, 100, 105]
|
96 |
+
|
97 |
+
enc: &id002 !new:speechbrain.nnet.containers.Sequential
|
98 |
+
input_shape: [null, null, 1024]
|
99 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
100 |
+
n_neurons: 1024
|
101 |
+
bias: true
|
102 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
103 |
+
activation: !new:torch.nn.LeakyReLU
|
104 |
+
drop: !new:torch.nn.Dropout
|
105 |
+
p: 0.15
|
106 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
107 |
+
n_neurons: 1024
|
108 |
+
bias: true
|
109 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
110 |
+
activation2: !new:torch.nn.LeakyReLU
|
111 |
+
drop2: !new:torch.nn.Dropout
|
112 |
+
p: 0.15
|
113 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
114 |
+
n_neurons: 1024
|
115 |
+
bias: true
|
116 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
117 |
+
activation3: !new:torch.nn.LeakyReLU
|
118 |
+
|
119 |
+
wav2vec2: &id001 !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
120 |
+
source: /gpfsscratch/rech/nou/uzn19yk/wav2vec2-large-lv60/
|
121 |
+
output_norm: true
|
122 |
+
freeze: false
|
123 |
+
freeze_feature_extractor: true
|
124 |
+
save_path: results/wav2vec2_ctc_en/1234/save/wav2vec2_checkpoint
|
125 |
+
|
126 |
+
#####
|
127 |
+
# Uncomment this block if you prefer to use a Fairseq pretrained model instead
|
128 |
+
# of a HuggingFace one. Here, we provide an URL that is obtained from the
|
129 |
+
# Fairseq github for the multilingual XLSR.
|
130 |
+
#
|
131 |
+
#wav2vec2_url: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr_53_56k.pt
|
132 |
+
#wav2vec2: !new:speechbrain.lobes.models.fairseq_wav2vec.FairseqWav2Vec2
|
133 |
+
# pretrained_path: !ref <wav2vec2_url>
|
134 |
+
# output_norm: True
|
135 |
+
# freeze: False
|
136 |
+
# save_path: !ref <save_folder>/wav2vec2_checkpoint/model.pt
|
137 |
+
#####
|
138 |
+
|
139 |
+
ctc_lin: &id003 !new:speechbrain.nnet.linear.Linear
|
140 |
+
|
141 |
+
input_size: 1024
|
142 |
+
n_neurons: 29
|
143 |
+
|
144 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
145 |
+
apply_log: true
|
146 |
+
|
147 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
148 |
+
blank_index: 0
|
149 |
+
|
150 |
+
modules:
|
151 |
+
wav2vec2: *id001
|
152 |
+
enc: *id002
|
153 |
+
ctc_lin: *id003
|
154 |
+
model: &id004 !new:torch.nn.ModuleList
|
155 |
+
- [*id002, *id003]
|
156 |
+
model_opt_class: !name:torch.optim.Adadelta
|
157 |
+
lr: 1.0
|
158 |
+
rho: 0.95
|
159 |
+
eps: 1.e-8
|
160 |
+
|
161 |
+
wav2vec_opt_class: !name:torch.optim.Adam
|
162 |
+
lr: 0.0001
|
163 |
+
|
164 |
+
lr_annealing_model: &id005 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
165 |
+
initial_value: 1.0
|
166 |
+
improvement_threshold: 0.0025
|
167 |
+
annealing_factor: 0.8
|
168 |
+
patient: 0
|
169 |
+
|
170 |
+
lr_annealing_wav2vec: &id006 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
171 |
+
initial_value: 0.0001
|
172 |
+
improvement_threshold: 0.0025
|
173 |
+
annealing_factor: 0.9
|
174 |
+
patient: 0
|
175 |
+
|
176 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
177 |
+
checkpoints_dir: results/wav2vec2_ctc_en/1234/save
|
178 |
+
recoverables:
|
179 |
+
wav2vec2: *id001
|
180 |
+
model: *id004
|
181 |
+
scheduler_model: *id005
|
182 |
+
scheduler_wav2vec: *id006
|
183 |
+
counter: *id007
|
184 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
185 |
+
save_file: results/wav2vec2_ctc_en/1234/train_log.txt
|
186 |
+
|
187 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
188 |
+
|
189 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
190 |
+
split_tokens: true
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/29_char.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee4214a3ebba9461ca02ca61220a2338412bbf9ef5a5982f2bc40740c4ab91a8
|
3 |
+
size 238011
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/29_char.vocab
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<unk> 0
|
2 |
+
▁ -1.786
|
3 |
+
E -2.27261
|
4 |
+
A -2.6326
|
5 |
+
T -2.64317
|
6 |
+
I -2.76341
|
7 |
+
S -2.81519
|
8 |
+
O -2.8189
|
9 |
+
N -2.83568
|
10 |
+
R -2.87568
|
11 |
+
H -3.22802
|
12 |
+
L -3.30075
|
13 |
+
D -3.43047
|
14 |
+
C -3.58554
|
15 |
+
U -3.84445
|
16 |
+
M -3.84732
|
17 |
+
F -4.07023
|
18 |
+
P -4.09107
|
19 |
+
G -4.16259
|
20 |
+
W -4.25412
|
21 |
+
Y -4.30147
|
22 |
+
B -4.36224
|
23 |
+
V -4.71267
|
24 |
+
K -5.1744
|
25 |
+
X -6.46672
|
26 |
+
J -6.5246
|
27 |
+
Z -6.95828
|
28 |
+
Q -7.12388
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/CKPT.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# yamllint disable
|
2 |
+
WER: 18.234978071545488
|
3 |
+
end-of-epoch: true
|
4 |
+
unixtime: 1694033791.9455216
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/brain.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06617abf655f8550362b963062fc2a57bd819826ab70e63701676ea09d23618d
|
3 |
+
size 51
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/counter.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4735e3a265e16eee03f59718b9b5d03019c07d8b6c51f90da3a666eec13ab35
|
3 |
+
size 1
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/dataloader-TRAIN.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f21c20a479fcc07663ec4255ad1c85466afb791f514f8f3baa174bd56edca2d4
|
3 |
+
size 6
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:422a1d7a30720e846d2cb79ff510832fe96c1495f559f08fb37bdd118269ea7b
|
3 |
+
size 12769326
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/modelopt.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65cda77e4403deb7c8cee3052ac687bfc3bf6e68264dcb0e297e8f88bccf0d66
|
3 |
+
size 25485359
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/scheduler_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9c36e38dd81971c68387a9f921cf0d61adad21f5b3f6420b6f3015b0f9d20df
|
3 |
+
size 511
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/scheduler_wav2vec.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0293788921aad16c6e904d7ec0b7dba2dd4778fa3b7f1bfa04276b3965599999
|
3 |
+
size 515
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/wav2vec2.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f7073aa70c88927f11cff4f2ba63a026c8ff6c119837391d84013feb229ad3e
|
3 |
+
size 1261924189
|
EnglishCV/results/wav2vec2_ctc_en/1234/save/CKPT+2023-09-06+22-56-31+00/wav2vec_opt.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42691a96ebaba3dd3baf7e2521763db7f79b37a6bde9b0ea9d1adc2cac5bdf5e
|
3 |
+
size 2490156402
|
EnglishCV/results/wav2vec2_ctc_en/1234/train_with_wav2vec.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import logging
|
5 |
+
import speechbrain as sb
|
6 |
+
import torchaudio
|
7 |
+
from hyperpyyaml import load_hyperpyyaml
|
8 |
+
from speechbrain.tokenizers.SentencePiece import SentencePiece
|
9 |
+
from speechbrain.utils.data_utils import undo_padding
|
10 |
+
from speechbrain.utils.distributed import run_on_main
|
11 |
+
|
12 |
+
"""Recipe for training a sequence-to-sequence ASR system with CommonVoice.
|
13 |
+
The system employs a wav2vec2 encoder and a CTC decoder.
|
14 |
+
Decoding is performed with greedy decoding (will be extended to beam search).
|
15 |
+
|
16 |
+
To run this recipe, do the following:
|
17 |
+
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml
|
18 |
+
|
19 |
+
With the default hyperparameters, the system employs a pretrained wav2vec2 encoder.
|
20 |
+
The wav2vec2 model is pretrained following the model given in the hprams file.
|
21 |
+
It may be dependent on the language.
|
22 |
+
|
23 |
+
The neural network is trained with CTC on sub-word units estimated with
|
24 |
+
Byte Pairwise Encoding (BPE).
|
25 |
+
|
26 |
+
The experiment file is flexible enough to support a large variety of
|
27 |
+
different systems. By properly changing the parameter files, you can try
|
28 |
+
different encoders, decoders, tokens (e.g, characters instead of BPE),
|
29 |
+
training languages (all CommonVoice languages), and many
|
30 |
+
other possible variations.
|
31 |
+
|
32 |
+
Authors
|
33 |
+
* Titouan Parcollet 2021
|
34 |
+
"""
|
35 |
+
|
36 |
+
logger = logging.getLogger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
# Define training procedure
|
40 |
+
class ASR(sb.core.Brain):
|
41 |
+
def compute_forward(self, batch, stage):
|
42 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
43 |
+
|
44 |
+
batch = batch.to(self.device)
|
45 |
+
wavs, wav_lens = batch.sig
|
46 |
+
tokens_bos, _ = batch.tokens_bos
|
47 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
48 |
+
|
49 |
+
if stage == sb.Stage.TRAIN:
|
50 |
+
if hasattr(self.hparams, "augmentation"):
|
51 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
52 |
+
|
53 |
+
# Forward pass
|
54 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
55 |
+
x = self.modules.enc(feats)
|
56 |
+
logits = self.modules.ctc_lin(x)
|
57 |
+
p_ctc = self.hparams.log_softmax(logits)
|
58 |
+
|
59 |
+
return p_ctc, wav_lens
|
60 |
+
|
61 |
+
def compute_objectives(self, predictions, batch, stage):
|
62 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
63 |
+
|
64 |
+
p_ctc, wav_lens = predictions
|
65 |
+
|
66 |
+
ids = batch.id
|
67 |
+
tokens_eos, tokens_eos_lens = batch.tokens_eos
|
68 |
+
tokens, tokens_lens = batch.tokens
|
69 |
+
|
70 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
71 |
+
|
72 |
+
if stage != sb.Stage.TRAIN:
|
73 |
+
# Decode token terms to words
|
74 |
+
sequence = sb.decoders.ctc_greedy_decode(
|
75 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
76 |
+
)
|
77 |
+
|
78 |
+
predicted_words = self.tokenizer(sequence, task="decode_from_list")
|
79 |
+
|
80 |
+
# Convert indices to words
|
81 |
+
target_words = undo_padding(tokens, tokens_lens)
|
82 |
+
target_words = self.tokenizer(target_words, task="decode_from_list")
|
83 |
+
|
84 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
85 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
86 |
+
|
87 |
+
return loss
|
88 |
+
|
89 |
+
def fit_batch(self, batch):
|
90 |
+
"""Train the parameters given a single batch in input"""
|
91 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
92 |
+
# Managing automatic mixed precision
|
93 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
94 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
95 |
+
if self.auto_mix_prec:
|
96 |
+
with torch.cuda.amp.autocast():
|
97 |
+
with self.no_sync():
|
98 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
99 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
100 |
+
with self.no_sync(not should_step):
|
101 |
+
self.scaler.scale(
|
102 |
+
loss / self.grad_accumulation_factor
|
103 |
+
).backward()
|
104 |
+
if should_step:
|
105 |
+
|
106 |
+
if not self.hparams.wav2vec2.freeze:
|
107 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
108 |
+
self.scaler.unscale_(self.model_optimizer)
|
109 |
+
if self.check_gradients(loss):
|
110 |
+
if not self.hparams.wav2vec2.freeze:
|
111 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
112 |
+
self.scaler.step(self.wav2vec_optimizer)
|
113 |
+
self.scaler.step(self.model_optimizer)
|
114 |
+
self.scaler.update()
|
115 |
+
self.zero_grad()
|
116 |
+
self.optimizer_step += 1
|
117 |
+
else:
|
118 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
119 |
+
# on the forward pass
|
120 |
+
with self.no_sync():
|
121 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
122 |
+
|
123 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
124 |
+
|
125 |
+
with self.no_sync(not should_step):
|
126 |
+
(loss / self.grad_accumulation_factor).backward()
|
127 |
+
if should_step:
|
128 |
+
if self.check_gradients(loss):
|
129 |
+
if not self.hparams.wav2vec2.freeze:
|
130 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
131 |
+
self.wav2vec_optimizer.step()
|
132 |
+
self.model_optimizer.step()
|
133 |
+
self.zero_grad()
|
134 |
+
self.optimizer_step += 1
|
135 |
+
|
136 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
137 |
+
return loss.detach().cpu()
|
138 |
+
|
139 |
+
def evaluate_batch(self, batch, stage):
|
140 |
+
"""Computations needed for validation/test batches"""
|
141 |
+
predictions = self.compute_forward(batch, stage=stage)
|
142 |
+
with torch.no_grad():
|
143 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
144 |
+
return loss.detach()
|
145 |
+
|
146 |
+
def on_stage_start(self, stage, epoch):
|
147 |
+
"""Gets called at the beginning of each epoch"""
|
148 |
+
if stage != sb.Stage.TRAIN:
|
149 |
+
self.cer_metric = self.hparams.cer_computer()
|
150 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
151 |
+
|
152 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
153 |
+
"""Gets called at the end of an epoch."""
|
154 |
+
# Compute/store important stats
|
155 |
+
stage_stats = {"loss": stage_loss}
|
156 |
+
if stage == sb.Stage.TRAIN:
|
157 |
+
self.train_stats = stage_stats
|
158 |
+
else:
|
159 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
160 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
161 |
+
|
162 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
163 |
+
if stage == sb.Stage.VALID:
|
164 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
165 |
+
stage_stats["loss"]
|
166 |
+
)
|
167 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
168 |
+
stage_stats["loss"]
|
169 |
+
)
|
170 |
+
sb.nnet.schedulers.update_learning_rate(
|
171 |
+
self.model_optimizer, new_lr_model
|
172 |
+
)
|
173 |
+
if not self.hparams.wav2vec2.freeze:
|
174 |
+
sb.nnet.schedulers.update_learning_rate(
|
175 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
176 |
+
)
|
177 |
+
self.hparams.train_logger.log_stats(
|
178 |
+
stats_meta={
|
179 |
+
"epoch": epoch,
|
180 |
+
"lr_model": old_lr_model,
|
181 |
+
"lr_wav2vec": old_lr_wav2vec,
|
182 |
+
},
|
183 |
+
train_stats=self.train_stats,
|
184 |
+
valid_stats=stage_stats,
|
185 |
+
)
|
186 |
+
self.checkpointer.save_and_keep_only(
|
187 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
188 |
+
)
|
189 |
+
elif stage == sb.Stage.TEST:
|
190 |
+
self.hparams.train_logger.log_stats(
|
191 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
192 |
+
test_stats=stage_stats,
|
193 |
+
)
|
194 |
+
with open(self.hparams.wer_file, "w") as w:
|
195 |
+
self.wer_metric.write_stats(w)
|
196 |
+
|
197 |
+
def init_optimizers(self):
|
198 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
199 |
+
|
200 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
201 |
+
if not self.hparams.wav2vec2.freeze:
|
202 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
203 |
+
self.modules.wav2vec2.parameters()
|
204 |
+
)
|
205 |
+
if self.checkpointer is not None:
|
206 |
+
self.checkpointer.add_recoverable(
|
207 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
208 |
+
)
|
209 |
+
|
210 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
211 |
+
self.hparams.model.parameters()
|
212 |
+
)
|
213 |
+
|
214 |
+
if self.checkpointer is not None:
|
215 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
216 |
+
|
217 |
+
def zero_grad(self, set_to_none=False):
|
218 |
+
if not self.hparams.wav2vec2.freeze:
|
219 |
+
self.wav2vec_optimizer.zero_grad(set_to_none)
|
220 |
+
self.model_optimizer.zero_grad(set_to_none)
|
221 |
+
|
222 |
+
|
223 |
+
# Define custom data procedure
|
224 |
+
def dataio_prepare(hparams, tokenizer):
|
225 |
+
"""This function prepares the datasets to be used in the brain class.
|
226 |
+
It also defines the data processing pipeline through user-defined functions."""
|
227 |
+
|
228 |
+
# 1. Define datasets
|
229 |
+
data_folder = hparams["data_folder"]
|
230 |
+
|
231 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
232 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
233 |
+
)
|
234 |
+
|
235 |
+
if hparams["sorting"] == "ascending":
|
236 |
+
# we sort training data to speed up training and get better results.
|
237 |
+
train_data = train_data.filtered_sorted(
|
238 |
+
sort_key="duration",
|
239 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
240 |
+
)
|
241 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
242 |
+
hparams["dataloader_options"]["shuffle"] = False
|
243 |
+
|
244 |
+
elif hparams["sorting"] == "descending":
|
245 |
+
train_data = train_data.filtered_sorted(
|
246 |
+
sort_key="duration",
|
247 |
+
reverse=True,
|
248 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
249 |
+
)
|
250 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
251 |
+
hparams["dataloader_options"]["shuffle"] = False
|
252 |
+
|
253 |
+
elif hparams["sorting"] == "random":
|
254 |
+
pass
|
255 |
+
|
256 |
+
else:
|
257 |
+
raise NotImplementedError(
|
258 |
+
"sorting must be random, ascending or descending"
|
259 |
+
)
|
260 |
+
|
261 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
262 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
263 |
+
)
|
264 |
+
# We also sort the validation data so it is faster to validate
|
265 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
266 |
+
|
267 |
+
test_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
268 |
+
csv_path=hparams["test_csv"], replacements={"data_root": data_folder},
|
269 |
+
)
|
270 |
+
|
271 |
+
# We also sort the validation data so it is faster to validate
|
272 |
+
test_data = test_data.filtered_sorted(sort_key="duration")
|
273 |
+
|
274 |
+
datasets = [train_data, valid_data, test_data]
|
275 |
+
|
276 |
+
# 2. Define audio pipeline:
|
277 |
+
@sb.utils.data_pipeline.takes("wav")
|
278 |
+
@sb.utils.data_pipeline.provides("sig")
|
279 |
+
def audio_pipeline(wav):
|
280 |
+
info = torchaudio.info(wav)
|
281 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
282 |
+
resampled = torchaudio.transforms.Resample(
|
283 |
+
info.sample_rate, hparams["sample_rate"],
|
284 |
+
)(sig)
|
285 |
+
return resampled
|
286 |
+
|
287 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
288 |
+
|
289 |
+
# 3. Define text pipeline:
|
290 |
+
@sb.utils.data_pipeline.takes("wrd")
|
291 |
+
@sb.utils.data_pipeline.provides(
|
292 |
+
"tokens_list", "tokens_bos", "tokens_eos", "tokens"
|
293 |
+
)
|
294 |
+
def text_pipeline(wrd):
|
295 |
+
tokens_list = tokenizer.sp.encode_as_ids(wrd)
|
296 |
+
yield tokens_list
|
297 |
+
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
|
298 |
+
yield tokens_bos
|
299 |
+
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
|
300 |
+
yield tokens_eos
|
301 |
+
tokens = torch.LongTensor(tokens_list)
|
302 |
+
yield tokens
|
303 |
+
|
304 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
305 |
+
|
306 |
+
# 4. Set output:
|
307 |
+
sb.dataio.dataset.set_output_keys(
|
308 |
+
datasets, ["id", "sig", "tokens_bos", "tokens_eos", "tokens"],
|
309 |
+
)
|
310 |
+
return train_data, valid_data, test_data
|
311 |
+
|
312 |
+
|
313 |
+
if __name__ == "__main__":
|
314 |
+
|
315 |
+
# Load hyperparameters file with command-line overrides
|
316 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
317 |
+
with open(hparams_file) as fin:
|
318 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
319 |
+
|
320 |
+
# If --distributed_launch then
|
321 |
+
# create ddp_group with the right communication protocol
|
322 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
323 |
+
|
324 |
+
# Dataset preparation (parsing CommonVoice)
|
325 |
+
from common_voice_prepare import prepare_common_voice # noqa
|
326 |
+
|
327 |
+
# Create experiment directory
|
328 |
+
sb.create_experiment_directory(
|
329 |
+
experiment_directory=hparams["output_folder"],
|
330 |
+
hyperparams_to_save=hparams_file,
|
331 |
+
overrides=overrides,
|
332 |
+
)
|
333 |
+
|
334 |
+
# Due to DDP, we do the preparation ONLY on the main python process
|
335 |
+
run_on_main(
|
336 |
+
prepare_common_voice,
|
337 |
+
kwargs={
|
338 |
+
"data_folder": hparams["data_folder"],
|
339 |
+
"save_folder": hparams["save_folder"],
|
340 |
+
"train_tsv_file": hparams["train_tsv_file"],
|
341 |
+
"dev_tsv_file": hparams["dev_tsv_file"],
|
342 |
+
"test_tsv_file": hparams["test_tsv_file"],
|
343 |
+
"accented_letters": hparams["accented_letters"],
|
344 |
+
"language": hparams["language"],
|
345 |
+
"skip_prep": hparams["skip_prep"],
|
346 |
+
},
|
347 |
+
)
|
348 |
+
|
349 |
+
# Defining tokenizer and loading it
|
350 |
+
tokenizer = SentencePiece(
|
351 |
+
model_dir=hparams["save_folder"],
|
352 |
+
vocab_size=hparams["output_neurons"],
|
353 |
+
annotation_train=hparams["train_csv"],
|
354 |
+
annotation_read="wrd",
|
355 |
+
model_type=hparams["token_type"],
|
356 |
+
character_coverage=hparams["character_coverage"],
|
357 |
+
)
|
358 |
+
|
359 |
+
# Create the datasets objects as well as tokenization and encoding :-D
|
360 |
+
train_data, valid_data, test_data = dataio_prepare(hparams, tokenizer)
|
361 |
+
|
362 |
+
# Trainer initialization
|
363 |
+
asr_brain = ASR(
|
364 |
+
modules=hparams["modules"],
|
365 |
+
hparams=hparams,
|
366 |
+
run_opts=run_opts,
|
367 |
+
checkpointer=hparams["checkpointer"],
|
368 |
+
)
|
369 |
+
|
370 |
+
# Adding objects to trainer.
|
371 |
+
asr_brain.tokenizer = tokenizer
|
372 |
+
|
373 |
+
# Training
|
374 |
+
asr_brain.fit(
|
375 |
+
asr_brain.hparams.epoch_counter,
|
376 |
+
train_data,
|
377 |
+
valid_data,
|
378 |
+
train_loader_kwargs=hparams["dataloader_options"],
|
379 |
+
valid_loader_kwargs=hparams["test_dataloader_options"],
|
380 |
+
)
|
381 |
+
|
382 |
+
# Test
|
383 |
+
asr_brain.hparams.wer_file = hparams["output_folder"] + "/wer_test.txt"
|
384 |
+
asr_brain.evaluate(
|
385 |
+
test_data,
|
386 |
+
min_key="WER",
|
387 |
+
test_loader_kwargs=hparams["test_dataloader_options"],
|
388 |
+
)
|
EnglishCV/train_en_with_wav2vec.yaml
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ################################
|
2 |
+
# Model: wav2vec2 + DNN + CTC
|
3 |
+
# Augmentation: SpecAugment
|
4 |
+
# Authors: Titouan Parcollet 2021
|
5 |
+
# ################################
|
6 |
+
|
7 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
8 |
+
seed: 1234
|
9 |
+
__set_seed: !!python/object/apply:torch.manual_seed [!ref <seed>]
|
10 |
+
output_folder: !ref results/wav2vec2_ctc_en/<seed>
|
11 |
+
wer_file: !ref <output_folder>/wer.txt
|
12 |
+
save_folder: !ref <output_folder>/save
|
13 |
+
train_log: !ref <output_folder>/train_log.txt
|
14 |
+
|
15 |
+
# URL for the biggest Fairseq english wav2vec2 model.
|
16 |
+
wav2vec2_hub: facebook/wav2vec2-large-lv60
|
17 |
+
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint
|
18 |
+
|
19 |
+
# Data files
|
20 |
+
data_folder: /gpfsscratch/rech/nou/uzn19yk/download/cv-corpus-12.0-2022-12-07/en/cv-corpus-12.0-2022-12-07/en # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
|
21 |
+
train_tsv_file: !ref <data_folder>/train.tsv # Standard CommonVoice .tsv files
|
22 |
+
dev_tsv_file: !ref <data_folder>/dev.tsv # Standard CommonVoice .tsv files
|
23 |
+
test_tsv_file: !ref <data_folder>/test.tsv # Standard CommonVoice .tsv files
|
24 |
+
accented_letters: False
|
25 |
+
language: en # use 'it' for Italian, 'rw' for Kinyarwanda, 'en' for english
|
26 |
+
train_csv: !ref <save_folder>/train.csv
|
27 |
+
valid_csv: !ref <save_folder>/dev.csv
|
28 |
+
test_csv: !ref <save_folder>/test.csv
|
29 |
+
skip_prep: False # Skip data preparation
|
30 |
+
|
31 |
+
# We remove utterance slonger than 10s in the train/dev/test sets as
|
32 |
+
# longer sentences certainly correspond to "open microphones".
|
33 |
+
avoid_if_longer_than: 10.0
|
34 |
+
|
35 |
+
# Training parameters
|
36 |
+
number_of_epochs: 10
|
37 |
+
lr: 1.0
|
38 |
+
lr_wav2vec: 0.0001
|
39 |
+
sorting: ascending
|
40 |
+
auto_mix_prec: False
|
41 |
+
sample_rate: 16000
|
42 |
+
ckpt_interval_minutes: 30 # save checkpoint every N min
|
43 |
+
|
44 |
+
# With data_parallel batch_size is split into N jobs
|
45 |
+
# With DDP batch_size is multiplied by N jobs
|
46 |
+
# Must be 8 per GPU to fit 32GB of VRAM
|
47 |
+
batch_size: 8
|
48 |
+
test_batch_size: 4
|
49 |
+
|
50 |
+
dataloader_options:
|
51 |
+
batch_size: !ref <batch_size>
|
52 |
+
num_workers: 6
|
53 |
+
test_dataloader_options:
|
54 |
+
batch_size: !ref <test_batch_size>
|
55 |
+
num_workers: 6
|
56 |
+
|
57 |
+
# BPE parameters
|
58 |
+
token_type: char # ["unigram", "bpe", "char"]
|
59 |
+
character_coverage: 1.0
|
60 |
+
|
61 |
+
# Model parameters
|
62 |
+
# activation: !name:torch.nn.LeakyReLU
|
63 |
+
wav2vec_output_dim: 1024
|
64 |
+
dnn_neurons: 1024
|
65 |
+
freeze_wav2vec: False
|
66 |
+
freeze_feature_extractor: True
|
67 |
+
dropout: 0.15
|
68 |
+
warmup_steps: 500
|
69 |
+
|
70 |
+
# Outputs
|
71 |
+
output_neurons: 29 # BPE size, index(blank/eos/bos) = 0
|
72 |
+
|
73 |
+
# Decoding parameters
|
74 |
+
# Be sure that the bos and eos index match with the BPEs ones
|
75 |
+
blank_index: 0
|
76 |
+
bos_index: 1
|
77 |
+
eos_index: 2
|
78 |
+
|
79 |
+
#
|
80 |
+
# Functions and classes
|
81 |
+
#
|
82 |
+
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
|
83 |
+
limit: !ref <number_of_epochs>
|
84 |
+
|
85 |
+
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
86 |
+
sample_rate: !ref <sample_rate>
|
87 |
+
speeds: [95, 100, 105]
|
88 |
+
|
89 |
+
enc: !new:speechbrain.nnet.containers.Sequential
|
90 |
+
input_shape: [null, null, !ref <wav2vec_output_dim>]
|
91 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
92 |
+
n_neurons: !ref <dnn_neurons>
|
93 |
+
bias: True
|
94 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
95 |
+
activation: !new:torch.nn.LeakyReLU
|
96 |
+
drop: !new:torch.nn.Dropout
|
97 |
+
p: !ref <dropout>
|
98 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
99 |
+
n_neurons: !ref <dnn_neurons>
|
100 |
+
bias: True
|
101 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
102 |
+
activation2: !new:torch.nn.LeakyReLU
|
103 |
+
drop2: !new:torch.nn.Dropout
|
104 |
+
p: !ref <dropout>
|
105 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
106 |
+
n_neurons: !ref <dnn_neurons>
|
107 |
+
bias: True
|
108 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
109 |
+
activation3: !new:torch.nn.LeakyReLU
|
110 |
+
|
111 |
+
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
112 |
+
source: /gpfsscratch/rech/nou/uzn19yk/wav2vec2-large-lv60/
|
113 |
+
output_norm: True
|
114 |
+
freeze: !ref <freeze_wav2vec>
|
115 |
+
freeze_feature_extractor: !ref <freeze_feature_extractor>
|
116 |
+
save_path: !ref <wav2vec2_folder>
|
117 |
+
|
118 |
+
#####
|
119 |
+
# Uncomment this block if you prefer to use a Fairseq pretrained model instead
|
120 |
+
# of a HuggingFace one. Here, we provide an URL that is obtained from the
|
121 |
+
# Fairseq github for the multilingual XLSR.
|
122 |
+
#
|
123 |
+
#wav2vec2_url: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr_53_56k.pt
|
124 |
+
#wav2vec2: !new:speechbrain.lobes.models.fairseq_wav2vec.FairseqWav2Vec2
|
125 |
+
# pretrained_path: !ref <wav2vec2_url>
|
126 |
+
# output_norm: True
|
127 |
+
# freeze: False
|
128 |
+
# save_path: !ref <save_folder>/wav2vec2_checkpoint/model.pt
|
129 |
+
#####
|
130 |
+
|
131 |
+
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
132 |
+
input_size: !ref <dnn_neurons>
|
133 |
+
n_neurons: !ref <output_neurons>
|
134 |
+
|
135 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
136 |
+
apply_log: True
|
137 |
+
|
138 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
139 |
+
blank_index: !ref <blank_index>
|
140 |
+
|
141 |
+
modules:
|
142 |
+
wav2vec2: !ref <wav2vec2>
|
143 |
+
enc: !ref <enc>
|
144 |
+
ctc_lin: !ref <ctc_lin>
|
145 |
+
|
146 |
+
model: !new:torch.nn.ModuleList
|
147 |
+
- [!ref <enc>, !ref <ctc_lin>]
|
148 |
+
|
149 |
+
model_opt_class: !name:torch.optim.Adadelta
|
150 |
+
lr: !ref <lr>
|
151 |
+
rho: 0.95
|
152 |
+
eps: 1.e-8
|
153 |
+
|
154 |
+
wav2vec_opt_class: !name:torch.optim.Adam
|
155 |
+
lr: !ref <lr_wav2vec>
|
156 |
+
|
157 |
+
lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler
|
158 |
+
initial_value: !ref <lr>
|
159 |
+
improvement_threshold: 0.0025
|
160 |
+
annealing_factor: 0.8
|
161 |
+
patient: 0
|
162 |
+
|
163 |
+
lr_annealing_wav2vec: !new:speechbrain.nnet.schedulers.NewBobScheduler
|
164 |
+
initial_value: !ref <lr_wav2vec>
|
165 |
+
improvement_threshold: 0.0025
|
166 |
+
annealing_factor: 0.9
|
167 |
+
patient: 0
|
168 |
+
|
169 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
170 |
+
checkpoints_dir: !ref <save_folder>
|
171 |
+
recoverables:
|
172 |
+
wav2vec2: !ref <wav2vec2>
|
173 |
+
model: !ref <model>
|
174 |
+
scheduler_model: !ref <lr_annealing_model>
|
175 |
+
scheduler_wav2vec: !ref <lr_annealing_wav2vec>
|
176 |
+
counter: !ref <epoch_counter>
|
177 |
+
|
178 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
179 |
+
save_file: !ref <train_log>
|
180 |
+
|
181 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
182 |
+
|
183 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
184 |
+
split_tokens: True
|
EnglishCV/train_with_wav2vec.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import logging
|
5 |
+
import speechbrain as sb
|
6 |
+
import torchaudio
|
7 |
+
from hyperpyyaml import load_hyperpyyaml
|
8 |
+
from speechbrain.tokenizers.SentencePiece import SentencePiece
|
9 |
+
from speechbrain.utils.data_utils import undo_padding
|
10 |
+
from speechbrain.utils.distributed import run_on_main
|
11 |
+
|
12 |
+
"""Recipe for training a sequence-to-sequence ASR system with CommonVoice.
|
13 |
+
The system employs a wav2vec2 encoder and a CTC decoder.
|
14 |
+
Decoding is performed with greedy decoding (will be extended to beam search).
|
15 |
+
|
16 |
+
To run this recipe, do the following:
|
17 |
+
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml
|
18 |
+
|
19 |
+
With the default hyperparameters, the system employs a pretrained wav2vec2 encoder.
|
20 |
+
The wav2vec2 model is pretrained following the model given in the hprams file.
|
21 |
+
It may be dependent on the language.
|
22 |
+
|
23 |
+
The neural network is trained with CTC on sub-word units estimated with
|
24 |
+
Byte Pairwise Encoding (BPE).
|
25 |
+
|
26 |
+
The experiment file is flexible enough to support a large variety of
|
27 |
+
different systems. By properly changing the parameter files, you can try
|
28 |
+
different encoders, decoders, tokens (e.g, characters instead of BPE),
|
29 |
+
training languages (all CommonVoice languages), and many
|
30 |
+
other possible variations.
|
31 |
+
|
32 |
+
Authors
|
33 |
+
* Titouan Parcollet 2021
|
34 |
+
"""
|
35 |
+
|
36 |
+
logger = logging.getLogger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
# Define training procedure
|
40 |
+
class ASR(sb.core.Brain):
|
41 |
+
def compute_forward(self, batch, stage):
|
42 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
43 |
+
|
44 |
+
batch = batch.to(self.device)
|
45 |
+
wavs, wav_lens = batch.sig
|
46 |
+
tokens_bos, _ = batch.tokens_bos
|
47 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
48 |
+
|
49 |
+
if stage == sb.Stage.TRAIN:
|
50 |
+
if hasattr(self.hparams, "augmentation"):
|
51 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
52 |
+
|
53 |
+
# Forward pass
|
54 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
55 |
+
x = self.modules.enc(feats)
|
56 |
+
logits = self.modules.ctc_lin(x)
|
57 |
+
p_ctc = self.hparams.log_softmax(logits)
|
58 |
+
|
59 |
+
return p_ctc, wav_lens
|
60 |
+
|
61 |
+
def compute_objectives(self, predictions, batch, stage):
|
62 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
63 |
+
|
64 |
+
p_ctc, wav_lens = predictions
|
65 |
+
|
66 |
+
ids = batch.id
|
67 |
+
tokens_eos, tokens_eos_lens = batch.tokens_eos
|
68 |
+
tokens, tokens_lens = batch.tokens
|
69 |
+
|
70 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
71 |
+
|
72 |
+
if stage != sb.Stage.TRAIN:
|
73 |
+
# Decode token terms to words
|
74 |
+
sequence = sb.decoders.ctc_greedy_decode(
|
75 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
76 |
+
)
|
77 |
+
|
78 |
+
predicted_words = self.tokenizer(sequence, task="decode_from_list")
|
79 |
+
|
80 |
+
# Convert indices to words
|
81 |
+
target_words = undo_padding(tokens, tokens_lens)
|
82 |
+
target_words = self.tokenizer(target_words, task="decode_from_list")
|
83 |
+
|
84 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
85 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
86 |
+
|
87 |
+
return loss
|
88 |
+
|
89 |
+
def fit_batch(self, batch):
|
90 |
+
"""Train the parameters given a single batch in input"""
|
91 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
92 |
+
# Managing automatic mixed precision
|
93 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
94 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
95 |
+
if self.auto_mix_prec:
|
96 |
+
with torch.cuda.amp.autocast():
|
97 |
+
with self.no_sync():
|
98 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
99 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
100 |
+
with self.no_sync(not should_step):
|
101 |
+
self.scaler.scale(
|
102 |
+
loss / self.grad_accumulation_factor
|
103 |
+
).backward()
|
104 |
+
if should_step:
|
105 |
+
|
106 |
+
if not self.hparams.wav2vec2.freeze:
|
107 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
108 |
+
self.scaler.unscale_(self.model_optimizer)
|
109 |
+
if self.check_gradients(loss):
|
110 |
+
if not self.hparams.wav2vec2.freeze:
|
111 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
112 |
+
self.scaler.step(self.wav2vec_optimizer)
|
113 |
+
self.scaler.step(self.model_optimizer)
|
114 |
+
self.scaler.update()
|
115 |
+
self.zero_grad()
|
116 |
+
self.optimizer_step += 1
|
117 |
+
else:
|
118 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
119 |
+
# on the forward pass
|
120 |
+
with self.no_sync():
|
121 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
122 |
+
|
123 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
124 |
+
|
125 |
+
with self.no_sync(not should_step):
|
126 |
+
(loss / self.grad_accumulation_factor).backward()
|
127 |
+
if should_step:
|
128 |
+
if self.check_gradients(loss):
|
129 |
+
if not self.hparams.wav2vec2.freeze:
|
130 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
131 |
+
self.wav2vec_optimizer.step()
|
132 |
+
self.model_optimizer.step()
|
133 |
+
self.zero_grad()
|
134 |
+
self.optimizer_step += 1
|
135 |
+
|
136 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
137 |
+
return loss.detach().cpu()
|
138 |
+
|
139 |
+
def evaluate_batch(self, batch, stage):
|
140 |
+
"""Computations needed for validation/test batches"""
|
141 |
+
predictions = self.compute_forward(batch, stage=stage)
|
142 |
+
with torch.no_grad():
|
143 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
144 |
+
return loss.detach()
|
145 |
+
|
146 |
+
def on_stage_start(self, stage, epoch):
|
147 |
+
"""Gets called at the beginning of each epoch"""
|
148 |
+
if stage != sb.Stage.TRAIN:
|
149 |
+
self.cer_metric = self.hparams.cer_computer()
|
150 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
151 |
+
|
152 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
153 |
+
"""Gets called at the end of an epoch."""
|
154 |
+
# Compute/store important stats
|
155 |
+
stage_stats = {"loss": stage_loss}
|
156 |
+
if stage == sb.Stage.TRAIN:
|
157 |
+
self.train_stats = stage_stats
|
158 |
+
else:
|
159 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
160 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
161 |
+
|
162 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
163 |
+
if stage == sb.Stage.VALID:
|
164 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
165 |
+
stage_stats["loss"]
|
166 |
+
)
|
167 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
168 |
+
stage_stats["loss"]
|
169 |
+
)
|
170 |
+
sb.nnet.schedulers.update_learning_rate(
|
171 |
+
self.model_optimizer, new_lr_model
|
172 |
+
)
|
173 |
+
if not self.hparams.wav2vec2.freeze:
|
174 |
+
sb.nnet.schedulers.update_learning_rate(
|
175 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
176 |
+
)
|
177 |
+
self.hparams.train_logger.log_stats(
|
178 |
+
stats_meta={
|
179 |
+
"epoch": epoch,
|
180 |
+
"lr_model": old_lr_model,
|
181 |
+
"lr_wav2vec": old_lr_wav2vec,
|
182 |
+
},
|
183 |
+
train_stats=self.train_stats,
|
184 |
+
valid_stats=stage_stats,
|
185 |
+
)
|
186 |
+
self.checkpointer.save_and_keep_only(
|
187 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
188 |
+
)
|
189 |
+
elif stage == sb.Stage.TEST:
|
190 |
+
self.hparams.train_logger.log_stats(
|
191 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
192 |
+
test_stats=stage_stats,
|
193 |
+
)
|
194 |
+
with open(self.hparams.wer_file, "w") as w:
|
195 |
+
self.wer_metric.write_stats(w)
|
196 |
+
|
197 |
+
def init_optimizers(self):
|
198 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
199 |
+
|
200 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
201 |
+
if not self.hparams.wav2vec2.freeze:
|
202 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
203 |
+
self.modules.wav2vec2.parameters()
|
204 |
+
)
|
205 |
+
if self.checkpointer is not None:
|
206 |
+
self.checkpointer.add_recoverable(
|
207 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
208 |
+
)
|
209 |
+
|
210 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
211 |
+
self.hparams.model.parameters()
|
212 |
+
)
|
213 |
+
|
214 |
+
if self.checkpointer is not None:
|
215 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
216 |
+
|
217 |
+
def zero_grad(self, set_to_none=False):
|
218 |
+
if not self.hparams.wav2vec2.freeze:
|
219 |
+
self.wav2vec_optimizer.zero_grad(set_to_none)
|
220 |
+
self.model_optimizer.zero_grad(set_to_none)
|
221 |
+
|
222 |
+
|
223 |
+
# Define custom data procedure
|
224 |
+
def dataio_prepare(hparams, tokenizer):
|
225 |
+
"""This function prepares the datasets to be used in the brain class.
|
226 |
+
It also defines the data processing pipeline through user-defined functions."""
|
227 |
+
|
228 |
+
# 1. Define datasets
|
229 |
+
data_folder = hparams["data_folder"]
|
230 |
+
|
231 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
232 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
233 |
+
)
|
234 |
+
|
235 |
+
if hparams["sorting"] == "ascending":
|
236 |
+
# we sort training data to speed up training and get better results.
|
237 |
+
train_data = train_data.filtered_sorted(
|
238 |
+
sort_key="duration",
|
239 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
240 |
+
)
|
241 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
242 |
+
hparams["dataloader_options"]["shuffle"] = False
|
243 |
+
|
244 |
+
elif hparams["sorting"] == "descending":
|
245 |
+
train_data = train_data.filtered_sorted(
|
246 |
+
sort_key="duration",
|
247 |
+
reverse=True,
|
248 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
249 |
+
)
|
250 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
251 |
+
hparams["dataloader_options"]["shuffle"] = False
|
252 |
+
|
253 |
+
elif hparams["sorting"] == "random":
|
254 |
+
pass
|
255 |
+
|
256 |
+
else:
|
257 |
+
raise NotImplementedError(
|
258 |
+
"sorting must be random, ascending or descending"
|
259 |
+
)
|
260 |
+
|
261 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
262 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
263 |
+
)
|
264 |
+
# We also sort the validation data so it is faster to validate
|
265 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
266 |
+
|
267 |
+
test_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
268 |
+
csv_path=hparams["test_csv"], replacements={"data_root": data_folder},
|
269 |
+
)
|
270 |
+
|
271 |
+
# We also sort the validation data so it is faster to validate
|
272 |
+
test_data = test_data.filtered_sorted(sort_key="duration")
|
273 |
+
|
274 |
+
datasets = [train_data, valid_data, test_data]
|
275 |
+
|
276 |
+
# 2. Define audio pipeline:
|
277 |
+
@sb.utils.data_pipeline.takes("wav")
|
278 |
+
@sb.utils.data_pipeline.provides("sig")
|
279 |
+
def audio_pipeline(wav):
|
280 |
+
info = torchaudio.info(wav)
|
281 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
282 |
+
resampled = torchaudio.transforms.Resample(
|
283 |
+
info.sample_rate, hparams["sample_rate"],
|
284 |
+
)(sig)
|
285 |
+
return resampled
|
286 |
+
|
287 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
288 |
+
|
289 |
+
# 3. Define text pipeline:
|
290 |
+
@sb.utils.data_pipeline.takes("wrd")
|
291 |
+
@sb.utils.data_pipeline.provides(
|
292 |
+
"tokens_list", "tokens_bos", "tokens_eos", "tokens"
|
293 |
+
)
|
294 |
+
def text_pipeline(wrd):
|
295 |
+
tokens_list = tokenizer.sp.encode_as_ids(wrd)
|
296 |
+
yield tokens_list
|
297 |
+
tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list))
|
298 |
+
yield tokens_bos
|
299 |
+
tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]])
|
300 |
+
yield tokens_eos
|
301 |
+
tokens = torch.LongTensor(tokens_list)
|
302 |
+
yield tokens
|
303 |
+
|
304 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
305 |
+
|
306 |
+
# 4. Set output:
|
307 |
+
sb.dataio.dataset.set_output_keys(
|
308 |
+
datasets, ["id", "sig", "tokens_bos", "tokens_eos", "tokens"],
|
309 |
+
)
|
310 |
+
return train_data, valid_data, test_data
|
311 |
+
|
312 |
+
|
313 |
+
if __name__ == "__main__":
|
314 |
+
|
315 |
+
# Load hyperparameters file with command-line overrides
|
316 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
317 |
+
with open(hparams_file) as fin:
|
318 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
319 |
+
|
320 |
+
# If --distributed_launch then
|
321 |
+
# create ddp_group with the right communication protocol
|
322 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
323 |
+
|
324 |
+
# Dataset preparation (parsing CommonVoice)
|
325 |
+
from common_voice_prepare import prepare_common_voice # noqa
|
326 |
+
|
327 |
+
# Create experiment directory
|
328 |
+
sb.create_experiment_directory(
|
329 |
+
experiment_directory=hparams["output_folder"],
|
330 |
+
hyperparams_to_save=hparams_file,
|
331 |
+
overrides=overrides,
|
332 |
+
)
|
333 |
+
|
334 |
+
# Due to DDP, we do the preparation ONLY on the main python process
|
335 |
+
run_on_main(
|
336 |
+
prepare_common_voice,
|
337 |
+
kwargs={
|
338 |
+
"data_folder": hparams["data_folder"],
|
339 |
+
"save_folder": hparams["save_folder"],
|
340 |
+
"train_tsv_file": hparams["train_tsv_file"],
|
341 |
+
"dev_tsv_file": hparams["dev_tsv_file"],
|
342 |
+
"test_tsv_file": hparams["test_tsv_file"],
|
343 |
+
"accented_letters": hparams["accented_letters"],
|
344 |
+
"language": hparams["language"],
|
345 |
+
"skip_prep": hparams["skip_prep"],
|
346 |
+
},
|
347 |
+
)
|
348 |
+
|
349 |
+
# Defining tokenizer and loading it
|
350 |
+
tokenizer = SentencePiece(
|
351 |
+
model_dir=hparams["save_folder"],
|
352 |
+
vocab_size=hparams["output_neurons"],
|
353 |
+
annotation_train=hparams["train_csv"],
|
354 |
+
annotation_read="wrd",
|
355 |
+
model_type=hparams["token_type"],
|
356 |
+
character_coverage=hparams["character_coverage"],
|
357 |
+
)
|
358 |
+
|
359 |
+
# Create the datasets objects as well as tokenization and encoding :-D
|
360 |
+
train_data, valid_data, test_data = dataio_prepare(hparams, tokenizer)
|
361 |
+
|
362 |
+
# Trainer initialization
|
363 |
+
asr_brain = ASR(
|
364 |
+
modules=hparams["modules"],
|
365 |
+
hparams=hparams,
|
366 |
+
run_opts=run_opts,
|
367 |
+
checkpointer=hparams["checkpointer"],
|
368 |
+
)
|
369 |
+
|
370 |
+
# Adding objects to trainer.
|
371 |
+
asr_brain.tokenizer = tokenizer
|
372 |
+
|
373 |
+
# Training
|
374 |
+
asr_brain.fit(
|
375 |
+
asr_brain.hparams.epoch_counter,
|
376 |
+
train_data,
|
377 |
+
valid_data,
|
378 |
+
train_loader_kwargs=hparams["dataloader_options"],
|
379 |
+
valid_loader_kwargs=hparams["test_dataloader_options"],
|
380 |
+
)
|
381 |
+
|
382 |
+
# Test
|
383 |
+
asr_brain.hparams.wer_file = hparams["output_folder"] + "/wer_test.txt"
|
384 |
+
asr_brain.evaluate(
|
385 |
+
test_data,
|
386 |
+
min_key="WER",
|
387 |
+
test_loader_kwargs=hparams["test_dataloader_options"],
|
388 |
+
)
|
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
# Tunisian Arabic ASR Model with wav2vec2 and code switching
|
5 |
+
This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on Tunisian arabic dialect. This model utilizes a code_switching approach and can process english , french and tunisian arabic
|
6 |
+
## Performance
|
7 |
+
the performance of the mode is :
|
8 |
+
| Release Version |WER (%) | CER (%) |
|
9 |
+
|-----------------|---------|---------|
|
10 |
+
| v1.0 |29.47 | 12.44 |
|
11 |
+
## Pipeline
|
12 |
+
The architecture comprises three components:
|
13 |
+
* French ASR pretrained with wav2vec2 on french corporas
|
14 |
+
* English ASR pretrained with wav2vec2 on english corporas
|
15 |
+
* Custom Tunisian ASR pretrained using wav2vec on a tunisian arabic corpora
|
16 |
+
All three models will process the audio data. Subsequently, the resulting posteriorgrams will be combined and utilized as input for the Mixer, which will produce the final posteriorgrams.
|
17 |
+
## Install
|
18 |
+
```python
|
19 |
+
pip install speechbrain transformers
|
20 |
+
```
|
21 |
+
|
TunisianASR/README.md
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Tunisian Arabic ASR Model with wav2vec2
|
2 |
+
|
3 |
+
This repository provides all the necessary tools to perform automatic speech recognition from an end-to-end system pretrained on Tunisian arabic dialect
|
4 |
+
|
5 |
+
## Performance
|
6 |
+
the performance of the mode is :
|
7 |
+
| Release Version | |WER (%) | CER (%) |
|
8 |
+
|-----------------|----|---------|---------|
|
9 |
+
| v1.0 | Without LM |11.82 | 6.33 |
|
10 |
+
## Dataset
|
11 |
+
This ASR model was trained on :
|
12 |
+
* TARIC : The corpus, named TARIC (Tunisian Arabic Railway Interaction Corpus) has a collection of audio recordings and transcriptions from dialogues in the Tunisian Railway Transport Network. - [Taric Corpus](https://aclanthology.org/L14-1385/) -
|
13 |
+
* STAC :A corpus of spoken Tunisian Arabic - [STAC Corpus](https://www.researchgate.net/publication/307583782_Spoken_Tunisian_Arabic_Corpus_STAC_Transcription_and_Annotation)
|
14 |
+
* IWSLT : A Tunisian conversational speech - [IWSLT Corpus](https://iwslt.org/2022/dialect)-
|
15 |
+
* Tunspeech : Our custom dataset
|
16 |
+
|
17 |
+
## Install
|
18 |
+
```python
|
19 |
+
pip install speechbrain transformers
|
20 |
+
```
|
21 |
+
|
TunisianASR/outdomain.arpa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24654c1d236bb1bd367125131c847c4a734e69914eda71a6786964c20440d8fe
|
3 |
+
size 324243244
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/hyperparams.yaml
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2023-09-08 from:
|
2 |
+
# /gpfsdsstore/projects/rech/nou/uzn19yk/switched_code_tunisian/train/tunisian_asr/hparams/train_semi.yaml
|
3 |
+
# yamllint disable
|
4 |
+
# ################################
|
5 |
+
# Model: wav2vec2 + DNN + CTC
|
6 |
+
# Augmentation: SpecAugment
|
7 |
+
# Authors: Titouan Parcollet 2021
|
8 |
+
# ################################
|
9 |
+
|
10 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
11 |
+
seed: 1234
|
12 |
+
__set_seed: !!python/object/apply:torch.manual_seed [1234]
|
13 |
+
output_folder: results/semi_wavlm_large_tunisian_ctc/1234
|
14 |
+
wer_file: results/semi_wavlm_large_tunisian_ctc/1234/wer.txt
|
15 |
+
save_folder: results/semi_wavlm_large_tunisian_ctc/1234/save
|
16 |
+
train_log: results/semi_wavlm_large_tunisian_ctc/1234/train_log.txt
|
17 |
+
|
18 |
+
# URL for the biggest LeBenchmark wav2vec french.
|
19 |
+
wav2vec2_folder: results/semi_wavlm_large_tunisian_ctc/1234/save/wav2vec2_checkpoint
|
20 |
+
|
21 |
+
# Data files
|
22 |
+
data_folder: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
|
23 |
+
train_tsv_file: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk/train.tsv # Standard CommonVoice .tsv files
|
24 |
+
dev_tsv_file: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk/dev.tsv # Standard CommonVoice .tsv files
|
25 |
+
test_tsv_file: /gpfsscratch/rech/nou/uzn19yk/tunisian_junk/test.tsv # Standard CommonVoice .tsv files
|
26 |
+
accented_letters: true
|
27 |
+
language: fr # use 'it' for Italian, 'rw' for Kinyarwanda, 'en' for english
|
28 |
+
train_csv: /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/train_enhanced.csv
|
29 |
+
valid_csv: /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/dev.csv
|
30 |
+
test_csv:
|
31 |
+
- /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/full_annotation_test.csv
|
32 |
+
- /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/iwslt_test.csv
|
33 |
+
- /gpfsscratch/rech/nou/uzn19yk/tunisian_csvs/good_final/taric_test.csv
|
34 |
+
|
35 |
+
skip_prep: true # Skip data preparation
|
36 |
+
|
37 |
+
use_language_modelling: true
|
38 |
+
ngram_lm_path: arpas/outdomain.arpa
|
39 |
+
|
40 |
+
# We remove utterance slonger than 10s in the train/dev/test sets as
|
41 |
+
# longer sentences certainly correspond to "open microphones".
|
42 |
+
avoid_if_longer_than: 10.0
|
43 |
+
avoid_if_shorter_than: 1.2
|
44 |
+
|
45 |
+
|
46 |
+
# Training parameters
|
47 |
+
number_of_epochs: 12
|
48 |
+
lr: 1.0
|
49 |
+
lr_wav2vec: 0.0001
|
50 |
+
sorting: ascending
|
51 |
+
auto_mix_prec: false
|
52 |
+
sample_rate: 16000
|
53 |
+
ckpt_interval_minutes: 30 # save checkpoint every N min
|
54 |
+
|
55 |
+
# With data_parallel batch_size is split into N jobs
|
56 |
+
# With DDP batch_size is multiplied by N jobs
|
57 |
+
# Must be 6 per GPU to fit 16GB of VRAM
|
58 |
+
batch_size: 10
|
59 |
+
test_batch_size: 4
|
60 |
+
|
61 |
+
dataloader_options:
|
62 |
+
batch_size: 10
|
63 |
+
num_workers: 6
|
64 |
+
test_dataloader_options:
|
65 |
+
batch_size: 4
|
66 |
+
num_workers: 6
|
67 |
+
|
68 |
+
# BPE parameters
|
69 |
+
token_type: char # ["unigram", "bpe", "char"]
|
70 |
+
character_coverage: 1.0
|
71 |
+
|
72 |
+
# Model parameters
|
73 |
+
# activation: !name:torch.nn.LeakyReLU
|
74 |
+
wav2vec_output_dim: 1024
|
75 |
+
dnn_neurons: 1024
|
76 |
+
freeze_wav2vec: false
|
77 |
+
freeze_feature_extractor: true
|
78 |
+
dropout: 0.15
|
79 |
+
warmup_steps: 500 # The wav2vec 2 model isn't updated for this amount of steps
|
80 |
+
|
81 |
+
# Outputs
|
82 |
+
output_neurons: 40 # BPE size, index(blank/eos/bos) = 0
|
83 |
+
|
84 |
+
# Decoding parameters
|
85 |
+
# Be sure that the bos and eos index match with the BPEs ones
|
86 |
+
blank_index: 0
|
87 |
+
unk_index: 1
|
88 |
+
|
89 |
+
#
|
90 |
+
# Functions and classes
|
91 |
+
#
|
92 |
+
epoch_counter: &id007 !new:speechbrain.utils.epoch_loop.EpochCounter
|
93 |
+
|
94 |
+
limit: 12
|
95 |
+
|
96 |
+
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
97 |
+
sample_rate: 16000
|
98 |
+
speeds: [95, 100, 105]
|
99 |
+
|
100 |
+
enc: &id002 !new:speechbrain.nnet.containers.Sequential
|
101 |
+
input_shape: [null, null, 1024]
|
102 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
103 |
+
n_neurons: 1024
|
104 |
+
bias: true
|
105 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
106 |
+
activation: !new:torch.nn.LeakyReLU
|
107 |
+
drop: !new:torch.nn.Dropout
|
108 |
+
p: 0.15
|
109 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
110 |
+
n_neurons: 1024
|
111 |
+
bias: true
|
112 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
113 |
+
activation2: !new:torch.nn.LeakyReLU
|
114 |
+
drop2: !new:torch.nn.Dropout
|
115 |
+
p: 0.15
|
116 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
117 |
+
n_neurons: 1024
|
118 |
+
bias: true
|
119 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
120 |
+
activation3: !new:torch.nn.LeakyReLU
|
121 |
+
|
122 |
+
wav2vec2: &id001 !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
123 |
+
source: /gpfsstore/rech/nou/uzn19yk/wavlm/
|
124 |
+
output_norm: false
|
125 |
+
freeze: false
|
126 |
+
freeze_feature_extractor: true
|
127 |
+
save_path: results/semi_wavlm_large_tunisian_ctc/1234/save/wav2vec2_checkpoint
|
128 |
+
|
129 |
+
#####
|
130 |
+
# Uncomment this block if you prefer to use a Fairseq pretrained model instead
|
131 |
+
# of a HuggingFace one. Here, we provide an URL that is obtained from the
|
132 |
+
# Fairseq github for the multilingual XLSR.
|
133 |
+
#
|
134 |
+
#wav2vec2_url: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr_53_56k.pt
|
135 |
+
#wav2vec2: !new:speechbrain.lobes.models.fairseq_wav2vec.FairseqWav2Vec2
|
136 |
+
# pretrained_path: !ref <wav2vec2_url>
|
137 |
+
# output_norm: True
|
138 |
+
# freeze: False
|
139 |
+
# save_path: !ref <save_folder>/wav2vec2_checkpoint/model.pt
|
140 |
+
#####
|
141 |
+
|
142 |
+
|
143 |
+
ctc_lin: &id003 !new:speechbrain.nnet.linear.Linear
|
144 |
+
|
145 |
+
input_size: 1024
|
146 |
+
n_neurons: 40
|
147 |
+
|
148 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
149 |
+
apply_log: true
|
150 |
+
|
151 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
152 |
+
blank_index: 0
|
153 |
+
|
154 |
+
modules:
|
155 |
+
wav2vec2: *id001
|
156 |
+
enc: *id002
|
157 |
+
ctc_lin: *id003
|
158 |
+
model: &id004 !new:torch.nn.ModuleList
|
159 |
+
- [*id002, *id003]
|
160 |
+
model_opt_class: !name:torch.optim.Adadelta
|
161 |
+
lr: 1.0
|
162 |
+
rho: 0.95
|
163 |
+
eps: 1.e-8
|
164 |
+
|
165 |
+
wav2vec_opt_class: !name:torch.optim.Adam
|
166 |
+
lr: 0.0001
|
167 |
+
|
168 |
+
lr_annealing_model: &id005 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
169 |
+
initial_value: 1.0
|
170 |
+
improvement_threshold: 0.0025
|
171 |
+
annealing_factor: 0.8
|
172 |
+
patient: 0
|
173 |
+
|
174 |
+
lr_annealing_wav2vec: &id006 !new:speechbrain.nnet.schedulers.NewBobScheduler
|
175 |
+
initial_value: 0.0001
|
176 |
+
improvement_threshold: 0.0025
|
177 |
+
annealing_factor: 0.9
|
178 |
+
patient: 0
|
179 |
+
|
180 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
181 |
+
checkpoints_dir: results/semi_wavlm_large_tunisian_ctc/1234/save
|
182 |
+
recoverables:
|
183 |
+
wav2vec2: *id001
|
184 |
+
model: *id004
|
185 |
+
scheduler_model: *id005
|
186 |
+
scheduler_wav2vec: *id006
|
187 |
+
counter: *id007
|
188 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
189 |
+
save_file: results/semi_wavlm_large_tunisian_ctc/1234/train_log.txt
|
190 |
+
|
191 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
192 |
+
|
193 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
194 |
+
split_tokens: true
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/CKPT.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# yamllint disable
|
2 |
+
WER: 27.83210816487267
|
3 |
+
end-of-epoch: true
|
4 |
+
unixtime: 1693868963.5220973
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/brain.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3947a24e8dff5a14299b9cf2fe66ffb4d738cb88717de7f0cf7e8547a76e9776
|
3 |
+
size 51
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/counter.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b51d431df5d7f141cbececcf79edf3dd861c3b4069f0b11661a3eefacbba918
|
3 |
+
size 2
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/dataloader-TRAIN.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b363886c229e536bd3c84e0c3e89312d70e00422578e076a62df1b45c9390793
|
3 |
+
size 5
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc1dbeca1e1f1340b08d8ebea6e492f474708dddbbe8cabbcdde5ee9660704f2
|
3 |
+
size 12814446
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/modelopt.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3af1791eb9a5bfbfc087d2c10b94634df24cad3ac503ce9ba280a3ecc4737781
|
3 |
+
size 25575663
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/scheduler_model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c275ab9245b440d1586f72058d9edaac1a2fb3e7a52712aa9a9ad022b99a1c0d
|
3 |
+
size 639
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/scheduler_wav2vec.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a88187f7882dc3e10c108f1b7abfbd819285b34bded4e88e91c4ff699c1bb5d2
|
3 |
+
size 643
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/wav2vec2.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:788267bd25ef37623715fa21a975090e5e316fff05971375cd3f62e5160f0743
|
3 |
+
size 1262005979
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/CKPT+2023-09-05+01-09-23+00/wav2vec_opt.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efa967fdd8067be7d88c18cd197980c9c91f344a3dff2b2518b8381c49f28b1e
|
3 |
+
size 2490361859
|
TunisianASR/semi_wavlm_large_tunisian_ctc/1234/save/label_encoder.txt
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'ب' => 38
|
2 |
+
'ا' => 1
|
3 |
+
'ه' => 2
|
4 |
+
'ي' => 3
|
5 |
+
'و' => 4
|
6 |
+
'ن' => 5
|
7 |
+
'أ' => 6
|
8 |
+
' ' => 7
|
9 |
+
'م' => 8
|
10 |
+
'ش' => 9
|
11 |
+
'ل' => 10
|
12 |
+
'س' => 11
|
13 |
+
'ت' => 12
|
14 |
+
'د' => 13
|
15 |
+
'ر' => 14
|
16 |
+
'ى' => 15
|
17 |
+
'ح' => 16
|
18 |
+
'ط' => 17
|
19 |
+
'ع' => 18
|
20 |
+
'ك' => 19
|
21 |
+
'ف' => 20
|
22 |
+
'ق' => 21
|
23 |
+
'آ' => 22
|
24 |
+
'ة' => 23
|
25 |
+
'ج' => 24
|
26 |
+
'ض' => 25
|
27 |
+
'ز' => 26
|
28 |
+
'ص' => 27
|
29 |
+
'إ' => 28
|
30 |
+
'ث' => 29
|
31 |
+
'خ' => 30
|
32 |
+
'ڨ' => 31
|
33 |
+
'ذ' => 32
|
34 |
+
'ظ' => 33
|
35 |
+
'ء' => 34
|
36 |
+
'غ' => 35
|
37 |
+
'ئ' => 36
|
38 |
+
'ؤ' => 37
|
39 |
+
'<blank>' => 0
|
40 |
+
1 => 39
|
41 |
+
================
|
42 |
+
'starting_index' => 0
|
43 |
+
'unk_label' => 1
|
44 |
+
'blank_label' => '<blank>'
|
TunisianASR/train_semi.yaml
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ################################
|
2 |
+
# Model: wav2vec2 + DNN + CTC
|
3 |
+
# Augmentation: SpecAugment
|
4 |
+
# Authors: Titouan Parcollet 2021
|
5 |
+
# ################################
|
6 |
+
|
7 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
8 |
+
seed: 1234
|
9 |
+
__set_seed: !!python/object/apply:torch.manual_seed [!ref <seed>]
|
10 |
+
output_folder: !ref semi_wavlm_large_tunisian_ctc/<seed>
|
11 |
+
wer_file: !ref <output_folder>/wer.txt
|
12 |
+
save_folder: !ref <output_folder>/save
|
13 |
+
train_log: !ref <output_folder>/train_log.txt
|
14 |
+
|
15 |
+
# URL for the biggest LeBenchmark wav2vec french.
|
16 |
+
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint
|
17 |
+
|
18 |
+
# Data files
|
19 |
+
data_folder: /path/to/data # e.g, /localscratch/cv-corpus-5.1-2020-06-22/fr
|
20 |
+
train_tsv_file: !ref <data_folder>/train.tsv # Standard CommonVoice .tsv files
|
21 |
+
dev_tsv_file: !ref <data_folder>/dev.tsv # Standard CommonVoice .tsv files
|
22 |
+
test_tsv_file: !ref <data_folder>/test.tsv # Standard CommonVoice .tsv files
|
23 |
+
accented_letters: True
|
24 |
+
language: fr # use 'it' for Italian, 'rw' for Kinyarwanda, 'en' for english
|
25 |
+
test_csv:
|
26 |
+
- /path/to/test_data
|
27 |
+
|
28 |
+
skip_prep: True # Skip data preparation
|
29 |
+
|
30 |
+
use_language_modelling: True
|
31 |
+
ngram_lm_path: outdomain.arpa
|
32 |
+
|
33 |
+
# We remove utterance slonger than 10s in the train/dev/test sets as
|
34 |
+
# longer sentences certainly correspond to "open microphones".
|
35 |
+
avoid_if_longer_than: 10.0
|
36 |
+
avoid_if_shorter_than: 1.2
|
37 |
+
|
38 |
+
|
39 |
+
# Training parameters
|
40 |
+
number_of_epochs: 12
|
41 |
+
lr: 1.0
|
42 |
+
lr_wav2vec: 0.0001
|
43 |
+
sorting: ascending
|
44 |
+
auto_mix_prec: False
|
45 |
+
sample_rate: 16000
|
46 |
+
ckpt_interval_minutes: 30 # save checkpoint every N min
|
47 |
+
|
48 |
+
# With data_parallel batch_size is split into N jobs
|
49 |
+
# With DDP batch_size is multiplied by N jobs
|
50 |
+
# Must be 6 per GPU to fit 16GB of VRAM
|
51 |
+
batch_size: 10
|
52 |
+
test_batch_size: 4
|
53 |
+
|
54 |
+
dataloader_options:
|
55 |
+
batch_size: !ref <batch_size>
|
56 |
+
num_workers: 6
|
57 |
+
test_dataloader_options:
|
58 |
+
batch_size: !ref <test_batch_size>
|
59 |
+
num_workers: 6
|
60 |
+
|
61 |
+
# BPE parameters
|
62 |
+
token_type: char # ["unigram", "bpe", "char"]
|
63 |
+
character_coverage: 1.0
|
64 |
+
|
65 |
+
# Model parameters
|
66 |
+
# activation: !name:torch.nn.LeakyReLU
|
67 |
+
wav2vec_output_dim: 1024
|
68 |
+
dnn_neurons: 1024
|
69 |
+
freeze_wav2vec: False
|
70 |
+
freeze_feature_extractor: True
|
71 |
+
dropout: 0.15
|
72 |
+
warmup_steps: 500 # The wav2vec 2 model isn't updated for this amount of steps
|
73 |
+
|
74 |
+
# Outputs
|
75 |
+
output_neurons: 40 # BPE size, index(blank/eos/bos) = 0
|
76 |
+
|
77 |
+
# Decoding parameters
|
78 |
+
# Be sure that the bos and eos index match with the BPEs ones
|
79 |
+
blank_index: 0
|
80 |
+
unk_index: 1
|
81 |
+
|
82 |
+
#
|
83 |
+
# Functions and classes
|
84 |
+
#
|
85 |
+
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter
|
86 |
+
limit: !ref <number_of_epochs>
|
87 |
+
|
88 |
+
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
89 |
+
sample_rate: !ref <sample_rate>
|
90 |
+
speeds: [95, 100, 105]
|
91 |
+
|
92 |
+
enc: !new:speechbrain.nnet.containers.Sequential
|
93 |
+
input_shape: [null, null, !ref <wav2vec_output_dim>]
|
94 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
95 |
+
n_neurons: !ref <dnn_neurons>
|
96 |
+
bias: True
|
97 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
98 |
+
activation: !new:torch.nn.LeakyReLU
|
99 |
+
drop: !new:torch.nn.Dropout
|
100 |
+
p: !ref <dropout>
|
101 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
102 |
+
n_neurons: !ref <dnn_neurons>
|
103 |
+
bias: True
|
104 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
105 |
+
activation2: !new:torch.nn.LeakyReLU
|
106 |
+
drop2: !new:torch.nn.Dropout
|
107 |
+
p: !ref <dropout>
|
108 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
109 |
+
n_neurons: !ref <dnn_neurons>
|
110 |
+
bias: True
|
111 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
112 |
+
activation3: !new:torch.nn.LeakyReLU
|
113 |
+
|
114 |
+
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
115 |
+
source: /gpfsstore/rech/nou/uzn19yk/wavlm/
|
116 |
+
output_norm: False
|
117 |
+
freeze: !ref <freeze_wav2vec>
|
118 |
+
freeze_feature_extractor: !ref <freeze_feature_extractor>
|
119 |
+
save_path: !ref <wav2vec2_folder>
|
120 |
+
|
121 |
+
|
122 |
+
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
123 |
+
input_size: !ref <dnn_neurons>
|
124 |
+
n_neurons: !ref <output_neurons>
|
125 |
+
|
126 |
+
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
127 |
+
apply_log: True
|
128 |
+
|
129 |
+
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
130 |
+
blank_index: !ref <blank_index>
|
131 |
+
|
132 |
+
modules:
|
133 |
+
wav2vec2: !ref <wav2vec2>
|
134 |
+
enc: !ref <enc>
|
135 |
+
ctc_lin: !ref <ctc_lin>
|
136 |
+
|
137 |
+
model: !new:torch.nn.ModuleList
|
138 |
+
- [!ref <enc>, !ref <ctc_lin>]
|
139 |
+
|
140 |
+
model_opt_class: !name:torch.optim.Adadelta
|
141 |
+
lr: !ref <lr>
|
142 |
+
rho: 0.95
|
143 |
+
eps: 1.e-8
|
144 |
+
|
145 |
+
wav2vec_opt_class: !name:torch.optim.Adam
|
146 |
+
lr: !ref <lr_wav2vec>
|
147 |
+
|
148 |
+
lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler
|
149 |
+
initial_value: !ref <lr>
|
150 |
+
improvement_threshold: 0.0025
|
151 |
+
annealing_factor: 0.8
|
152 |
+
patient: 0
|
153 |
+
|
154 |
+
lr_annealing_wav2vec: !new:speechbrain.nnet.schedulers.NewBobScheduler
|
155 |
+
initial_value: !ref <lr_wav2vec>
|
156 |
+
improvement_threshold: 0.0025
|
157 |
+
annealing_factor: 0.9
|
158 |
+
patient: 0
|
159 |
+
|
160 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
161 |
+
checkpoints_dir: !ref <save_folder>
|
162 |
+
recoverables:
|
163 |
+
wav2vec2: !ref <wav2vec2>
|
164 |
+
model: !ref <model>
|
165 |
+
scheduler_model: !ref <lr_annealing_model>
|
166 |
+
scheduler_wav2vec: !ref <lr_annealing_wav2vec>
|
167 |
+
counter: !ref <epoch_counter>
|
168 |
+
|
169 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
170 |
+
save_file: !ref <train_log>
|
171 |
+
|
172 |
+
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
173 |
+
|
174 |
+
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
|
175 |
+
split_tokens: True
|
TunisianASR/train_with_wavlm.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import logging
|
5 |
+
import speechbrain as sb
|
6 |
+
from pathlib import Path
|
7 |
+
import os
|
8 |
+
import torchaudio
|
9 |
+
from hyperpyyaml import load_hyperpyyaml
|
10 |
+
from speechbrain.tokenizers.SentencePiece import SentencePiece
|
11 |
+
from speechbrain.utils.data_utils import undo_padding
|
12 |
+
from speechbrain.utils.distributed import run_on_main
|
13 |
+
|
14 |
+
"""Recipe for training a sequence-to-sequence ASR system with CommonVoice.
|
15 |
+
The system employs a wav2vec2 encoder and a CTC decoder.
|
16 |
+
Decoding is performed with greedy decoding (will be extended to beam search).
|
17 |
+
|
18 |
+
To run this recipe, do the following:
|
19 |
+
> python train_with_wav2vec2.py hparams/train_with_wav2vec2.yaml
|
20 |
+
|
21 |
+
With the default hyperparameters, the system employs a pretrained wav2vec2 encoder.
|
22 |
+
The wav2vec2 model is pretrained following the model given in the hprams file.
|
23 |
+
It may be dependent on the language.
|
24 |
+
|
25 |
+
The neural network is trained with CTC on sub-word units estimated with
|
26 |
+
Byte Pairwise Encoding (BPE).
|
27 |
+
|
28 |
+
The experiment file is flexible enough to support a large variety of
|
29 |
+
different systems. By properly changing the parameter files, you can try
|
30 |
+
different encoders, decoders, tokens (e.g, characters instead of BPE),
|
31 |
+
training languages (all CommonVoice languages), and many
|
32 |
+
other possible variations.
|
33 |
+
|
34 |
+
Authors
|
35 |
+
* Titouan Parcollet 2021
|
36 |
+
"""
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
# Define training procedure
|
42 |
+
class ASR(sb.core.Brain):
|
43 |
+
def compute_forward(self, batch, stage):
|
44 |
+
"""Forward computations from the waveform batches to the output probabilities."""
|
45 |
+
|
46 |
+
batch = batch.to(self.device)
|
47 |
+
wavs, wav_lens = batch.sig
|
48 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
49 |
+
if stage == sb.Stage.TRAIN:
|
50 |
+
if hasattr(self.hparams, "augmentation"):
|
51 |
+
wavs = self.hparams.augmentation(wavs, wav_lens)
|
52 |
+
|
53 |
+
# Forward pass
|
54 |
+
feats = self.modules.wav2vec2(wavs, wav_lens)
|
55 |
+
x = self.modules.enc(feats)
|
56 |
+
logits = self.modules.ctc_lin(x)
|
57 |
+
p_ctc = self.hparams.log_softmax(logits)
|
58 |
+
|
59 |
+
return p_ctc, wav_lens
|
60 |
+
|
61 |
+
def compute_objectives(self, predictions, batch, stage):
|
62 |
+
"""Computes the loss (CTC) given predictions and targets."""
|
63 |
+
|
64 |
+
p_ctc, wav_lens = predictions
|
65 |
+
|
66 |
+
ids = batch.id
|
67 |
+
tokens, tokens_lens = batch.tokens
|
68 |
+
|
69 |
+
loss = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
|
70 |
+
|
71 |
+
if stage != sb.Stage.TRAIN:
|
72 |
+
predicted_tokens = sb.decoders.ctc_greedy_decode(
|
73 |
+
p_ctc, wav_lens, blank_id=self.hparams.blank_index
|
74 |
+
)
|
75 |
+
# Decode token terms to words
|
76 |
+
if self.hparams.use_language_modelling:
|
77 |
+
predicted_words = []
|
78 |
+
for logs in p_ctc:
|
79 |
+
text = decoder.decode(logs.detach().cpu().numpy())
|
80 |
+
predicted_words.append(text.split(" "))
|
81 |
+
else:
|
82 |
+
predicted_words = [
|
83 |
+
"".join(self.tokenizer.decode_ndim(utt_seq)).split(" ")
|
84 |
+
for utt_seq in predicted_tokens
|
85 |
+
]
|
86 |
+
# Convert indices to words
|
87 |
+
target_words = [wrd.split(" ") for wrd in batch.wrd]
|
88 |
+
|
89 |
+
self.wer_metric.append(ids, predicted_words, target_words)
|
90 |
+
self.cer_metric.append(ids, predicted_words, target_words)
|
91 |
+
|
92 |
+
return loss
|
93 |
+
|
94 |
+
def fit_batch(self, batch):
|
95 |
+
"""Train the parameters given a single batch in input"""
|
96 |
+
should_step = self.step % self.grad_accumulation_factor == 0
|
97 |
+
# Managing automatic mixed precision
|
98 |
+
# TOFIX: CTC fine-tuning currently is unstable
|
99 |
+
# This is certainly due to CTC being done in fp16 instead of fp32
|
100 |
+
if self.auto_mix_prec:
|
101 |
+
with torch.cuda.amp.autocast():
|
102 |
+
with self.no_sync():
|
103 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
104 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
105 |
+
with self.no_sync(not should_step):
|
106 |
+
self.scaler.scale(
|
107 |
+
loss / self.grad_accumulation_factor
|
108 |
+
).backward()
|
109 |
+
if should_step:
|
110 |
+
|
111 |
+
if not self.hparams.wav2vec2.freeze:
|
112 |
+
self.scaler.unscale_(self.wav2vec_optimizer)
|
113 |
+
self.scaler.unscale_(self.model_optimizer)
|
114 |
+
if self.check_gradients(loss):
|
115 |
+
if not self.hparams.wav2vec2.freeze:
|
116 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
117 |
+
self.scaler.step(self.wav2vec_optimizer)
|
118 |
+
self.scaler.step(self.model_optimizer)
|
119 |
+
self.scaler.update()
|
120 |
+
self.zero_grad()
|
121 |
+
self.optimizer_step += 1
|
122 |
+
else:
|
123 |
+
# This is mandatory because HF models have a weird behavior with DDP
|
124 |
+
# on the forward pass
|
125 |
+
with self.no_sync():
|
126 |
+
outputs = self.compute_forward(batch, sb.Stage.TRAIN)
|
127 |
+
|
128 |
+
loss = self.compute_objectives(outputs, batch, sb.Stage.TRAIN)
|
129 |
+
|
130 |
+
with self.no_sync(not should_step):
|
131 |
+
(loss / self.grad_accumulation_factor).backward()
|
132 |
+
if should_step:
|
133 |
+
if self.check_gradients(loss):
|
134 |
+
if not self.hparams.wav2vec2.freeze:
|
135 |
+
if self.optimizer_step >= self.hparams.warmup_steps:
|
136 |
+
self.wav2vec_optimizer.step()
|
137 |
+
self.model_optimizer.step()
|
138 |
+
self.zero_grad()
|
139 |
+
self.optimizer_step += 1
|
140 |
+
|
141 |
+
self.on_fit_batch_end(batch, outputs, loss, should_step)
|
142 |
+
return loss.detach().cpu()
|
143 |
+
|
144 |
+
def evaluate_batch(self, batch, stage):
|
145 |
+
"""Computations needed for validation/test batches"""
|
146 |
+
predictions = self.compute_forward(batch, stage=stage)
|
147 |
+
with torch.no_grad():
|
148 |
+
loss = self.compute_objectives(predictions, batch, stage=stage)
|
149 |
+
return loss.detach()
|
150 |
+
|
151 |
+
def on_stage_start(self, stage, epoch):
|
152 |
+
"""Gets called at the beginning of each epoch"""
|
153 |
+
if stage != sb.Stage.TRAIN:
|
154 |
+
self.cer_metric = self.hparams.cer_computer()
|
155 |
+
self.wer_metric = self.hparams.error_rate_computer()
|
156 |
+
|
157 |
+
def on_stage_end(self, stage, stage_loss, epoch):
|
158 |
+
"""Gets called at the end of an epoch."""
|
159 |
+
# Compute/store important stats
|
160 |
+
stage_stats = {"loss": stage_loss}
|
161 |
+
if stage == sb.Stage.TRAIN:
|
162 |
+
self.train_stats = stage_stats
|
163 |
+
else:
|
164 |
+
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
|
165 |
+
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
|
166 |
+
|
167 |
+
# Perform end-of-iteration things, like annealing, logging, etc.
|
168 |
+
if stage == sb.Stage.VALID:
|
169 |
+
old_lr_model, new_lr_model = self.hparams.lr_annealing_model(
|
170 |
+
stage_stats["loss"]
|
171 |
+
)
|
172 |
+
old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec(
|
173 |
+
stage_stats["loss"]
|
174 |
+
)
|
175 |
+
sb.nnet.schedulers.update_learning_rate(
|
176 |
+
self.model_optimizer, new_lr_model
|
177 |
+
)
|
178 |
+
if not self.hparams.wav2vec2.freeze:
|
179 |
+
sb.nnet.schedulers.update_learning_rate(
|
180 |
+
self.wav2vec_optimizer, new_lr_wav2vec
|
181 |
+
)
|
182 |
+
self.hparams.train_logger.log_stats(
|
183 |
+
stats_meta={
|
184 |
+
"epoch": epoch,
|
185 |
+
"lr_model": old_lr_model,
|
186 |
+
"lr_wav2vec": old_lr_wav2vec,
|
187 |
+
},
|
188 |
+
train_stats=self.train_stats,
|
189 |
+
valid_stats=stage_stats,
|
190 |
+
)
|
191 |
+
self.checkpointer.save_and_keep_only(
|
192 |
+
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
|
193 |
+
)
|
194 |
+
elif stage == sb.Stage.TEST:
|
195 |
+
self.hparams.train_logger.log_stats(
|
196 |
+
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
|
197 |
+
test_stats=stage_stats,
|
198 |
+
)
|
199 |
+
with open(self.hparams.wer_file, "w") as w:
|
200 |
+
self.wer_metric.write_stats(w)
|
201 |
+
|
202 |
+
def init_optimizers(self):
|
203 |
+
"Initializes the wav2vec2 optimizer and model optimizer"
|
204 |
+
|
205 |
+
# If the wav2vec encoder is unfrozen, we create the optimizer
|
206 |
+
if not self.hparams.wav2vec2.freeze:
|
207 |
+
self.wav2vec_optimizer = self.hparams.wav2vec_opt_class(
|
208 |
+
self.modules.wav2vec2.parameters()
|
209 |
+
)
|
210 |
+
if self.checkpointer is not None:
|
211 |
+
self.checkpointer.add_recoverable(
|
212 |
+
"wav2vec_opt", self.wav2vec_optimizer
|
213 |
+
)
|
214 |
+
|
215 |
+
self.model_optimizer = self.hparams.model_opt_class(
|
216 |
+
self.hparams.model.parameters()
|
217 |
+
)
|
218 |
+
|
219 |
+
if self.checkpointer is not None:
|
220 |
+
self.checkpointer.add_recoverable("modelopt", self.model_optimizer)
|
221 |
+
|
222 |
+
def zero_grad(self, set_to_none=False):
|
223 |
+
if not self.hparams.wav2vec2.freeze:
|
224 |
+
self.wav2vec_optimizer.zero_grad(set_to_none)
|
225 |
+
self.model_optimizer.zero_grad(set_to_none)
|
226 |
+
|
227 |
+
|
228 |
+
# Define custom data procedure
|
229 |
+
def dataio_prepare(hparams):
|
230 |
+
"""This function prepares the datasets to be used in the brain class.
|
231 |
+
It also defines the data processing pipeline through user-defined functions."""
|
232 |
+
|
233 |
+
# 1. Define datasets
|
234 |
+
data_folder = hparams["data_folder"]
|
235 |
+
|
236 |
+
train_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
237 |
+
csv_path=hparams["train_csv"], replacements={"data_root": data_folder},
|
238 |
+
)
|
239 |
+
|
240 |
+
if hparams["sorting"] == "ascending":
|
241 |
+
# we sort training data to speed up training and get better results.
|
242 |
+
train_data = train_data.filtered_sorted(
|
243 |
+
sort_key="duration",
|
244 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
245 |
+
)
|
246 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
247 |
+
hparams["dataloader_options"]["shuffle"] = False
|
248 |
+
|
249 |
+
elif hparams["sorting"] == "descending":
|
250 |
+
train_data = train_data.filtered_sorted(
|
251 |
+
sort_key="duration",
|
252 |
+
reverse=True,
|
253 |
+
key_max_value={"duration": hparams["avoid_if_longer_than"]},
|
254 |
+
)
|
255 |
+
# when sorting do not shuffle in dataloader ! otherwise is pointless
|
256 |
+
hparams["dataloader_options"]["shuffle"] = False
|
257 |
+
|
258 |
+
elif hparams["sorting"] == "random":
|
259 |
+
pass
|
260 |
+
|
261 |
+
else:
|
262 |
+
raise NotImplementedError(
|
263 |
+
"sorting must be random, ascending or descending"
|
264 |
+
)
|
265 |
+
|
266 |
+
valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
267 |
+
csv_path=hparams["valid_csv"], replacements={"data_root": data_folder},
|
268 |
+
)
|
269 |
+
# We also sort the validation data so it is faster to validate
|
270 |
+
valid_data = valid_data.filtered_sorted(sort_key="duration")
|
271 |
+
test_datasets = {}
|
272 |
+
for csv_file in hparams["test_csv"]:
|
273 |
+
name = Path(csv_file).stem
|
274 |
+
test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv(
|
275 |
+
csv_path=csv_file, replacements={"data_root": data_folder}
|
276 |
+
)
|
277 |
+
test_datasets[name] = test_datasets[name].filtered_sorted(
|
278 |
+
sort_key="duration"
|
279 |
+
)
|
280 |
+
|
281 |
+
datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()]
|
282 |
+
|
283 |
+
|
284 |
+
# 2. Define audio pipeline:
|
285 |
+
@sb.utils.data_pipeline.takes("wav")
|
286 |
+
@sb.utils.data_pipeline.provides("sig")
|
287 |
+
def audio_pipeline(wav):
|
288 |
+
info = torchaudio.info(wav)
|
289 |
+
sig = sb.dataio.dataio.read_audio(wav)
|
290 |
+
resampled = torchaudio.transforms.Resample(
|
291 |
+
info.sample_rate, hparams["sample_rate"],
|
292 |
+
)(sig)
|
293 |
+
return resampled
|
294 |
+
|
295 |
+
sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline)
|
296 |
+
label_encoder = sb.dataio.encoder.CTCTextEncoder()
|
297 |
+
|
298 |
+
# 3. Define text pipeline:
|
299 |
+
@sb.utils.data_pipeline.takes("wrd")
|
300 |
+
@sb.utils.data_pipeline.provides(
|
301 |
+
"wrd", "char_list", "tokens_list", "tokens"
|
302 |
+
)
|
303 |
+
def text_pipeline(wrd):
|
304 |
+
yield wrd
|
305 |
+
char_list = list(wrd)
|
306 |
+
yield char_list
|
307 |
+
tokens_list = label_encoder.encode_sequence(char_list)
|
308 |
+
yield tokens_list
|
309 |
+
tokens = torch.LongTensor(tokens_list)
|
310 |
+
yield tokens
|
311 |
+
|
312 |
+
sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline)
|
313 |
+
lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt")
|
314 |
+
special_labels = {
|
315 |
+
"blank_label": hparams["blank_index"],
|
316 |
+
"unk_label": hparams["unk_index"]
|
317 |
+
}
|
318 |
+
label_encoder.load_or_create(
|
319 |
+
path=lab_enc_file,
|
320 |
+
from_didatasets=[train_data],
|
321 |
+
output_key="char_list",
|
322 |
+
special_labels=special_labels,
|
323 |
+
sequence_input=True,
|
324 |
+
)
|
325 |
+
|
326 |
+
# 4. Set output:
|
327 |
+
sb.dataio.dataset.set_output_keys(
|
328 |
+
datasets, ["id", "sig", "wrd", "char_list", "tokens"],
|
329 |
+
)
|
330 |
+
return train_data, valid_data,test_datasets, label_encoder
|
331 |
+
|
332 |
+
|
333 |
+
if __name__ == "__main__":
|
334 |
+
|
335 |
+
# Load hyperparameters file with command-line overrides
|
336 |
+
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
|
337 |
+
with open(hparams_file) as fin:
|
338 |
+
hparams = load_hyperpyyaml(fin, overrides)
|
339 |
+
|
340 |
+
# If --distributed_launch then
|
341 |
+
# create ddp_group with the right communication protocol
|
342 |
+
sb.utils.distributed.ddp_init_group(run_opts)
|
343 |
+
|
344 |
+
|
345 |
+
# Create experiment directory
|
346 |
+
sb.create_experiment_directory(
|
347 |
+
experiment_directory=hparams["output_folder"],
|
348 |
+
hyperparams_to_save=hparams_file,
|
349 |
+
overrides=overrides,
|
350 |
+
)
|
351 |
+
|
352 |
+
# Due to DDP, we do the preparation ONLY on the main python process
|
353 |
+
# Defining tokenizer and loading it
|
354 |
+
# Create the datasets objects as well as tokenization and encoding :-D
|
355 |
+
train_data, valid_data, test_datasets, label_encoder = dataio_prepare(hparams)
|
356 |
+
if hparams["use_language_modelling"]:
|
357 |
+
print("using langauge_modeeling")
|
358 |
+
from pyctcdecode import build_ctcdecoder
|
359 |
+
ind2lab = label_encoder.ind2lab
|
360 |
+
print(ind2lab)
|
361 |
+
labels = [ind2lab[x] for x in range(len(ind2lab))]
|
362 |
+
labels = [""] + labels[1:-1] + ["1"]
|
363 |
+
# Replace the <blank> token with a blank character, needed for PyCTCdecode
|
364 |
+
print(labels)
|
365 |
+
decoder = build_ctcdecoder(
|
366 |
+
labels,
|
367 |
+
kenlm_model_path=hparams["ngram_lm_path"], # .arpa or .bin
|
368 |
+
alpha=0.5, # Default by KenLM
|
369 |
+
beta=1.0, # Default by KenLM
|
370 |
+
)
|
371 |
+
# Trainer initialization
|
372 |
+
asr_brain = ASR(
|
373 |
+
modules=hparams["modules"],
|
374 |
+
hparams=hparams,
|
375 |
+
run_opts=run_opts,
|
376 |
+
checkpointer=hparams["checkpointer"],
|
377 |
+
)
|
378 |
+
|
379 |
+
# Adding objects to trainer.
|
380 |
+
asr_brain.tokenizer = label_encoder
|
381 |
+
|
382 |
+
# Training
|
383 |
+
asr_brain.fit(
|
384 |
+
asr_brain.hparams.epoch_counter,
|
385 |
+
train_data,
|
386 |
+
valid_data,
|
387 |
+
train_loader_kwargs=hparams["dataloader_options"],
|
388 |
+
valid_loader_kwargs=hparams["test_dataloader_options"],
|
389 |
+
)
|
390 |
+
|
391 |
+
# Test
|
392 |
+
for k in test_datasets.keys(): # keys are test_clean, test_other etc
|
393 |
+
asr_brain.hparams.wer_file = os.path.join(
|
394 |
+
hparams["output_folder"], "wer_{}.txt".format(k)
|
395 |
+
)
|
396 |
+
asr_brain.evaluate(
|
397 |
+
test_datasets[k], test_loader_kwargs=hparams["test_dataloader_options"]
|
398 |
+
)
|
399 |
+
|
arpas/everything.arpa
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bada7d41f63b1e5fd661ba66bccdfa93c3e5c391038ac6e52615a42ec0e0174
|
3 |
+
size 345991397
|
asr-wav2vec2-commonvoice-fr/README.md
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- fr
|
4 |
+
thumbnail: null
|
5 |
+
pipeline_tag: automatic-speech-recognition
|
6 |
+
tags:
|
7 |
+
- CTC
|
8 |
+
- pytorch
|
9 |
+
- speechbrain
|
10 |
+
- Transformer
|
11 |
+
- hf-asr-leaderboard
|
12 |
+
license: apache-2.0
|
13 |
+
datasets:
|
14 |
+
- commonvoice
|
15 |
+
metrics:
|
16 |
+
- wer
|
17 |
+
- cer
|
18 |
+
model-index:
|
19 |
+
- name: asr-wav2vec2-commonvoice-fr
|
20 |
+
results:
|
21 |
+
- task:
|
22 |
+
name: Automatic Speech Recognition
|
23 |
+
type: automatic-speech-recognition
|
24 |
+
dataset:
|
25 |
+
name: CommonVoice 6.1 (French)
|
26 |
+
type: mozilla-foundation/common_voice_6_1
|
27 |
+
config: fr
|
28 |
+
split: test
|
29 |
+
args:
|
30 |
+
language: fr
|
31 |
+
metrics:
|
32 |
+
- name: Test WER
|
33 |
+
type: wer
|
34 |
+
value: '9.96'
|
35 |
+
---
|
36 |
+
|
37 |
+
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
38 |
+
<br/><br/>
|
39 |
+
|
40 |
+
# wav2vec 2.0 with CTC/Attention trained on CommonVoice French (No LM)
|
41 |
+
|
42 |
+
This repository provides all the necessary tools to perform automatic speech
|
43 |
+
recognition from an end-to-end system pretrained on CommonVoice (French Language) within
|
44 |
+
SpeechBrain. For a better experience, we encourage you to learn more about
|
45 |
+
[SpeechBrain](https://speechbrain.github.io).
|
46 |
+
|
47 |
+
The performance of the model is the following:
|
48 |
+
|
49 |
+
| Release | Test CER | Test WER | GPUs |
|
50 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
51 |
+
| 24-08-21 | 3.19 | 9.96 | 2xV100 32GB |
|
52 |
+
|
53 |
+
## Pipeline description
|
54 |
+
|
55 |
+
This ASR system is composed of 2 different but linked blocks:
|
56 |
+
- Tokenizer (unigram) that transforms words into subword units and trained with
|
57 |
+
the train transcriptions (train.tsv) of CommonVoice (FR).
|
58 |
+
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([LeBenchmark/wav2vec2-FR-7K-large](https://huggingface.co/LeBenchmark/wav2vec2-FR-7K-large)) is combined with two DNN layers and finetuned on CommonVoice FR.
|
59 |
+
The obtained final acoustic representation is given to the CTC greedy decoder.
|
60 |
+
|
61 |
+
The system is trained with recordings sampled at 16kHz (single channel).
|
62 |
+
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
|
63 |
+
|
64 |
+
## Install SpeechBrain
|
65 |
+
|
66 |
+
First of all, please install tranformers and SpeechBrain with the following command:
|
67 |
+
|
68 |
+
```
|
69 |
+
pip install speechbrain transformers
|
70 |
+
```
|
71 |
+
|
72 |
+
Please notice that we encourage you to read our tutorials and learn more about
|
73 |
+
[SpeechBrain](https://speechbrain.github.io).
|
74 |
+
|
75 |
+
### Transcribing your own audio files (in French)
|
76 |
+
|
77 |
+
```python
|
78 |
+
from speechbrain.pretrained import EncoderASR
|
79 |
+
|
80 |
+
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-fr", savedir="pretrained_models/asr-wav2vec2-commonvoice-fr")
|
81 |
+
asr_model.transcribe_file('speechbrain/asr-wav2vec2-commonvoice-fr/example-fr.wav')
|
82 |
+
|
83 |
+
```
|
84 |
+
### Inference on GPU
|
85 |
+
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
86 |
+
|
87 |
+
### Training
|
88 |
+
The model was trained with SpeechBrain.
|
89 |
+
To train it from scratch follow these steps:
|
90 |
+
1. Clone SpeechBrain:
|
91 |
+
```bash
|
92 |
+
git clone https://github.com/speechbrain/speechbrain/
|
93 |
+
```
|
94 |
+
2. Install it:
|
95 |
+
```bash
|
96 |
+
cd speechbrain
|
97 |
+
pip install -r requirements.txt
|
98 |
+
pip install -e .
|
99 |
+
```
|
100 |
+
|
101 |
+
3. Run Training:
|
102 |
+
```bash
|
103 |
+
cd recipes/CommonVoice/ASR/CTC/
|
104 |
+
python train_with_wav2vec.py hparams/train_fr_with_wav2vec.yaml --data_folder=your_data_folder
|
105 |
+
```
|
106 |
+
|
107 |
+
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1T9DfdZwcNI9CURxhLCi8GA5JVz8adiY8?usp=sharing).
|
108 |
+
|
109 |
+
### Limitations
|
110 |
+
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
111 |
+
|
112 |
+
#### Referencing SpeechBrain
|
113 |
+
|
114 |
+
```
|
115 |
+
@misc{SB2021,
|
116 |
+
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
|
117 |
+
title = {SpeechBrain},
|
118 |
+
year = {2021},
|
119 |
+
publisher = {GitHub},
|
120 |
+
journal = {GitHub repository},
|
121 |
+
howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
|
122 |
+
}
|
123 |
+
```
|
124 |
+
|
125 |
+
#### About SpeechBrain
|
126 |
+
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
|
127 |
+
|
128 |
+
Website: https://speechbrain.github.io/
|
129 |
+
|
130 |
+
GitHub: https://github.com/speechbrain/speechbrain
|
asr-wav2vec2-commonvoice-fr/asr.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64ba475ed7be735d4ac054c2d537f22251b80f6ecb65cb04217eb0d1ed50a143
|
3 |
+
size 12963902
|