license: mit
tags:
- generated_from_trainer
datasets: Sakonii/nepalitext-language-model-dataset
mask_token: <mask>
widget:
- text: >-
मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ।
परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य
तरिकाले प्रभावित छ।
example_title: Example 1
- text: >-
अचेल विद्यालय र कलेजहरूले स्मारिका कत्तिको प्रकाशन गर्छन्, यकिन छैन । केही
वर्षपहिलेसम्म गाउँसहरका सानाठूला <mask> संस्थाहरूमा पुग्दा शिक्षक वा
कर्मचारीले संस्थाबाट प्रकाशित पत्रिका, स्मारिका र पुस्तक कोसेलीका रूपमा
थमाउँथे ।
example_title: Example 2
- text: >-
जलविद्युत् विकासको ११० वर्षको इतिहास बनाएको नेपालमा हाल सरकारी र निजी
क्षेत्रबाट गरी करिब २ हजार मेगावाट <mask> उत्पादन भइरहेको छ ।
example_title: Example 3
model-index:
- name: de-berta-base-base-nepali
results: []
deberta-base-nepali
This model is pre-trained on nepalitext dataset consisting of over 13 million Nepali text sequences using a masked language modeling (MLM) objective. Our approach trains a Sentence Piece Model (SPM) for text tokenization similar to XLM-ROBERTa and trains DeBERTa for language modeling. Find more details in this paper.
It achieves the following results on the evaluation set:
mlm probability | evaluation loss | evaluation perplexity |
---|---|---|
20% | 1.860 | 6.424 |
Model description
Refer to original microsoft/deberta-base
Intended uses & limitations
This backbone model intends to be fine-tuned on Nepali language focused downstream task such as sequence classification, token classification or question answering. The language model being trained on a data with texts grouped to a block size of 512, it handles text sequence up to 512 tokens and may not perform satisfactorily on shorter sequences.
Usage
This model can be used directly with a pipeline for masked language modeling:
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Sakonii/deberta-base-nepali')
>>> unmasker("मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, <mask>, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।")
[{'score': 0.10054448992013931,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, वातावरण, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 790,
'token_str': 'वातावरण'},
{'score': 0.05399947986006737,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, स्वास्थ्य, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 231,
'token_str': 'स्वास्थ्य'},
{'score': 0.045006219297647476,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, जल, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 1313,
'token_str': 'जल'},
{'score': 0.04032573476433754,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, पर्यावरण, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 13156,
'token_str': 'पर्यावरण'},
{'score': 0.026729246601462364,
'sequence': 'मानविय गतिविधिले प्रातृतिक पर्यावरन प्रनालीलाई अपरिमेय क्षति पु्र्याएको छ। परिवर्तनशिल जलवायुले खाध, सुरक्षा, संचार, जमिन, मौसमलगायतलाई असंख्य तरिकाले प्रभावित छ।',
'token': 3996,
'token_str': 'संचार'}]
Here is how we can use the model to get the features of a given text in PyTorch:
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained('Sakonii/deberta-base-nepali')
model = AutoModelForMaskedLM.from_pretrained('Sakonii/deberta-base-nepali')
# prepare input
text = "चाहिएको text यता राख्नु होला।"
encoded_input = tokenizer(text, return_tensors='pt')
# forward pass
output = model(**encoded_input)
Training data
This model is trained on nepalitext language modeling dataset which combines the datasets: OSCAR , cc100 and a set of scraped Nepali articles on Wikipedia. As for training the language model, the texts in the training set are grouped to a block of 512 tokens.
Tokenization
A Sentence Piece Model (SPM) is trained on a subset of nepalitext dataset for text tokenization. The tokenizer trained with vocab-size=24576, min-frequency=4, limit-alphabet=1000 and model-max-length=512.
Training procedure
The model is trained with the same configuration as the original microsoft/deberta-base; 512 tokens per instance, 6 instances per batch, and around 188.8K training steps (per epoch).
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Perplexity |
---|---|---|---|---|
2.5454 | 1.0 | 188789 | 2.4273 | 11.3283 |
2.2592 | 2.0 | 377578 | 2.1448 | 8.5403 |
2.1171 | 3.0 | 566367 | 2.0030 | 7.4113 |
2.0227 | 4.0 | 755156 | 1.9133 | 6.7754 |
1.9375 | 5.0 | 943945 | 1.8600 | 6.4237 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.9.1
- Datasets 2.0.0
- Tokenizers 0.11.6