whisper-small-ltn / README.md
Sagicc's picture
End of training
9a55b9d
metadata
language:
  - sr
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Small ltn
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_13_0
          config: sr
          split: test
          args: sr
        metrics:
          - name: Wer
            type: wer
            value: 0.2026498696785404

Whisper Small ltn

This model is a fine-tuned version of openai/whisper-small on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2678
  • Wer Ortho: 0.2959
  • Wer: 0.2026

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.5488 0.48 500 0.3154 0.3370 0.2496
0.5573 0.95 1000 0.2761 0.3020 0.2096
0.3847 1.43 1500 0.2678 0.2959 0.2026

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1