metadata
language:
- sr
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Large v3 Sr
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13
type: mozilla-foundation/common_voice_13_0
config: sr
split: test
args: sr
metrics:
- name: Wer
type: wer
value: 0.05560382276281494
Whisper Large v3 Sr
This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 13 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1628
- Wer Ortho: 0.1635
- Wer: 0.0556
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 1500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.0567 | 1.34 | 500 | 0.1512 | 0.1676 | 0.0717 |
0.0256 | 2.67 | 1000 | 0.1482 | 0.1585 | 0.0610 |
0.0114 | 4.01 | 1500 | 0.1628 | 0.1635 | 0.0556 |
Framework versions
- Transformers 4.35.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1