|
import streamlit as st |
|
from transformers import pipeline |
|
|
|
|
|
model_name = AutoModelForSeq2SeqLM.from_pretrained("Safna/abstractive") |
|
tokenizer_name = AutoTokenizer.from_pretrained("sshleifer/distilbart-xsum-12-3") |
|
|
|
summarizer = pipeline("summarization", model= model_name, tokenizer= tokenizer_name) |
|
|
|
|
|
st.title("Text Summarization App") |
|
|
|
input_text = st.text_area("Enter the text you want to summarize:") |
|
|
|
if st.button("Generate Summary"): |
|
if input_text: |
|
with st.spinner("Generating summary..."): |
|
summary = summarizer(input_text, max_length=64, min_length=10, length_penalty=2.0, num_beams=4, early_stopping=True) |
|
st.subheader("Generated Summary:") |
|
st.write(summary[0]["summary_text"]) |
|
|
|
|
|
st.sidebar.header("Instructions") |
|
st.sidebar.markdown("1. Enter the text you want to summarize.") |
|
st.sidebar.markdown("2. Click the 'Generate Summary' button.") |
|
|