lilt-en-funsd / README.md
Saed2023's picture
End of training
6741db9
|
raw
history blame
7.81 kB
---
license: mit
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lilt-en-funsd
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8784
- Answer: {'precision': 0.8651817116060961, 'recall': 0.9033047735618115, 'f1': 0.8838323353293414, 'number': 817}
- Header: {'precision': 0.6504854368932039, 'recall': 0.5630252100840336, 'f1': 0.6036036036036037, 'number': 119}
- Question: {'precision': 0.9073394495412844, 'recall': 0.9182915506035283, 'f1': 0.912782648823258, 'number': 1077}
- Overall Precision: 0.8768
- Overall Recall: 0.8912
- Overall F1: 0.8840
- Overall Accuracy: 0.7948
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4369 | 10.53 | 200 | 0.9022 | {'precision': 0.8049065420560748, 'recall': 0.8433292533659731, 'f1': 0.8236700537955769, 'number': 817} | {'precision': 0.5317460317460317, 'recall': 0.5630252100840336, 'f1': 0.5469387755102041, 'number': 119} | {'precision': 0.8837420526793823, 'recall': 0.903435468895079, 'f1': 0.8934802571166208, 'number': 1077} | 0.8301 | 0.8589 | 0.8442 | 0.7888 |
| 0.047 | 21.05 | 400 | 1.3222 | {'precision': 0.8382526564344747, 'recall': 0.8690330477356181, 'f1': 0.8533653846153846, 'number': 817} | {'precision': 0.5447761194029851, 'recall': 0.6134453781512605, 'f1': 0.5770750988142292, 'number': 119} | {'precision': 0.8667866786678667, 'recall': 0.8941504178272981, 'f1': 0.8802559414990858, 'number': 1077} | 0.8346 | 0.8674 | 0.8507 | 0.7837 |
| 0.015 | 31.58 | 600 | 1.4745 | {'precision': 0.8549528301886793, 'recall': 0.8873929008567931, 'f1': 0.8708708708708709, 'number': 817} | {'precision': 0.5867768595041323, 'recall': 0.5966386554621849, 'f1': 0.5916666666666667, 'number': 119} | {'precision': 0.8755635707844905, 'recall': 0.9015784586815228, 'f1': 0.888380603842635, 'number': 1077} | 0.8503 | 0.8778 | 0.8638 | 0.7969 |
| 0.0051 | 42.11 | 800 | 1.5719 | {'precision': 0.8768472906403941, 'recall': 0.8714810281517748, 'f1': 0.8741559238796808, 'number': 817} | {'precision': 0.5736434108527132, 'recall': 0.6218487394957983, 'f1': 0.596774193548387, 'number': 119} | {'precision': 0.8794326241134752, 'recall': 0.9210770659238626, 'f1': 0.8997732426303855, 'number': 1077} | 0.8594 | 0.8833 | 0.8711 | 0.7923 |
| 0.0041 | 52.63 | 1000 | 1.6771 | {'precision': 0.8352402745995423, 'recall': 0.8935128518971848, 'f1': 0.8633944411590775, 'number': 817} | {'precision': 0.6568627450980392, 'recall': 0.5630252100840336, 'f1': 0.6063348416289592, 'number': 119} | {'precision': 0.8865116279069768, 'recall': 0.8848653667595172, 'f1': 0.8856877323420075, 'number': 1077} | 0.8532 | 0.8693 | 0.8612 | 0.7877 |
| 0.0039 | 63.16 | 1200 | 1.6064 | {'precision': 0.8609112709832134, 'recall': 0.8788249694002448, 'f1': 0.8697758933979407, 'number': 817} | {'precision': 0.6106194690265486, 'recall': 0.5798319327731093, 'f1': 0.5948275862068966, 'number': 119} | {'precision': 0.8897777777777778, 'recall': 0.9294336118848654, 'f1': 0.9091734786557675, 'number': 1077} | 0.8629 | 0.8882 | 0.8754 | 0.8009 |
| 0.0019 | 73.68 | 1400 | 1.7674 | {'precision': 0.8533178114086146, 'recall': 0.8971848225214198, 'f1': 0.8747016706443913, 'number': 817} | {'precision': 0.5769230769230769, 'recall': 0.5042016806722689, 'f1': 0.5381165919282511, 'number': 119} | {'precision': 0.8842676311030742, 'recall': 0.9080779944289693, 'f1': 0.8960146587265231, 'number': 1077} | 0.8560 | 0.8798 | 0.8677 | 0.7981 |
| 0.0007 | 84.21 | 1600 | 1.8380 | {'precision': 0.8469387755102041, 'recall': 0.9143206854345165, 'f1': 0.8793407886992348, 'number': 817} | {'precision': 0.6017699115044248, 'recall': 0.5714285714285714, 'f1': 0.5862068965517241, 'number': 119} | {'precision': 0.8931159420289855, 'recall': 0.9155060352831941, 'f1': 0.9041723979825768, 'number': 1077} | 0.8580 | 0.8947 | 0.8760 | 0.7931 |
| 0.0007 | 94.74 | 1800 | 1.8108 | {'precision': 0.8600478468899522, 'recall': 0.8800489596083231, 'f1': 0.8699334543254689, 'number': 817} | {'precision': 0.6435643564356436, 'recall': 0.5462184873949579, 'f1': 0.5909090909090908, 'number': 119} | {'precision': 0.8722849695916595, 'recall': 0.9322191272051996, 'f1': 0.9012567324955117, 'number': 1077} | 0.8563 | 0.8882 | 0.8720 | 0.7887 |
| 0.0004 | 105.26 | 2000 | 1.9035 | {'precision': 0.8627906976744186, 'recall': 0.9082007343941249, 'f1': 0.8849135360763267, 'number': 817} | {'precision': 0.6285714285714286, 'recall': 0.5546218487394958, 'f1': 0.5892857142857143, 'number': 119} | {'precision': 0.8955495004541326, 'recall': 0.9155060352831941, 'f1': 0.9054178145087237, 'number': 1077} | 0.8683 | 0.8912 | 0.8796 | 0.7965 |
| 0.0002 | 115.79 | 2200 | 1.8784 | {'precision': 0.8651817116060961, 'recall': 0.9033047735618115, 'f1': 0.8838323353293414, 'number': 817} | {'precision': 0.6504854368932039, 'recall': 0.5630252100840336, 'f1': 0.6036036036036037, 'number': 119} | {'precision': 0.9073394495412844, 'recall': 0.9182915506035283, 'f1': 0.912782648823258, 'number': 1077} | 0.8768 | 0.8912 | 0.8840 | 0.7948 |
| 0.0002 | 126.32 | 2400 | 1.9075 | {'precision': 0.8640093786635404, 'recall': 0.9020807833537332, 'f1': 0.8826347305389222, 'number': 817} | {'precision': 0.6296296296296297, 'recall': 0.5714285714285714, 'f1': 0.5991189427312775, 'number': 119} | {'precision': 0.9041970802919708, 'recall': 0.9201485608170845, 'f1': 0.9121030832949838, 'number': 1077} | 0.8731 | 0.8922 | 0.8826 | 0.7959 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3