Saed2023's picture
update model card README.md
6cf6dc6
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - funsd
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-funsd
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: funsd
          type: funsd
          config: funsd
          split: test
          args: funsd
        metrics:
          - name: Precision
            type: precision
            value: 0.7998102466793169
          - name: Recall
            type: recall
            value: 0.8375558867362146
          - name: F1
            type: f1
            value: 0.8182479980587235
          - name: Accuracy
            type: accuracy
            value: 0.826102460477832

layoutlmv3-finetuned-funsd

This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0068
  • Precision: 0.7998
  • Recall: 0.8376
  • F1: 0.8182
  • Accuracy: 0.8261

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 3.33 250 0.5828 0.7015 0.8033 0.7490 0.8022
0.6702 6.67 500 0.5765 0.7499 0.8073 0.7775 0.8253
0.6702 10.0 750 0.7082 0.7755 0.8236 0.7988 0.8160
0.1797 13.33 1000 0.7819 0.7807 0.8366 0.8077 0.8256
0.1797 16.67 1250 0.8199 0.7997 0.8311 0.8151 0.8227
0.0745 20.0 1500 0.9025 0.7943 0.8286 0.8111 0.8231
0.0745 23.33 1750 0.9159 0.7941 0.8470 0.8197 0.8248
0.041 26.67 2000 1.0012 0.7989 0.8385 0.8182 0.8210
0.041 30.0 2250 0.9852 0.8024 0.8450 0.8231 0.8301
0.0246 33.33 2500 1.0068 0.7998 0.8376 0.8182 0.8261

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3