|
--- |
|
language: |
|
- hu |
|
pipeline_tag: summarization |
|
inference: |
|
parameters: |
|
num_beams: 5 |
|
length_penalty: 2 |
|
max_length: 128 |
|
encoder_no_repeat_ngram_size: 4 |
|
no_repeat_ngram_size: 3 |
|
datasets: |
|
- SZTAKI-HLT/HunSum-1 |
|
metrics: |
|
- rouge |
|
--- |
|
|
|
# Model Card for mT5-small-HunSum-1 |
|
|
|
The mT5-small-HunSum-1 is a Hungarian abstractive summarization model, which was trained on the [SZTAKI-HLT/HunSum-1 dataset](https://huggingface.co/datasets/SZTAKI-HLT/HunSum-1). |
|
The model is based on [google/mt5-small]([google/mt5-small](https://huggingface.co/google/mt5-small)). |
|
|
|
## Intended uses & limitations |
|
|
|
- **Model type:** Text Summarization |
|
- **Language(s) (NLP):** Hungarian |
|
- **Resource(s) for more information:** |
|
- [GitHub Repo](https://github.com/dorinapetra/summarization) |
|
|
|
## Parameters |
|
|
|
- **Batch Size:** 16 |
|
- **Learning Rate:** 5e-5 |
|
- **Weight Decay:** 0.01 |
|
- **Warmup Steps:** 3000 |
|
- **Epochs:** 10 |
|
- **no_repeat_ngram_size:** 3 |
|
- **num_beams:** 5 |
|
- **early_stopping:** False |
|
- **encoder_no_repeat_ngram_size:** 4 |
|
|
|
## Results |
|
|
|
| Metric | Value | |
|
| :------------ | :------------------------------------------ | |
|
| ROUGE-1 | 36.49 | |
|
| ROUGE-2 | 9.50 | |
|
| ROUGE-L | 23.48 | |
|
|
|
|
|
## Citation |
|
|
|
If you use our model, please cite the following paper: |
|
``` |
|
@inproceedings {mt5-small-HunSum-1, |
|
title = {{HunSum-1: an Abstractive Summarization Dataset for Hungarian}}, |
|
booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)}, |
|
year = {2023}, |
|
publisher = {Szegedi Tudományegyetem, Informatikai Intézet}, |
|
address = {Szeged, Magyarország}, |
|
author = {Barta, Botond and Lakatos, Dorina and Nagy, Attila and Nyist, Mil{\'{a}}n Konor and {\'{A}}cs, Judit}, |
|
pages = {231--243} |
|
} |
|
``` |