SWiedemann's picture
Training completed!
df5d4bd verified
|
raw
history blame
3.63 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: train[:2000]
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.89
          - name: F1
            type: f1
            value: 0.8909727258350819

distilbert-base-uncased-finetuned-emotion

This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6248
  • Accuracy: 0.89
  • Balanced accuracy: 0.8764
  • F1: 0.8910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Balanced accuracy F1
0.0269 1.0 25 0.4880 0.905 0.8890 0.9058
0.0204 2.0 50 0.5177 0.89 0.8934 0.8896
0.009 3.0 75 0.4983 0.89 0.8787 0.8911
0.0089 4.0 100 0.5681 0.895 0.8724 0.8947
0.0048 5.0 125 0.5800 0.88 0.8662 0.8819
0.0023 6.0 150 0.5706 0.89 0.8959 0.8917
0.0035 7.0 175 0.6086 0.895 0.8760 0.8955
0.006 8.0 200 0.6522 0.88 0.9011 0.8811
0.0017 9.0 225 0.5806 0.89 0.8715 0.8907
0.0014 10.0 250 0.5809 0.885 0.9001 0.8868
0.0011 11.0 275 0.5942 0.885 0.8729 0.8864
0.001 12.0 300 0.5997 0.895 0.8826 0.8963
0.0009 13.0 325 0.6006 0.89 0.8791 0.8912
0.001 14.0 350 0.6135 0.885 0.9013 0.8857
0.0009 15.0 375 0.6199 0.885 0.8740 0.8858
0.0008 16.0 400 0.6257 0.885 0.8740 0.8858
0.0007 17.0 425 0.6254 0.885 0.8740 0.8858
0.0007 18.0 450 0.6273 0.885 0.8740 0.8858
0.0007 19.0 475 0.6248 0.885 0.8740 0.8858
0.0007 20.0 500 0.6248 0.89 0.8764 0.8910

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2