Update README.md
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# ST MNIST v1
|
@@ -67,7 +67,7 @@ Measures are done with default STM32Cube.AI configuration with enabled input / o
|
|
67 |
|
68 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
69 |
|-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
70 |
-
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H7 | 17.21 KiB | 4.49 KiB | 10.08 KiB | 46.8 KiB | 21.7 KiB | 56.88 KiB | 10.0.0 |
|
71 |
|
72 |
|
73 |
### Reference **MCU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
|
@@ -75,15 +75,15 @@ Measures are done with default STM32Cube.AI configuration with enabled input / o
|
|
75 |
|
76 |
| Model | Format | Resolution | Board | Frequency | Inference time (ms) | STM32Cube.AI version |
|
77 |
|-------------------|--------|------------|------------------|---------------|---------------------|-----------------------|
|
78 |
-
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H747I-DISCO | 400 MHz | 3.41 ms | 10.0.0 |
|
79 |
|
80 |
|
81 |
### Reference **MPU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
|
82 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
83 |
|---------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
84 |
-
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel** | STM32MP257F-DK2 | 2 CPU | 1500 MHz | 0.31 ms | 0 | 0 | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
85 |
-
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 0.69 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
86 |
-
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1.070 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
87 |
|
88 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
89 |
|
@@ -94,16 +94,16 @@ Dataset details: [link](https://www.nist.gov/itl/products-and-services/emnist-da
|
|
94 |
|
95 |
| Model | Format | Resolution | Top 1 Accuracy |
|
96 |
|-------|--------|------------|----------------|
|
97 |
-
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs.h5) | Float | 28x28x1 | 91.89 % |
|
98 |
-
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | 91.47 % |
|
99 |
|
100 |
Following we provide the confusion matrix for the model with Float32 weights.
|
101 |
|
102 |
-

|
103 |
|
104 |
Following we provide the confusion matrix for the quantized model with INT8 weights.
|
105 |
|
106 |
-

|
107 |
|
108 |
|
109 |
## Retraining and Integration in a simple example:
|
|
|
2 |
license: other
|
3 |
license_name: sla0044
|
4 |
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md
|
6 |
pipeline_tag: image-classification
|
7 |
---
|
8 |
# ST MNIST v1
|
|
|
67 |
|
68 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
69 |
|-------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
70 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H7 | 17.21 KiB | 4.49 KiB | 10.08 KiB | 46.8 KiB | 21.7 KiB | 56.88 KiB | 10.0.0 |
|
71 |
|
72 |
|
73 |
### Reference **MCU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
|
|
|
75 |
|
76 |
| Model | Format | Resolution | Board | Frequency | Inference time (ms) | STM32Cube.AI version |
|
77 |
|-------------------|--------|------------|------------------|---------------|---------------------|-----------------------|
|
78 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | STM32H747I-DISCO | 400 MHz | 3.41 ms | 10.0.0 |
|
79 |
|
80 |
|
81 |
### Reference **MPU** inference time based on EMNIST-Byclass dataset (see Accuracy for details on dataset)
|
82 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
83 |
|---------------------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
84 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel** | STM32MP257F-DK2 | 2 CPU | 1500 MHz | 0.31 ms | 0 | 0 | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
85 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 0.69 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
86 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 1.070 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
87 |
|
88 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
89 |
|
|
|
94 |
|
95 |
| Model | Format | Resolution | Top 1 Accuracy |
|
96 |
|-------|--------|------------|----------------|
|
97 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs.h5) | Float | 28x28x1 | 91.89 % |
|
98 |
+
| [ST MNIST Byclass v1 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/st_mnist/ST_pretrainedmodel_public_dataset/emnist_byclass/st_mnist_v1_28_tfs/st_mnist_v1_28_tfs_int8.tflite) | Int8 | 28x28x1 | 91.47 % |
|
99 |
|
100 |
Following we provide the confusion matrix for the model with Float32 weights.
|
101 |
|
102 |
+

|
103 |
|
104 |
Following we provide the confusion matrix for the quantized model with INT8 weights.
|
105 |
|
106 |
+

|
107 |
|
108 |
|
109 |
## Retraining and Integration in a simple example:
|