Update README.md
Browse files
README.md
CHANGED
@@ -99,13 +99,13 @@ For an image resolution of NxM and P classes
|
|
99 |
|
100 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
101 |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
102 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 272.96 KiB | 16.38 KiB | 214.69 KiB | 68.05 KiB | 289.34 KiB | 282.74 KiB | 10.0.0 |
|
103 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 449.58 KiB | 16.38 KiB | 812.61 KiB | 81.46 KiB | 465.96 KiB | 894.02 KiB | 10.0.0 |
|
104 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | STM32H7 | 66.96 KiB | 16.33 KiB | 214.69 KiB | 68 KiB | 83.29 KiB | 282.69 KiB | 10.0.0 |
|
105 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | STM32H7 | 52.8 KiB | 16.33 KiB | 214.55 KiB | 70.27 KiB | 69.13 KiB | 284.82 KiB | 10.0.0 |
|
106 |
-
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 272.96 KiB | 16.43 KiB | 467.33 KiB | 70.02 KiB | 283.63 KiB | 537.35 KiB | 10.0.0 |
|
107 |
-
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 431.07 KiB | 16.43 KiB | 1314 KiB | 83.38 KiB | 447.5 KiB | 1397.38 KiB | 10.0.0 |
|
108 |
-
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 1331.13 KiB | 16.48 KiB | 4157.09 KiB | 110.11 KiB | 1347.61 KiB | 4267.2 KiB | 10.0.0 |
|
109 |
|
110 |
|
111 |
### Reference **MCU** inference time based on Flowers dataset and ImageNet dataset (see Accuracy for details on dataset)
|
@@ -113,30 +113,30 @@ For an image resolution of NxM and P classes
|
|
113 |
|
114 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
115 |
|-------------------|--------|------------|------------------|------------------|-----------|------------------|-----------------------|
|
116 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 163.78 ms | 10.0.0 |
|
117 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 485.79 ms | 10.0.0 |
|
118 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 29.94 ms | 10.0.0 |
|
119 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.34 ms | 10.0.0 |
|
120 |
-
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 166.75 ms | 10.0.0 |
|
121 |
-
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 504.37 ms | 10.0.0 |
|
122 |
-
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 1641.84 ms | 10.0.0 |
|
123 |
|
124 |
|
125 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
126 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
127 |
|-----------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
128 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 14.29 ms | 6.04 | 93.96 | 0 | v5.1.0 | OpenVX |
|
129 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 32.74 ms | 3.41 | 96.59 | 0 | v5.1.0 | OpenVX |
|
130 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 3.740 ms | 14.20 | 85.80 | 0 | v5.1.0 | OpenVX |
|
131 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 3.68 ms | 11.47 | 88.53 | 0 | v5.1.0 | OpenVX |
|
132 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 33.97 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
133 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 91.42 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
134 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 6.40 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
135 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 5.83 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
136 |
-
|[MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 52.51 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
137 |
-
|[MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 145.4 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
138 |
-
|[MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 9.75 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
139 |
-
|[MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 9.01 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
140 |
|
141 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
142 |
|
@@ -147,22 +147,22 @@ Dataset details: [link](http://download.tensorflow.org/example_images/flower_pho
|
|
147 |
|
148 |
| Model | Format | Resolution | Top 1 Accuracy |
|
149 |
|-------|--------|------------|----------------|
|
150 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 88.83 % |
|
151 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 89.37 % |
|
152 |
-
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 85.83 % |
|
153 |
-
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 83.24 % |
|
154 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 93.05 % |
|
155 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 92.1 % |
|
156 |
-
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 92.1 % |
|
157 |
-
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 91.55 % |
|
158 |
-
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 88.56 % |
|
159 |
-
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 87.74 % |
|
160 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 95.1 % |
|
161 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 94.41 % |
|
162 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft.h5) | Float | 96x96x3 | 87.47 % |
|
163 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | 87.06 % |
|
164 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs.h5) | Float | 96x96x1 | 74.93 % |
|
165 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | 74.93 % |
|
166 |
|
167 |
|
168 |
|
@@ -173,18 +173,18 @@ Dataset details: [link](https://data.mendeley.com/datasets/tywbtsjrjv/1), Licens
|
|
173 |
|
174 |
| Model | Format | Resolution | Top 1 Accuracy |
|
175 |
|-------|--------|------------|----------------|
|
176 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 99.92 % |
|
177 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 99.92 % |
|
178 |
-
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 85.38 % |
|
179 |
-
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 83.7 % |
|
180 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 99.95 % |
|
181 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 99.82 % |
|
182 |
-
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 99.9 % |
|
183 |
-
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 99.83 % |
|
184 |
-
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 93.05 % |
|
185 |
-
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 92.7 % |
|
186 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 99.94 % |
|
187 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 99.85 % |
|
188 |
|
189 |
|
190 |
### Accuracy with Food-101 dataset
|
@@ -194,20 +194,20 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
|
|
194 |
|
195 |
| Model | Format | Resolution | Top 1 Accuracy |
|
196 |
|-------|--------|------------|----------------|
|
197 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 72.16 % |
|
198 |
-
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 71.13 % |
|
199 |
-
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 43.21 % |
|
200 |
-
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 39.89 % |
|
201 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 72.36 % |
|
202 |
-
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 69.52 % |
|
203 |
-
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 76.97 % |
|
204 |
-
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 76.37 % |
|
205 |
-
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 48.78 % |
|
206 |
-
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 45.89 % |
|
207 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 76.72 % |
|
208 |
-
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 74.82 % |
|
209 |
-
| [MobileNet v1 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft.h5) | Float | 224x224x3 | 80.38 % |
|
210 |
-
| [MobileNet v1 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft_int8.tflite) | Int8 | 224x224x3 | 79.43 % |
|
211 |
|
212 |
|
213 |
### Accuracy with ImageNet dataset
|
@@ -219,12 +219,12 @@ For the sake of simplicity, the accuracy reported here was estimated on the 5000
|
|
219 |
|
220 |
|model | Format | Resolution | Top 1 Accuracy |
|
221 |
|---------|--------|------------|----------------|
|
222 |
-
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224.h5) | Float | 224x224x3 | 48.96 % |
|
223 |
-
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | 46.34 % |
|
224 |
-
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224.h5) | Float | 224x224x3 | 62.11 % |
|
225 |
-
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | 59.92 % |
|
226 |
-
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224.h5) | Float | 224x224x3 | 69.52 % |
|
227 |
-
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | 68.64 % |
|
228 |
|
229 |
|
230 |
|
|
|
99 |
|
100 |
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
101 |
|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
|
102 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 272.96 KiB | 16.38 KiB | 214.69 KiB | 68.05 KiB | 289.34 KiB | 282.74 KiB | 10.0.0 |
|
103 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 449.58 KiB | 16.38 KiB | 812.61 KiB | 81.46 KiB | 465.96 KiB | 894.02 KiB | 10.0.0 |
|
104 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | STM32H7 | 66.96 KiB | 16.33 KiB | 214.69 KiB | 68 KiB | 83.29 KiB | 282.69 KiB | 10.0.0 |
|
105 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | STM32H7 | 52.8 KiB | 16.33 KiB | 214.55 KiB | 70.27 KiB | 69.13 KiB | 284.82 KiB | 10.0.0 |
|
106 |
+
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 272.96 KiB | 16.43 KiB | 467.33 KiB | 70.02 KiB | 283.63 KiB | 537.35 KiB | 10.0.0 |
|
107 |
+
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 431.07 KiB | 16.43 KiB | 1314 KiB | 83.38 KiB | 447.5 KiB | 1397.38 KiB | 10.0.0 |
|
108 |
+
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 1331.13 KiB | 16.48 KiB | 4157.09 KiB | 110.11 KiB | 1347.61 KiB | 4267.2 KiB | 10.0.0 |
|
109 |
|
110 |
|
111 |
### Reference **MCU** inference time based on Flowers dataset and ImageNet dataset (see Accuracy for details on dataset)
|
|
|
113 |
|
114 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
115 |
|-------------------|--------|------------|------------------|------------------|-----------|------------------|-----------------------|
|
116 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 163.78 ms | 10.0.0 |
|
117 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 485.79 ms | 10.0.0 |
|
118 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 29.94 ms | 10.0.0 |
|
119 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.34 ms | 10.0.0 |
|
120 |
+
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 166.75 ms | 10.0.0 |
|
121 |
+
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 504.37 ms | 10.0.0 |
|
122 |
+
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 1641.84 ms | 10.0.0 |
|
123 |
|
124 |
|
125 |
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset)
|
126 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
127 |
|-----------------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
128 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 14.29 ms | 6.04 | 93.96 | 0 | v5.1.0 | OpenVX |
|
129 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 32.74 ms | 3.41 | 96.59 | 0 | v5.1.0 | OpenVX |
|
130 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 3.740 ms | 14.20 | 85.80 | 0 | v5.1.0 | OpenVX |
|
131 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 3.68 ms | 11.47 | 88.53 | 0 | v5.1.0 | OpenVX |
|
132 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 33.97 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
133 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 91.42 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
134 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 6.40 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
135 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 5.83 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
136 |
+
|[MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 52.51 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
137 |
+
|[MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 145.4 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
138 |
+
|[MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 9.75 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
139 |
+
|[MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 9.01 ms | NA | NA | 100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
140 |
|
141 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
142 |
|
|
|
147 |
|
148 |
| Model | Format | Resolution | Top 1 Accuracy |
|
149 |
|-------|--------|------------|----------------|
|
150 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 88.83 % |
|
151 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 89.37 % |
|
152 |
+
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 85.83 % |
|
153 |
+
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 83.24 % |
|
154 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 93.05 % |
|
155 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 92.1 % |
|
156 |
+
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 92.1 % |
|
157 |
+
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 91.55 % |
|
158 |
+
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 88.56 % |
|
159 |
+
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 87.74 % |
|
160 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 95.1 % |
|
161 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 94.41 % |
|
162 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft.h5) | Float | 96x96x3 | 87.47 % |
|
163 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_fft/mobilenet_v1_0.25_96_fft_int8.tflite) | Int8 | 96x96x3 | 87.06 % |
|
164 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs.h5) | Float | 96x96x1 | 74.93 % |
|
165 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/flowers/mobilenet_v1_0.25_96_grayscale_tfs/mobilenet_v1_0.25_96_grayscale_tfs_int8.tflite) | Int8 | 96x96x1 | 74.93 % |
|
166 |
|
167 |
|
168 |
|
|
|
173 |
|
174 |
| Model | Format | Resolution | Top 1 Accuracy |
|
175 |
|-------|--------|------------|----------------|
|
176 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 99.92 % |
|
177 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 99.92 % |
|
178 |
+
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 85.38 % |
|
179 |
+
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 83.7 % |
|
180 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 99.95 % |
|
181 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 99.82 % |
|
182 |
+
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 99.9 % |
|
183 |
+
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 99.83 % |
|
184 |
+
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 93.05 % |
|
185 |
+
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 92.7 % |
|
186 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 99.94 % |
|
187 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/plant-village/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 99.85 % |
|
188 |
|
189 |
|
190 |
### Accuracy with Food-101 dataset
|
|
|
194 |
|
195 |
| Model | Format | Resolution | Top 1 Accuracy |
|
196 |
|-------|--------|------------|----------------|
|
197 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs.h5) | Float | 224x224x3 | 72.16 % |
|
198 |
+
| [MobileNet v1 0.25 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tfs/mobilenet_v1_0.25_224_tfs_int8.tflite) | Int8 | 224x224x3 | 71.13 % |
|
199 |
+
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl.h5) | Float | 224x224x3 | 43.21 % |
|
200 |
+
| [MobileNet v1 0.25 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_tl/mobilenet_v1_0.25_224_tl_int8.tflite) | Int8 | 224x224x3 | 39.89 % |
|
201 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft.h5) | Float | 224x224x3 | 72.36 % |
|
202 |
+
| [MobileNet v1 0.25 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.25_224_fft/mobilenet_v1_0.25_224_fft_int8.tflite) | Int8 | 224x224x3 | 69.52 % |
|
203 |
+
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs.h5) | Float | 224x224x3 | 76.97 % |
|
204 |
+
| [MobileNet v1 0.5 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tfs/mobilenet_v1_0.5_224_tfs_int8.tflite) | Int8 | 224x224x3 | 76.37 % |
|
205 |
+
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl.h5) | Float | 224x224x3 | 48.78 % |
|
206 |
+
| [MobileNet v1 0.5 tl](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_tl/mobilenet_v1_0.5_224_tl_int8.tflite) | Int8 | 224x224x3 | 45.89 % |
|
207 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft.h5) | Float | 224x224x3 | 76.72 % |
|
208 |
+
| [MobileNet v1 0.5 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_0.5_224_fft/mobilenet_v1_0.5_224_fft_int8.tflite) | Int8 | 224x224x3 | 74.82 % |
|
209 |
+
| [MobileNet v1 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft.h5) | Float | 224x224x3 | 80.38 % |
|
210 |
+
| [MobileNet v1 1.0 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/ST_pretrainedmodel_public_dataset/food-101/mobilenet_v1_1.0_224_fft/mobilenet_v1_1.0_224_fft_int8.tflite) | Int8 | 224x224x3 | 79.43 % |
|
211 |
|
212 |
|
213 |
### Accuracy with ImageNet dataset
|
|
|
219 |
|
220 |
|model | Format | Resolution | Top 1 Accuracy |
|
221 |
|---------|--------|------------|----------------|
|
222 |
+
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224.h5) | Float | 224x224x3 | 48.96 % |
|
223 |
+
| [MobileNet v1 0.25](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.25_224/mobilenet_v1_0.25_224_int8.tflite) | Int8 | 224x224x3 | 46.34 % |
|
224 |
+
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224.h5) | Float | 224x224x3 | 62.11 % |
|
225 |
+
| [MobileNet v1 0.5](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_0.5_224/mobilenet_v1_0.5_224_int8.tflite) | Int8 | 224x224x3 | 59.92 % |
|
226 |
+
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224.h5) | Float | 224x224x3 | 69.52 % |
|
227 |
+
| [MobileNet v1 1.0](https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/mobilenetv1/Public_pretrainedmodel_public_dataset/ImageNet/mobilenet_v1_1.0_224/mobilenet_v1_1.0_224_int8.tflite) | Int8 | 224x224x3 | 68.64 % |
|
228 |
|
229 |
|
230 |
|